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An algorithm to perform stochastic generalized active space calculations, Stochastic-GAS,

is presented, that uses the Slater determinant based FCIQMC algorithm as configuration in-

teraction eigensolver. Stochastic-GAS allows the construction and stochastic optimization of

preselected truncated configuration interaction wave functions, either to reduce the computa-

tional costs of large active space wave function optimizations, or to probe the role of specific

electron correlation pathways. As for the conventional GAS procedure, the preselection of

the truncated wave function is based on the selection of multiple active subspaces while

imposing restrictions on the interspace excitations. Both local and cumulative minimum

and maximum occupation number constraints are supported by Stochastic-GAS. The occu-

pation number constraints are efficiently encoded in precomputed probability distributions,

using the precomputed heat bath algorithm, which removes nearly all runtime overheads of

GAS. This strategy effectively allows the FCIQMC dynamics to a priori exclude electronic

configurations that are not allowed by GAS restrictions. Stochastic-GAS reduced density ma-
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trices are stochastically sampled, allowing orbital relaxations via Stochastic-GASSCF, and

direct evaluation of properties that can be extracted from density matrices, such as the spin

expectation value. Three test case applications have been chosen to demonstrate the flexi-

bility of Stochastic-GAS: (a) the Stochastic-GASSCF optimization of a stack of five benzene

molecules, that shows the applicability of Stochastic-GAS towards fragment-based chemical

systems; (b) an uncontracted stochastic MRCISD calculation that correlates 96 electrons and

159 molecular orbitals, and uses a large (32, 34) active space reference wave function for an

Fe(II)-porphyrin model system, showing how GAS can be applied to systematically recover

dynamic electron correlation, and how in the specific case of the Fe(II)-porphyrin dynamic

correlation further differentially stabilizes the 3Eg over the 5A1g spin state; (c) the study of

an Fe4S4 cluster’s spin-ladder energetics via highly truncated stochastic-GAS wave functions,

where we show how GAS can be applied to understand the competing spin-exchange and

charge-transfer correlating mechanisms in stabilizing different spin-states.

1 Introduction

Multiconfigurational Self Consistent Field (MCSCF) methods are well established approaches

in quantum chemistry to investigate the electronic structures of systems featuring strong

electron correlation effects, and are characterized by highly multi-reference wave functions.

MCSCF wave functions are written as linear combinations of electronic configurations, which

can for example be Slater determinants (SDs) or spin-adapted configuration state functions

(CSFs). The many-body wave function is then optimized to minimise the CI energy, while

the molecular orbitals are self-consistently optimized under the mean field of the CI wave

function. MCSCF approaches represent a highly flexible strategy that can easily be adapted

to a large variety of challenging chemical systems.

The Complete Active Space Self Consistent Field (CASSCF) method, is a popular MC-

SCF approach.1–4 In CASSCF a number of important orbitals, n, usually around the frontier
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orbitals, and their N electrons are selected to form the active space. Doubly occupied and

empty orbitals not included in the active space form the inactive and the virtual spaces,

respectively. All possible electronic configurations are generated, compatibly with spin

and space symmetry, by distributing the N active electrons among the n active orbitals,

a CAS(N, n). While the CI coefficients are obtained via exact or approximated schemes for

the CI Hamiltonian diagonalization, the orbitals are variationally optimized via inactive-

active, active-virtual, and inactive-virtual orbital rotations. CAS is conceptually simple be-

cause only one active space has to be selected. However, the size of the CAS wave function

exponentially grows with the size of the active space, and the computational costs of con-

ventional diagonalization techniques5–7 quickly reach their practical limits for CAS(18, 18)

wave functions.

For most chemical systems, the full CI expasion in the active space is unnecessarily

large, since CAS wave functions are general sparse, mostly containing “deadwood ”, that is

electronic configurations with vanishingly small CI amplitudes.8–10 Various methods exist

that attempt to exclude deadwood from the CI optimization step, either via a sparse wave

function representation, via a user preselection of truncated CI expansions, via an on the

fly selection of the important electronic configurations, or by exploiting redundancies within

the many-body wave function.

One example is the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) al-

gorithm,11–14 that takes advantage of the sparsity of the wave functions, and deadwoods are

not (or rarely) processsed and stored along the FCIQMC optimization procedure. FCIQMC

is a projective method that stochastically propagates the imaginary-time Schrödinger’s equa-

tion to solve the CI-problem. Apart from being a sparse CI-eigensolver it can be near-linearly

parallelized to benefit from modern hardware. The use of FCIQMC as the CASSCF CI-

eigensolver within the Super-CI framework, termed Stochastic-CASSCF,15 was developed in

our group and has been applied with great success to circumvent the active space size limits

of conventional CASSCF.15–18
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Examples of methodologies where truncated CI spaces are pre-selected include the gener-

alized valence bond approach,19 constrained-CASSCF (CCASSCF),20 quasi-CASSCF (QCASSCF),21

restricted-CI (RCI),22,23 restricted active space self-consistent field (RASSCF),24,25 the oc-

cupation restricted multiple active spaces self-consistent field (ORMAS-SCF) method,26 and

the generalized active space self-consistent field (GASSCF) approach.24,27–30 In CCASSCF

the active space is partitioned into several subspaces with a fixed number of particles per

subspace; the method is formulated in a basis of CSFs. QCASSCF works like CCASSCF

but is formulated in a basis of Slater determinants. RAS wave functions are defined using

three active subspaces, commonly labelled RAS1, RAS2, and RAS3, with RAS1 containing

doubly occupied orbitals, RAS3 containing empty orbitals, and RAS2 containg orbitals with

occupation numbers ranging from 0 to 2. The maximum number of holes in RAS1 and the

maximum number of particles in RAS3 are used as restrictions to define the configuration

interaction space. In the ORMAS-SCF method, implemented in the GAMESS-US chemistry

software package,31 several active spaces are chosen; all intra-space excitations are allowed

while the number of interspace excitations are restricted by local minimum and maximum

occupation numbers per active subspace. The corresponding CI problem is solved in the

Slater determinant basis, relying on the Slater-Condon rules. The similar concept of gen-

eralized active space (GAS) was introduced by Jeppe Olsen already in 1988. In 2011, the

GAS approach was coupled to the Super-CI algorithm within the (Open)Molcas chemistry

software package32,33 for the variational orbital relaxation, leading to GASSCF.27 As in OR-

MAS, the truncated GAS wave functions are built by selecting a number of active subspaces,

and imposing constraints at the level of the interspace excitations. However, GASSCF differs

from ORMAS-SCF in a number of aspects; most notably, in GAS interspace excitation con-

straints are enforced via cumulative minimum and maximum occupation numbers, instead

of the local constraints of the ORMAS scheme, and a spin-adapted basis of CSFs is used in

the GAS method, relying on the Graphical Unitary Group Approach (GUGA).34 GAS-like

truncated CI wave functions have also been implemented in the Molpro package.35
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GAS restrictions can be used to exclude deadwood configurations and to reduce the com-

putational costs while retaining highly accurate multi-reference predictions. This strategy

has been adopted in the 2011 work and applied to the dissociation curve of the Gd2 dimer

and to the study of the relative stability of two energetically low-lying spin states of the

Oxo-Mn(salen) complex.27 The GAS strategy can also be applied to investigate the role of

specific electron correlation mechanisms, by removing electronic confifurations that are rel-

evant to describe those correlation pathways. This strategy was undertaken in our group to

quantify the effect of the correlation enhanced π-backdonation in Fe(II)-porphyrins,18 and

to understand correlation effects in corner-sharing cuprates.36

Selected-CI methods are another class of MC techniques that attempt to circumvent the

exponential scaling limitation by selecting the important electronic configurations on the fly

using automated heuristics. These methodologies heavily rely on the Slater-Condon rules and

are generally bound to a Slater determinant many-body basis.37–45 Another notable strategy

that reduces the exponential scaling limitation is the Density Matrix Renormalization Group

(DMRG) theory.46–56

In this work we introduce a flexible Stochastic-GAS method, that stochastically optimizes

truncated GAS wave functions expanded in the Slater determinant many-body basis, based

on the FCIQMC algorithm. In one of our earlier works, we introduced a prototype Stochastic-

GAS implementation that supported only disconnected GAS subspaces, in that similar to the

QCAS strategy, and successfully applied it to an Fe(II)-porphyrin model system,18 to probe

the effect of the correlation enhanced σ-donation/π-backdonations on the basis of a large

CAS(32, 34) active space.16 The GAS algorithm here described also supports interspace

excitations that can be restricted by both cumulative and local minimum and maximum

occupation numbers constraints, as in the conventional GASSCF method,27 and in ORMAS-

SCF,26 respectively.

In Stochastic-GAS, occupation number constraints (local or cumulative) are embedded

within the precomputed heat bath (PCHB) excitation generation.57 Our algorithm does not
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incur runtime overheads to adhere to the GAS constraints, instead they are automatically

accounted for by precalculated heat bath probability distributions. Moreover, the Stochastic-

GAS dynamics automatically benefits from other recent development in FCIQMC, the adap-

tive shift with an offset,58,59 that greatly improves the convergence with respect to walker

numbers.

Stochastic CAS, QCAS, RAS, and equivalently uncontracted multi-reference configura-

tion interation (MRCI) wave functions, are special cases of the GAS strategy, thus, they

are promptly available by an appropriate choice of the GAS subspaces and corresponding

constraints. Our efficient implementation of the Stochastic-GAS method, using hybrid par-

allelisation, the GAS-PCHB excitation generator, and the adaptive shift has allowed for

example uncontracted stochastic-MRCISD calculations with up to 96 electrons and 159 or-

bitals and a large (32,34) active space reference wave function.

Within the Stochastic-GAS method, one- and two-body reduced density matrices (RDMs)

can be stochastically sampled as for stochastic FCI or CAS wave functions.15,60–62 Those

can be subsequently utilized to calculate orbital gradients, Hessians or within the Super-

CI theory2,27 to variationally relax the molecular orbitals. This gives rise to Stochastic-

GASSCF. As shown in the following, RDMs can also be utilized to calculate properties that

directly relate to them, such as the spin expectation value. The Stochastic-GAS method

has been implemented and has been made available in the open source NECI program.14

The Stochastic-GASSCF variant is available via the interface of the NECI code with the

OpenMolcas chemistry software package.33

The remainder of the article is organized as it follows: In section 2 we summarize the key

concepts of GAS, FCIQMC, and the original PCHB algorithms. In section 3 we introduce

the novel GAS-PCHB method, and discuss in some details its performance. In section 4 we

discuss three test case applications, that show how Stochastic-GAS can be applied to various

chemical situations, and to understand the role of different forms of electron correlation

mechanisms.
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The first example is a stack of five benzene molecules, at varying inter-molecular dis-

tances, which illustrates the applicability of Stochastic-GASSCF to fragment based chemical

systems. The second example uses Stochastic-GASCI to perform a very large uncontracted

stochastic MRCISD calculation that correlates 96 electrons and 159 orbitals, and uses a

large CAS(32, 34) active space reference wave function, for an Fe(II)-porphyrin model sys-

tem, and demonstrates how our algorithm can be used to account for dynamic correlation

effects. With this example, we also demonstrate that dynamic orrelation effects outside the

CAS(32, 34) further stabilize the 3Eg over the 5A1g spin state. In a third test case application,

the Stochastic-GASCI strategy has been utilized to investigate the low-energy spin ladder of

an Fe4S4 cubane cluster. We show how the GAS strategy can be applied towards the under-

standing of the two competing spin-exchange and charge-transfer correlating mechanisms in

stabilizing different spin-states.

2 Theoretical Background

2.1 Generalized Active Space (GAS) wave functions

The generalized active space approach arises from the necessity to build truncated CI wave

functions, that span a preselected portion of the corresponding complete active space (CAS).

As for CAS, GAS-CI wave functions are preselected by the user, through chemical (and/or

physical) considerations, and a careful choice of active orbitals and electrons. The active

orbitals are subsequently partitioned in a number of active subspaces. The nature, size, and

number of these subspaces largely depend on the investigated systems, and generally are

chosen according to the type of electron correlation that one wants to target or exclude from

the CI space. The examples discussed in the Application section or in Reference 27 can be

used as guidelines to the strategic choice of GAS subspaces.

Within each subspace a full-CI expansion is generated (complete set of intra-space ex-

citations), while the number of inter-space excitations is restricted.18,24,27,28 GAS spaces
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are defined disconnected if no inter-space excitations are permitted, while they are defined

connected if inter-space excitations are allowed. In the same GAS wave function both con-

nected and disconnected spaces can exist. Figure 1 depicts a possible specification of GAS

constraints.

  

Inactive Virtual

Full CI

Full CI

Restricted
Excitations

Full CI

Full CI
Restricted
Excitations

Full CI

1
2

4
3

5

Figure 1: Pictorial representation of a GAS wave function with five GAS subspaces. GAS1
and GAS2 are connected to each other but disconnected from the rest. GAS3, GAS4, and
GAS5 are also connected to each other but disconnected from GAS1 and GAS2.

The number of inter-space excitations are limited by constraining the particle number

per GAS space. In the original work on the GAS approach27,63–65 the word supergroup was

utilized to refer to a given distribution of particles (α-, β-, or in general electrons) among

GAS subspaces, while fullfilling the GAS constraints. We will interpret supergroups as a

special case of compositions, a term borrowed from number theory.66 A composition is a

solution to the following integer equation

x1 + . . .+ xk = N xi, N ∈ N0; k ∈ N. (1)

We consider two compositions to be different, if their order differs, i.e. 2+1 = 3 and 1+2 = 3

are two different compositions. If we identify the number of summands k with the number

of GAS spaces, N with the total number of particles, and xi with the number of particles in

the i-th GAS space, we can easily interpret a given composition as distribution of particles

over GAS spaces. We can constrain the allowed compositions, hence the allowed interspace

excitations, by defining local or cumulative minimum and maximum occupation numbers
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per GAS space. We write Nmin
i , Nmax

i for local constraints and Ñmin
i , Ñmax

i for cumulative

constraints. GAS allowed compositions are then those for which

∀i, 1 ≤ i ≤ k : Nmin
i ≤ xi ≤ Nmax

i (2)

∀i, 1 ≤ i ≤ k : Ñmin
i ≤

i∑
j=1

xj ≤ Ñmax
i (3)

is fullfilled and will be called supergroups, as mentioned before. Two electronic configurations

with the same distribution of electrons per GAS subspace belong to the same supergroup.

The occupation number constraints cannot be chosen freely. For example, if the total

minimum exceeds the total number of electrons,
∑k

i=1 N
min
i > N or Ñmin

k > N , no valid com-

position (and supergroup) exists. In chemical applications, the Pauli-principle enforces that

the number of spin orbitals in a GAS space is larger than or equal to the minimum particle

number. These “constraints of the constraints” have been discussed in the literature.26

We trivially note that if minima and maxima are the same in every GAS space, it is

not possible to excite a particle from one GAS space to the other, and the spaces are dis-

connected. We also note that in the case of cumulative constraints it is possible to enforce

tight inequalities for the last space Ñmin
k = Ñmax

k = N which tie the total number of parti-

cles and the GAS constraints together and allow shortcuts in an algorithm using cumulative

constraints.

It is not always possible to convert between the two types of constraints; there are con-

straints which can be expressed only using local constraints, and vice versa. This aspect has

already been discussed in the manuscript introducing the GASSCF method.27 An example

is given in the appendix (Example 6.5). If the constraints can be converted into each other

9



it is done by the following relationships (Lemma 6.6, see Appendix):

Nmin
i =


Ñmin
i − Ñmax

i−1 i > 1

Ñmin
i i = 1

Nmax
i =


Ñmax
i − Ñmin

i−1 i > 1

Ñmax
i i = 1

.

(4)

In the appendix (Subsection 6.1) we give the necessary proofs.

It can be proven easily that CAS and RAS wave functions are special cases of GAS,

with one and three active spaces, respectively. We trivially note that in CAS, as only

one active space is necessary, a single supergroup is generated. We also note that GAS wave

functions with purely disconnected spaces have also one supergroup, with a constant number

of electrons per GAS space. On the contrary, the electronic configurations generated in RAS

wave functions, can already be distributed among a number of supergroups, depending of

the level of excitation from RAS1 and into RAS3 spaces.

The conventional GASSCF, that we implemented in 2011 and made available within the

Molcas32 and the OpenMolcas33 chemistry software packages, is based on cumulative GAS

constraints.27 The ORMAS-SCF method uses local occupation number constraints.26 The

novel Stochastic-GAS algorithm introduced in this work allows both local and cumulative

constraints.

The Multi-Reference Configuration Interation (MRCI) method accounts for dynamic cor-

relation effects on top of a multiconfigurational wave function chosen as reference, generally

of CAS type.67–69 Since the uncontracted MRCI approach can be expressed via RAS specifi-

cations, an efficient GAS algorithm could promptly allow uncontracted MRCI calculations.

This is generally prohibitively expensive, considering the unfavorable exponential scaling of

RAS wave functions with respect to the size of RAS1 and RAS3 spaces.32 However, it is

feasible using our Stochastic-GAS algorithm, and an example is offered in Section 4.2.
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In the GASSCF method orbitals are variationally optimized via a self-consistent field

(SCF) procedure, under the mean field generated by the GAS wave function.27 As in

CASSCF, all intraspace orbital rotations, such as GAS1 ↔ GAS1 or GAS2 ↔ GAS2, are

redundant and already described by the intra-space excitations in the CI-expansion; thus,

these excitations are excluded from the orbital optimization. Interspace orbital rotations

such as GAS1 ↔ GAS2, however, are only partially redundant and have to be considered in

the GASSCF orbital optimization step, in addition to inactive-active, inactive-virtual, and

active-virtual rotations. As some of these rotations are already represented by the GAS wave

functions, linear dependencies are introduced, that often have a negative impact on the rate

of convergence of the GASSCF procedure.65

Also of interest is the structure of the 1-RDM for GAS wave functions. For disconnected

GAS spaces the 1-RDM is block diagonal, because off-diagonal elements, which couple or-

bitals belonging to different GAS subspaces, vanish. Thus, the diagonalization of the 1-RDM

for disconnected GAS, which lead to the natural orbitals, represents an invariant orbital

transformation. For connected GAS subspaces, the off-diagonal elements between orbitals

belonging to different GAS spaces in general do not vanish, and diagonalization of the one-

body density matrix becomes a non-invariant rotation, that mixes orbitals from different

GAS subspaces. Thus, natural orbital occupation numbers are only well defined for discon-

nected GAS spaces. For connected spaces we can define “pseudo-natural orbitals” which are

obtained from the block diagonalization of the 1-RDM, each block referring to orbitals of one

GAS subspace. Pseudo-natural orbitals and natural orbitals are identical for disconnected

spaces.

Although GAS wave functions with purely disconnected spaces are highly constrained,

they are of great theoretical and practical interest. From a practical standpoint, they do

not suffer of the redundancy problems mentioned above and they have well defined natural

orbital occupation numbers. An algorithm that assumes purely disconnected spaces is also

much easier to derive and implement. A first prototype of the stochastic-GASSCF method
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with disconnected spaces has been reported in our earlier work.18

2.2 FCIQMC

In this section a brief overview of the FCIQMC algorithm11,14,70 is provided, whose elements

are crucial to the understanding of the stochastic-GAS algorithm.

Starting with the imaginary-time (τ = it) Schrödinger equation, ∂Ψ
∂τ

= −HΨ, and assum-

ing that an initial state, D0 (referred to as the reference determinant), has non-zero overlap

with the ground state, Ψ0, our system will evolve to the ground state in the long-term limit

Ψ0 = lim
τ→∞

exp(−τH)D0 . (5)

If we assume a finite many-body basis, for example Slater determinants (SDs), Di, and

linearize the propagator via a first-order Taylor expansion, we obtain

−∆cj
∆τ

= (Kjj − S)cj︸ ︷︷ ︸
Diagonal death step

+
∑
j 6=i

Kjici︸ ︷︷ ︸
Spawning step

(6)

where

Kij = 〈Di|H|Dj〉 − EHFδ
ij (7)

and S is a shift parameter specifically introduced within FCIQMC for walker population

control. The value of S has to equal the correlation energy at stationary conditions.11

In principle, Equation 6 can be solved deterministically. However, the evaluation of

the large number of Hamiltonian matrix element and the operation count bound to the CI

update and the storage of the updated CI vector, makes this equation prohibitive to solve

deterministically, in practical cases where large active spaces are utilized. In FCIQMC the

imaginary-time evolution of the CI wave function is represented via the propagation of signed

stochastic walkers across the configurational space. At each time-step, ∆τ , the propagation
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process is divided in four steps: excitation generation, spawning, annihilation and death.

New walkers spawn stochastically using equation 6. For a given time-step ∆τ we accept

new spawns from the parent determinant Di to the child determinant Dj with an acceptance

probability

pacc(i, j) ∝ ∆τ |Kij| . (8)

Note that pacc(i, j) may become larger than one which means that a given walker can spawn

more than one new walker. For a stable FCIQMC dynamics, it is desirable to have spawn

events with a constant probability, hence to keep ∆τ |Kij| nearly constant. This is achieved by

suggesting new determinants Dj with a non-uniform generation probability pgen(i, j) ∝ |Kij|,

i.e. to suggest strongly connected determinants more often. Thus, a modified equation for

the acceptance probability is considered

pacc(i, j) ∝ ∆τ
|Kij|

pgen(i, j)
(9)

where a suitable choice of pgen(i, j) ∝ |Kij| leads to a more stable acceptance probability. The

suggestion of new determinants is called the excitation generation step, and it is at the heart

of an efficient implementation of FCIQMC. The excitation generation and spawning steps are

“embarassingly parallel” processes. Depending on the signs of the parent determinants, Di,

and of the corresponding Kij it is possible that spawns to Dj with different signs arise from

different Di determinants, which is a manifestation of the sign-problem within the FCIQMC

algorithm.11,71 To partially control the sign problem spawns of opposite sign to the same

determinant are summed at each time-step. This process represents the annihilation step.

After excitation generation, spawning and annihilation the diagonal death step from equa-

tion 6 is performed and all walkers on determinant Dj are stochastically killed with a prob-

ability proportional to (Kjj − S).

At the beginning of the simulation the shift parameter, S, is kept constant (generally

initialized to a small real number or equal to zero). This allows the walker population to
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grow until the target population is reached. Once the target population is reached, the

spawn, annihilation, and death steps are repeated with a shift parameter that is varied such

that the target population stays constant. The calculation is carried in stationary conditions

to collect sufficient data points for a satisfactory statistical analyis.72

The stochastic error of FCIQMC can be greatly reduced by using the semi-stochastic

method. After stochastic propagation of equation 6, the ncore most occupied determinants,

representing the core space of the evolving CI wave function, are identified and the full Hamil-

tonian matrix, Hcore, for these configurations is constructed. The dynamics is propagated

deterministically inside the core space and stochastically outside.

The projected energy, Eproj is a common FCIQMC energy estimator which is obtained

by projecting the sampled wave function, Ψ(τ), at any imaginary-time, τ , on the reference

determinant, D0:

Eproj =
〈D0|H|Ψ〉
〈D0|Ψ〉

= H00 +
∑
j 6=0

H0j
Cj
C0

. (10)

When the wave function approaches the ground state, the above estimator converges to

the ground state energy. To minimize the relative statistical noise of the denominator, one

chooses a reference determinant that has a high CI coefficient. This is typically the Hartree-

Fock (HF) determinant which usually has the highest CI coefficient. However, if another

determinant is found during the simulation to have a higher coefficient, a change of reference

may occur, that helps in stabilizing the projected energy estimate. Note that FCIQMC

samples of the numerator and the denominator of the projected energy should be averaged

separately before taking their ratio.

The original FCIQMC algorithm suffers from a sign-problem in its application to most

systems including ab-inito ones.11,71 When the number of walkers is below a certain threshold,

called the annihilation plateau, the sampled wave function does not have a stable sign-

structure and is dominated by sign-incoherent noise. The annihilation plateau depends on the

system under study and is typically a non-negligible fraction of the overall size of the Hilbert

space. This means that one needs a minimum number of walkers that scales exponentially
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with the number of electrons and the number of orbitals. The problem is largely overcome

by applying the initiator approximation, i-FCIQMC, which obviates the annihilation plateau

and allows a stable simulation using small numbers of walkers.12,73 In i-FCIQMC, a walker

is classified as an initiator if the determinant it is residing on has a population above a

chosen threshold nadd (usually set to three). Only initiators are allowed to spawn onto

empty determinants, while non-initiators can only spawn onto other occupied determinants.

These constrained dynamics stop low-populated determinants from propagating unstable

sign-structure further into the Hilbert space but introduce a bias, called the initiator bias,

that can be systematically improved by increasing the number of walkers. In the limit of

a very large number of walkers, all non-zero walkers become initiators and the exactness of

the original method is restored.

The convergence of the initiator method to the exact FCI limit with the number of walkers

can be further accelerated with the help of the adaptive shift method.58,59 The initiator bias

is mainly attributed to the missing back-spawns onto the non-initiators resulting from their

underpopulated local Hilbert space. This bias is ameliorated in the adaptive shift method

by reducing the shift of non-initiators and thus boosting their lifetime to compensate for the

missing back-spawns. In the adaptive shift method, each determinant Di gets its own local

shift Si as a fraction of the total global shift S

Si = ∆ + fi · (S −∆) , (11)

where S ≤ ∆ ≤ 0 is an adjustable offset parameter to be discussed below and fi are

factors measuring how much a determinant is affected by the undersampling. These factors

are computed during the simulation as a weighted ratio of the spawns accepted under the

initiator constraint

fi =

∑
j∈acceptedwi,j∑

j∈acceptedwi,j +
∑

j∈rejectedwi,j
(12)

and the weights wi,j are the first-order perturbation theory contribution of a walker on
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determinant Di to determinant Dj

wi,j =
|Hi,j|

Hjj − E
, (13)

with E being an estimate of the ground state energy such as the instantaneous projected

energy.

The offset parameter ∆ provides a mean of controlling the amount of correction applied

by the adaptive shift method. When ∆ = 0, the correction is applied in its full strength

(Si = fi · S), while for ∆ = S the adaptive shift reduces to the conventional i-FCIQMC

algorithm. Lowering the offset gives higher total energy estimates, using the same number of

walkers. Plotting the energy as a function of the number of walkers, there is a strict ordering

between the energy curves for different offsets, with some converging from below (high offsets)

while others from above (low offsets). By varying the offset, one can use this property to

bracket the exact energy between the curves of different offsets (see Figure 2). A good starting

point for varying the offset is setting it to half the correlation energy ∆ = Ẽcorrelation/2. This

estimate of the correlation energy, Ẽcorrelation, can be approximated by the shift, S, of an

earlier FCIQMC calculation or by other methods like MP2 or coupled cluster calculations.

106 107
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−108.9672

−108.9670

−108.9668
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E
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Exact Energy
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Adaptive Shift, offset = -0.43
Adaptive Shift, offset = -0.28
Adaptive Shift, offset = 0.00

Figure 2: Normal initiator and adaptive shift results using different offsets for N2 in cc-pVDZ
basis set and stretched geometry: 4.2 a0.59

For the test case applications investigated in this work the choice of ∆ = S/2 was already
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satisfactory for largely curing the initiator bias.

2.3 Precomputed Heat Bath (PCHB)

In this section, we discuss the Precomputed Heat Bath (PCHB) excitation generation using

the Heat Bath sampling algorithm developed by Holmes et al. in the context of FCIQMC,57

and adopted in the present work for the stochastic-GAS algorithm.

We first introduce the (on the fly) Heat Bath excitation generator which calculates ma-

trix elements to all connected determinants on the fly and suggests a new determinant with

proportional probability. From the generation probabilities standpoint this is the ideal exci-

tation generator, but the wall clock time per excitation becomes quickly large because on the

fly calculation of matrix elements incurs large overheads and the setup of the non uniform

probability distributions scales with the number of orbitals n and number of particles N as

O(n2N2).

The PCHB excitation generator adopted for the Stochastic-GAS algorithm is based on

the Slater-Condon rules for double excitations. If we evaluate the matrix element beween

two determinants that differ only by a double excitation, we obtain

∣∣∣ 〈Di

∣∣∣H∣∣∣a†Aa†BaIaJDi

〉∣∣∣ = |gAIBJ − gAJBI | . (14)

Thus, the matrix element only depends on the two-electron integrals involving the differing

orbitals, hence it only depends on the excitation, but not on the starting determinant,

Di. This allows the following approximate heat bath excitation generation: starting from

a determinant Di, two particles I, J are selected; next, two indices A,B are drawn for the

holes from a precalculated probability distribution with probability given by:

p(AB; IJ) =
HAB
IJ∑

XY H
XY
IJ

, (15)

where HAB
IJ are the matrix elements for a double excitation from I, J to A,B. If the picked
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hole indices A,B are already occupied in Di the excitation is discarded. The nomina-

tor of equation 15 involves no approximation. However, compared to the on the fly heat

bath method, the denominator contains some non-zero elements which would vanish in the

non-approximated heat-bath algorithm if X or Y were already occupied in Di. Note that

p(AB; IJ) is not yet the complete pgen value needed for equation 9. It has to be multiplied

with the probability to perform a double excitation and to draw the particles I and J .

If the probability distribution from equation 15 is implemented using the alias-method,

the time for the excitation generation scales as O(1) with the number of orbitals and parti-

cles.74 As we will discuss later in depth, this is a typical trade of “space for time”. If we write

|M | for the number of elements in a set M , we need |{(I, J)|I < J ; I, J < n}| probability

distributions with |{(A,B)|A < B;A,B < n}| entries hence the memory demand scales with

O(n4), with n being the number of orbitals.

The Hamiltonian matrix element between two determinants Di and Dj that differ by one

single excitation is given by

| 〈Di|H|Dj〉| =
∣∣∣ 〈Di

∣∣∣H∣∣∣a†AaIDi

〉∣∣∣
=

∣∣∣∣∣hIA +
∑

X∈ occ.

gAIXX − gAXXI
∣∣∣∣∣ .

(16)

The value of this element depends on the specific occupied orbitals in Di. Hence it is not

possible to define a configuration independent probability distributions as for the double ex-

citation case. Thus, in general it is not efficient to use precomputed probability distributions

for single excitations as it cannot be done in O(1) time.

In the context of single-reference methods it is possible to introduce additional approxi-

mations and define precomputed probability distributions even for single excitations.75 How-

ever, for the more general case of multi-reference wave functions, which represent our main

target, such approximations cannot be applied, and single excitations are picked uniformly.
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3 The GAS-PCHB algorithm

In this section, we describe how the PCHB excitation generation and the concept of super-

groups in GAS can be combined to derive an efficient algorithm, that we call GAS-PCHB,

for performing Stochastic-GASCI and Stochastic-GASSCF calculations within the FCIQMC

framework. Stochastic-RAS and Stochastic-MRCI calculations are obvious extensions of the

Stochastic-GAS scheme, considering that RAS and MRCI wave functions are special cases

of GAS constructions.

The simplest stochastic implementation of GAS constraints consists in performing exci-

tations using the conventional FCIQMC excitation generators and to discard GAS forbidden

excitations a posteriori. The discarding GAS implementation can be easily combined with

any already available FCIQMC excitation generator, including PCHB, and represents the

natural choice for benchmarking more sophisticated GAS excitation generators, such as the

GAS-PCHB algorithm, that a priori suggests only GAS allowed determinants. We have also

implemented a discarding-GAS algorithm and found that when GAS constraints simply aim

at removing deadwood configurations, the discarding-GAS performs surprisingly well, and it

is rather challenging to develop GAS excitation generators that aim at excluding configura-

tions a priori, without incurring overheads that make the discarding implementation faster

in practice. We succeded in this task via the GAS-PCHB algorithm.

3.1 The algorithm

In FCIQMC at any point of the dynamics the spawning step is responsible for the stochastic

propagation of walkers into the CI space, starting from occupied determinants. Thus, if we

assume that our starting determinant is allowed by GAS constraints, only the spawning step

has to be modified to ensure that all spawned determinants are GAS allowed. The algorithmic

details to realize a GAS-PCHB excitation generator are described in this section.

Within the GAS approach, a given (A,B ← I, J) excitation can lead to a GAS allowed
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or forbidden determinant Dj depending on the starting determinant Di. Hence for GAS, it

is not possible to generate probability distributions that only depend on the orbital indices,

p(AB; IJ) as for Equation 15. The concept of supergroups and compositions (Section 2.1),

are introduced in our GAS-PCHB excitation generator to circumvent the dependency of the

probability distributions on the individual Slater determinants.

The supergroup of a given determinant can be determined by counting the particles per

GAS space (a O(N) operation, where N is the number of correlated particles). Counting

how many particles an excitation transfers between GAS spaces is also a trivial operation.

Hence for a given supergroup (and all determinants belonging to it), an excitation is GAS

allowed if the composition after excitation is still inside the chosen GAS constraints. Whether

an excitation is GAS allowed or forbidden only depends on the supergroup of the starting

determinant Di. This condition applies for local and cumulative constraints alike.

If we define isg to be a labelling index for the supergroups, we can introduce a modified

Hamiltonian, H̃(isg), for each supergroup whose entries are set to zero for GAS forbidden

excitations and to the original Hamiltonian otherwise. Thus, in the case of double excitations,

we can write

∣∣∣ 〈Di

∣∣∣H̃(isg)
∣∣∣a†Aa†BaIaJDi

〉∣∣∣ =


|gAIBJ − gAJBI | (A,B ← I, J) GAS allowed for isg

0 else
.

(17)

Equation 17 is similar to Equation 14, in that the right hand side of the equation does not

depend on the determinant Di, but only on its supergroup isg(Di). Similar to the FCI PCHB

probability distributions (Equation 15), we can define GAS-PCHB probability distributions

as

p(AB; IJ ; isg) =
H̃(isg)

AB
IJ∑

XY H̃(isg)XYIJ
. (18)

Although the new dependency on isg(Di) increases the number of probability distributions

that have to be generated and stored, the direct dependency on the individual Slater deter-
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minants is circumvented, making GAS-PCHB a practical tool of general applicability. In the

next section the scaling of the algorithm will be discussed together with some examples that

show the practical limitations bound to the dependency of p(AB; IJ ; isg) on the number of

supergroups. However, we can anticipate that since there are much fewer supergroups than

determinants, the different probability distributions can in most of the practical cases be

precomputed and stored.

As for the FCI PCHB case, it is not possible for single excitations to use precomputed

probability distributions to perform importance sampling according to the matrix element.

Nevertheless, it is possible to perform uniform selection of holes for single excitations which

at least automatically adhere to GAS constraints by using

p(A; I; isg) =


1/Ñ (A← I) is GAS allowed for isg

0 else
(19)

where Ñ is an appropiate normalization factor, to ensure
∑

X p(X; I; isg) = 1 for a given

particle I and given supergroup isg. Such a distribution can be very efficiently implemented

by using bitmasks.

For an efficient GAS-PCHB excitation generator, a fast function to determine the super-

group index of any given Slater determinant is key. A fast on the fly algorithm to calculate

isg(Di) is given in the appendix (Subsection 6.1).

The time to calculate isg(Di) can be additionally reduced, by evaluating isg(Di) only

once for a given determinant and then reusing this value for all walkers on this determinant.

The reused supergroup index does not require additional communication, because of an

implementation detail in the annihilation step. All walkers on the same determinant are

collected to the same process, to facilitate the annihilation of newly spawned walkers from

different parent determinants. This implies that in the subsequent spawning step all walkers

belonging to a given determinant will reside on one process. Every walker that attempts
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to spawn from this determinant can look up the index without any communication across

processes.

In the special case of disconnected spaces or GAS constraints that are equivalent to CAS

there is exactly one supergroup (Section 2.1). Hence the index isg equals one for every

determinant and does not have to be calculated at all in this case. Algorithm 1 summarizes

the main steps of the GAS-PCHB excitation generator. The adaptation of the semi-stochastic

Algorithm 1 Schematic GAS-PCHB excitation generation to generate a new determinant
Dj from a starting determinant Di.

Lookup the supergroup index isg(Di) of the starting determinant.
Decide if single or double excitation.
if single excitation then

Choose one occupied spin-orbital I.
Draw from precalculated probability distribution a hole A according to equation 19

using isg(Di).
if A is occupied in Di then

Discard the excitation.
else

Dj ← a†AaIDi

end if
else

Choose two occupied spin-orbitals (I, J).
Draw from precalculated probability distribution two holes (A,B) according to equa-

tion 18 using isg(Di).
if (A,B) occupied in Di then

Discard the excitation.
else

Dj ← a†Aa
†
BaIaJDi

end if
end if

method (introduced in Section 2.2) to the stochastic GAS-PCHB procedure requires only

minor changes, conceptionally and code-wise. In the case of GAS, the deterministic core-

space Hamiltonian for performing semi-stochastic FCIQMC dynamics is simply defined as

Hcore
ij =


〈Di|H|Dj〉 Di and Dj are GAS allowed

0 else
(20)
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and since Hcore has to be constructed only once and the full information about GAS con-

straints is contained in the zeroed off-diagonal elements it is very easy to implement the

semi-stochastic method for GAS constraints.

The sampling of reduced density matrices (RDM) does not require any code adaptation,

since GAS forbidden CI-coefficients are simply zero and they are not accumulated during the

RDM sampling steps.60–62 Therefore, the stochastic GAS-PCHB excitation generator allows

us to formulate a Stochastic-GASSCF procedure, and gives us access to properties encoded

into the RDMs, such as the spin expectation value.

3.2 Performance and Scaling

In order to evaluate the performance of the GAS-PCHB excitation generator, invariant

and non-invariant GAS constraints are to be distinguished. Invariant GAS constraints are

those that exclude deadwood configurations. Non-invariant GAS constraints, instead exclude

configurations that would have non-zero coefficients in the corresponding CAS-CI expansion,

and once removed the resulting total energy increases.

The conventional GAS-CI algorithm,27 greatly benefits both from invariant and non-

invariant GAS constraints, because the largest bottleneck of the method is the memory

required to store the dense CI vector. A truncated Hamiltonian matrix and corresponding

CI eigenvector, greatly reduces this demand, independently of the nature of the truncated

configurations.

Conversely, FCIQMC is a method that benefits from sparsity in the wave function, and

unpopulated determinants do not occupy memory and are rarely selected at the spawning

step. Hence, invariant GAS constraints do not improve the course of the dynamics, nor do

they reduce the corresponding computational costs (spawning process and storage). On the

contrary, non-invariant GAS constraints would effectively reduce the CI space that walkers

are allowed to propagate to. Consequently, these GAS constraints can effectively reduce the

computational costs for FCIQMC.
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If we compare GAS-PCHB with discarding-GAS and assume that the supergroup index

isg is known, and that the list of probability distributions for all supergroups are already

available, the drawing of orbital pairs AB from p(AB; IJ ; isg) is practically as fast as draw-

ing AB from the corresponding FCI distribution p(AB; IJ). Computational overheads for

the GAS-PCHB algorithm arise from the generation of the probability distributions (only

at the beginning of the simulation) and from the evaluation of the supergroup index for a

given determinant at runtime. In the worst case, if every determinant is occupied by exactly

one walker, the supergroup has to be calculated for every walker and the time per excitation

increases slightly. Such a dense CI wave function is rarely encountered in practical appli-

cations. In actual chemical problems determinants are occupied by multiple walkers and

the supergroup index is calculated only once for each newly-occupied determinant. Thus, in

practical GAS calculations, the evaluation of the supergroup index represents a negligible

additional step and the time per excitation can be considered identical for GAS-PCHB and

discarded-GAS.

For GAS schemes, where only disconnected spaces are considered, this negligible overhead

vanishes completely, since for disconnected GAS schemes only one supergroup exists, the

supergroup index isg equals one for every determinant and does not have to be calculated

(See Section 3.1). This implies that FCI PCHB can be implemented as a special case of

GAS-PCHB.

Since discarded excitations increase autocorrelation of the projected energy, the standard

error σE of a discarding-GAS excitation generator will usually be larger than for the a

priori selection provided by the GAS-PCHB scheme.72 Also the pgen(i, j) for discarding

GAS algorithms is generally lower than for corresponding a priori GAS algorithms; this

has the effect of leading to a smaller imaginary time-step for the discarding-GAS algorithm.

Both effects deteriorate the efficiency of a discarding implementation with respect to the

GAS-PCHB algorithm.57

Because the amount of GAS discarded excitations strongly depends on the system, it is
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difficult to give general efficiency ratios between GAS-PCHB and discarding-GAS. But since

the time per excitation is in general the same for both methods, GAS-PCHB is usually more

efficient than discarding-GAS.

PCHB (in Stochastic-GAS and Stochastic-CAS) is a typical trade of “space for time”.

The memory demand for GAS-PCHB probability distributions increases with O(n4 · nsg),

where n is the number of spatial molecular orbitals and nsg the number of supergroups that

are generated for a given GAS specification.

It is rather difficult to write a closed expression for the scaling of nsg with respect to the

number of particles, N , GAS spaces, nGAS, and GAS constraints. It has to be stressed that

the number of supergroups is independent from the number of orbitals and in the best case

of purely disconnected spaces there is only one supergroup, regardless of N and nGAS. In

the worst case of no miminum or maximum restrictions, the scaling of nsg is combinatorial

and given by the number of compositions (Lemma 6.4) as

nsg =

(
N + nGAS − 1

nGAS − 1

)
. (21)

In practical applications, as the ones discussed in the next section, interspace excitations

lie between these extremes, and in general closer to the lower extreme. As an example, we

consider a system of five stacked benzene molecules, with an active space that includes the

six π-orbitals of each benzene, and distributed into separate GAS subspaces. This system is

discussed in greater details in Subsection 4.1. If we use cumulative constraints we can define

Ñmin
i = 6i− nexc

Ñmax
i = 6i+ nexc

(22)

for the i-th GAS space, to control the number of allowed supergroups depending on the

interspace excitations nexc. Table 1 shows a steep scaling of the memory with nexc. Our

GAS-PCHB implementation uses hybrid parallelization, and precomputes the probability
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distributions in shared memory on every node. Thus, in the case of the stack of five benzene

molecules ≈ 35 GB per node are required for three interspace excitations (Table 1). The

memory demand would have been larger with pure message-passing parallelization, where

each process requires its own copy of the probability distributions. In that scenario, a 40

processes node would require 1.5 TB of memory for the same system. Since drawing a

number is a read-only operation, no complicated locking mechanisms or atomic operations

are required, after the distributions have been initialized. The memory demand is further

reduced by a factor of ≈ 3
16

if distributions entries are indexed over spatial orbitals instead

of spin orbitals.14

Table 1: Memory demand of probability distributions for an hypothetical [5 · (6, 6)] GAS
calculation with different number of interspace excitations nexc using cumulative constraints
(equation 22).

Algorithm nexc nsg Memory / GB

FCI PCHB 0 1 0.01
GAS-PCHB 0 1 0.01
GAS-PCHB 1 81 1.17
GAS-PCHB 2 625 9.06
GAS-PCHB 3 2401 34.81

Table 2: Memory demand of probability distributions for an hypothetical [n · (6, 6)] GAS
calculation with varying number of GAS subspaces, and a constant number of interspace
excitations set to nexc = 2. The GAS constraints are cumulative as given by equation 22.

nbenzene nsg Memory / GB

1 1 0.01
2 5 0.07
3 25 0.36
4 125 1.81
5 625 9.06
6 3125 45.31
7 15625 226.55
8 78125 1132.74

Moreover, as shown in the next section, in practical calculations double interspace ex-

citations are usually enough to recover the Full CI energy for chemically motivated GAS
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constraints. If the number of interspace excitations is low, the memory demand remains

contained and a larger number of particles and GAS subspaces are accessible. For example,

in Table 2, we show the memory requirements for a hypothetical [n · (6, 6)] GAS calculation,

with varying number of GAS subspaces, n, and using a fixed number of interspace excita-

tions, nexc = 2. On today’s scientific computing hardware, up to eight of such (6, 6) GAS

subspaces can be correlated (≈ 1 TB). In this context, we note again that the number of

supergroups is independent from the number of orbitals, and only depends on the number of

GAS spaces and the level of interspace excitations.

4 Application

In this section three applications of Stochastic-GASCI and Stochastic-GASSCF are pre-

sented, that show how GAS in its stochastic form can be utilized for modeling the electronic

structure of a variety of chemical systems. The first example is a stack of five benzene

molecules, which illustrates how a limited number of interspace excitations in GASSCF al-

ready recovers the Full CI energy if the main correlation effects happen inside each GAS

space. The second example uses Stochastic-GASCI to perform a very large uncontracted -

MRCI calculation for a Fe(II)-porphyrin model system, with a (32, 34) active space as

reference wave function, and correlating a total of 96 electrons and 159 orbitals. This ex-

ample demonstrates how the new method can be efficiently used to account for dynamic

correlation in a systematic way. As a last example, we use Stochastic-GASCI to investigate

the spin ladder of an all-ferric Fe(III)4 S4 cluster, and discuss the role of the leading forms of

electron correlation by selectively switching them off via GAS constraints.

4.1 Benzene stack

In this section we discuss the application of Stochastic-GAS-CI and Stochastic-GASSCF to

a stack of five benzene molecules separated by a varying distance, d, ranging from 3.0Å to
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20.0Å (Figure 3).

Figure 3: Geometry of the benzene stack. The inter-fragment distance, d, has been changed
from a value of 20Å (very weak, mean-field-only interactions between fragments) to a value
of 3Å, where many-body correlation effects take place.

The geometry of the benzene unit was taken from the Computational Chemistry Compar-

ison and Benchmark DataBase.76 A conventional CASSCF(6, 6) calculation was performed

on this structure using OpenMolcas.33 The resulting MO coefficient matrix was repeated five

times along the diagonal to form a block-diagonal coefficient matrix, used as MO basis for the

GAS-CI calculations and as starting MOs for the Stochastic-GASSCF optimizations. Since

the molecular orbitals of this block-diagonal matrix are not orthonormal, a Gram-Schmidt

orthonormalization was performed prior to the stochastic-GASSCF optimization.

For this system, π − π∗ correlation within each individual benzene (intra-fragment) is

expected to be dominating, while electron correlation across the fragments is expected to

be weaker, and its role becoming increasingly important as the benzene fragments get closer

to each other. A GAS [5 · (6, 6)] active space has been chosen, which consists of the 30

π-orbitals, six on each benzene, and their 30 electrons. The six π-orbitals of each benzene

have been grouped into separate GAS subspaces. We used cumulative

Ñmin
i = 6i− nexc

Ñmax
i = 6i+ nexc

(23)
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and local GAS constraints

Nmin
i = 6− nexc

Nmax
i = 6 + nexc

(24)

for the i-th GAS space. The number of interspace excitations, nexc, starting from a value

of zero (disconnected spaces), was gradually enlarged until convergence in total energy was

reached. Local and cumulative constraints are exactly equivalent for disconnected spaces

(nexc = 0), and yield very similar results for single excitations (nexc = 1). Looking at the

sizes of the Hilbert spaces, as we will do later in depth, the hightest discrepancy between

local and cumulative constraints is expected for nexc = 1. Since the deviation was negligible

already in this case we tested only cumulative constraints for nexc > 1.

The case of disconnected spaces, nexc = 0, is equivalent to a system of neutral fragments,

whose π-electrons are internally correlated and that interact among each other only via

the mean field generated by the local (6, 6) active space expansion. For nexc ≥ 1, charge-

transfer configurations are added to the wave function and many-body correlation effects are

explicitly correlated. Hence, convergence with respect to nexc was reached earlier for larger

distances between neighboring benzene molecules.

The number of supergroups and memory requirements for the different CAS and GAS

calculations with cumulative constraints are summarized in Table 1. The CAS(30, 30) space

with Sz = 0 consists of 2.41 · 1016 SDs, while the GAS space with disconnected spaces

consists of 1.32 · 1014 SDs which is 0.5 % of the CAS size. The connected GAS spaces contain

different supergroups for local and cumulative constraints, and the allowed configurations

and Hilbert space sizes differ slightly at the same level of interspace excitations. For example,

the supergroup [6, 5, 8, 5, 6] would be allowed by the cumulative constraints given in

Equation 23 for single interspace excitations nexc = 1, but is forbidden by the local constraints

in Equation 24. On the other hand, the supergroup [5, 5, 7, 7, 6] and other multiple single

excitations from neighbouring fragments would be allowed by local constraints (Equation 24)
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but forbidden by cumulative ones (Equation 23).

The [5 · (6, 6)] GAS space with nexc = 1 and local constraints consists of 51 supergroups

and 4.25 · 1015 SDs, or 18 % of the CAS size, and requires 0.74 GB to store the PCHB proba-

bility distribution in memory. Conversely, the cumulative constraints lead to 81 supergroups

and 5.22 · 1015 SDs, or 22 % of the CAS size, and require 1.17 GB of memory to store the

corresponding PCHB probability distributions. For a higher number of inter-space excita-

tions the difference of Hilbert space sizes between local and cumulative constraints decreases

further.

Figure 4 shows the energy difference between GASSCF and CASSCF, (EGASSCF−ECASSCF),

for a different number of interspace excitations, nexc, and different distances between neigh-

boring benzene fragments.

3.0 3.5 4.0 4.5 5.0 5.5 6.0

d / Å
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Figure 4: (EGASSCF−ECASSCF) energy difference [kJ/mol] for a number of interspace excita-
tions, nexc, ranging from 0 to 3, and different distances, d, between the benzene fragments.
The chemical accuracy of 1 kcal mol−1 is marked with the black-dashed horizontal line. A
table of all energies is given in the supporting information.

The Stochastic-GASSCF energy converges very fast to the Stochastic-CASSCF value, as
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the nexc value is increased. Already with nexc = 1 the error is below the chemical accuracy

of 1 kcal mol−1 for all distances and both local and cumulative GAS constraints.

As expected, the CI-truncation error is dependent on the distance. The closer the ben-

zenes are to each other, the more charge transfer configurations are required for an accurate

description of the correlation effects. At an inter-fragment distance of 4.5Å and above, dis-

connected spaces suffice to have deviations smaller than 1 kcal mol−1 from the corresponding

Stochasti-CASSCF calculation. Notice that this is a typical distance for π-stacking, leading

to the conclusion that highly truncated MC wave functions, such as GAS wave functions with

disconnected spaces, can be of high value for realistic model systems of weakly interacting

fragments. It has to be emphasized that the mean field orbital relaxation effect of fragments

onto each other is still accounted for by the SCF procedure, even for disconnected spaces, as

opposite to methods where only the CI problem is solved in a fixed MO basis.

The stack of benzene molecules represents a good ground for comparison between Stochas-

tic GASSCF, Active Space Decomposition Density Matrix Renormalization Group (ASD-

DMRG),77,78 and Non-Orthogonal CI with a Reduced Common Molecular Orbital Basis

(NOCI-RCMO),79,80 as the latter approaches have also been tested on the same or similar

model systems in earlier works. Both NOCI-RCMO and ASD-DMRG are tailored towards

clusters of molecules with weak inter-space interactions, and share the assumption that the

main correlation effects happen within the fragments.

In ASD-DMRG, the CI-problem is solved conventionally on each fragment. The com-

pound wave function is then constructed as linear combination of direct products of fragment

states. As in DMRG, a matrix-product Ansatz is used for the coefficients.77 The dimension of

these matrices, commonly called bond dimension, M , is the main factor controlling accuracy

and cost of such calculations. Although the M value cannot be as intuitively interpreted as

the number of interspace excitations in GASSCF, it is also a measure for correlation between

fragments. IfM = 1 the matrix-product reduces to a plain product ansatz of non-interacting

systems, while if M is the dimension of the full Hilbert-Space, the CI-expansion can be ex-
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actly recovered. The M value in realistic systems lies somewhere in between, as in those

cases M cannot be made large enough to reconstruct exactly the entire Hilbert space.

The most notable difference between ASD-DMRG and conventional DMRG, is the low

value of M at the order of 102 that is required by ASD-DMRG to reach convergence for

fragment-like systems. Conventional ab-initio DMRG, where the sites are not optimized

fragments but spatial molecular orbitals requiresM values that are approximately two orders

of magnitude higher. In Reference 77, the authors of ASD-DMRG state that: “If a poor

initial guess for the chain includes only neutral fragments and the total charge is constrained

to be neutral, the algorithm will keep only neutral fragment states although charge transfer

configurations may be important in the exact ground state” and overcome this limitation via a

perturtative correction. Within the GAS approach, charge transfer configurations are added

by tuning the number of interspace excitations, nexc. It is thus, possible to precisely identify

these configurations and quantify their importance, as shown in Figure 4.

The NOCI-RCMO method uses orthonormal molecular orbitals for each state on each

fragment but allows non-orthogonality between orbitals in different states or different frag-

ments.79,80 From the non-orthogonal and partly redundant orbitals, a common orbital basis

is constructed on each fragment by removing linear dependencies among the orbitals in differ-

ent states, depending on a cutoff value τMO for the diagonalized overlap matrix. The common

orbital bases on each fragment are then collected together to form a large non-orthogonal

MO basis for the cluster. The similarity with the GAS truncation arises at the evaluation of

matrix elements which requires several determinant pairs due to the non-orthogonality. De-

terminants are neglected if their CI-coefficient are smaller than another threshold, τdet. The

application of NOCI-RCMO to similar aromatic systems as our benzene stack shows that

τdet can become as large as 1 · 10−6 for fragment distances of 5Å without affecting the total

energy value.79 Unlike GASSCF, τdet does not a priori exclude higher-order charge-transfer

configurations. However, if a system is made of weakly interacting fragments and fragment

MOs are utilized, charge-transfer configurations will have (vanishingly) small CI-coefficients,
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and will be excluded at run time by the chosen τdet threshold. A high value of τdet has then

a similar meaning as a low number of allowed interspace excitations in GASSCF.

It is important to highlight that both ASD-DMRG and NOCI-RCMO are tailored to-

wards systems of weakly interacting fragment molecules, while GASSCF is a method of

general applicability, that can be used on compounds of weakly interacting fragments, as

well as on strongly correlated and covalently bonded systems as shown in the sections below.

Regardless of the chosen method for optimizing the CI problem, the orbital representation is

also very important. In the particular case of the benzene stack, choosing fragment-localized

orbitals enhances the locality of electron correlation within each fragment, and the sparsity

of the many-body eigenvectors. Truncations (via GAS, NOCI or ASD-DMRG) that take ad-

vantage of the sparse structure of the wave functions have negligible impact on the accurate

description of correlation effects and on the predicted total and relative energies.

In the following, the error introduced by not optimizing the molecular orbitals is dis-

cussed. Since the CI energy of the first SCF iteration is the GASCI energy on the initial,

unoptimized orbitals, it is possible to compare the GASCI total energies with the GASSCF

energies. The energy difference between GASCI and GASSCF (EGASCI − EGASSCF) for dif-

ferent number of interspace excitations, nexc, and different distances between the benzene

fragments is shown in Figure 5.

The discrepancy between GASCI and GASSCF, due to missing variational relaxation

of the orbitals, is higher than the difference between GASSCF with disconnected spaces

and CASSCF, indicating that mean-field effects can be substantially larger than correlation

effects bound to the charge-transfer correlation mechanism. Interestingly, the error is nearly

independent from the nexc chosen.

Of particular interest is also the speed of convergence of the FCIQMC dynamics (in

the CAS form) depending on the orbital basis. Only non-invariant orbital rotations are per-

formed in the CASSCF procedure (inactive↔ active, inactive↔ virtual and active↔ virtual

rotations). Thus, the active orbitals are not rotated among each other by the SCF proce-
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dure, and the main correlation features are to a large extent retained along the CASSCF

optimization. At convergence, the optimized CASSCF active orbitals are in general trans-

formed into natural orbitals, by diagonalization of the one-body RDM in the active space.

For GASSCF, the diagonalization of the 1-RDM in the full active space is not an invariant

rotation. Instead, invariant is the rotation to pseudo-natural orbitals, defined as those which

diagonalize each GAS subspace separately. While pseudo-natural orbitals do not disrupt the

fragment-localized structure of the MO basis, the natural orbitals are in general delocalized

across the entire system. The locality of correlation (within the fragment) is lost when the

more delocalized natual orbitals are utilized, and the many-body wave function generally

becomes more dense. FCIQMC dynamics are sensitive to the MO basis adopted. This ar-

gument has been discussed for exchange-coupled transition metal clusters.81 The benzene

stack example shows how the MO representation can affect FCIQMC dynamics for weakly

interacting closed-shell systems. The FCIQMC (in CAS form) projected energy, Eproj, as a

function of the walker population, and using both natural orbitals and fragment-localized

orbitals is depicted in Figure 6. The FCIQMC dynamics (in CAS form) converge faster when

fragment-localised molecular orbitals are utilized, rather than for example the correspond-

ing more delocalized natural orbitals. This result represents the numerical evidence that

fragment-localized orbitals produce sparser wave functions which are simpler to describe by a

finite distribution of stochastic walkers. Within GASSCF, where the pseudo-natural orbitals

are used, the convergence speed does not deteriorate, owing to the fact that pseudo-natural

orbitals preserve the fragment-localized nature of the molecular orbitals. We also note, that

the time-step can be chosen larger for fragment-localised orbitals (∆τ
i

= 2.85 · 10−3 ~Eh
−1)

than for delocalized ones (∆τ
i

= 1.90 · 10−3 ~Eh
−1) which allows faster propagation along

the imaginary time while retaining a stable dynamics. FCIQMC benefits from a sparse rep-

resentation of the wave function. While the exact CI-energy is invariant under unitary MO

transformations, methods that approximate the full-CI energy are not invariant under the

same MO transformations. This is due to the different degree of sparsity of the Hamiltonian
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matrix and the corresponding CI wave function with respect to the orbital transformations.

If orbitals that are delocalised over the entire compound system are utilized as one-electron

basis, a simple π − π∗ excitation on one fragment can only be represented by a large lin-

ear combination of excitations across most (if not all) delocalized MOs, artificially coupling

them to each other and, thus, producing unnecessarily complicated CI expansions, featur-

ing long-range entanglements. On the contrary, fragment-localized orbitals keep the leading

forms of electron correlation confined within each fragment, increasing the sparsity of the

wave function. We also note that for systems made of weakly interacting fragments, such as

the benzene stack, and using a GAS strategy that reflects the fragment nature of the com-

pound, the Stochastic-GAS calculations are practically size-extensive if localised orbitals are

used, because we can safely assume that only inter-space excitations into the same stack are

relevant.

4.2 Fe(II)-porphyrin model system

Iron-porphyrins are the central building block for a variety of enzymes in biochemistry.

Due to the low barrier between Fe2+ and Fe3+ and nearly degenerate low-energy electronic

states they catalyse important redox reactions and can serve as charge or molecular car-

riers.82–85 The relative stability of the low-energy spin states depends on ligand field and

many-body correlation effects experienced by the metal center, that, in turn, depend on

chemical functionalization and geometry of the conjugated macrocycle. For this reason, a

reliable theoretical prediction of the energetically low-lying spin states is challenging and

necessary to facilitate the understanding of nature’s efficient enzymatic reactions.

The theoretical prediction of the relative stability of the energetically close 5A1g and

3Eg states in the square planar Fe(II)-porphyrin system is a notoriously difficult task, and

there have been a number of theoretical investigations on this topic.86–89 It has been shown

that the triplet is characterized by more complex electron correlation mechanisms than the

quintet spin state and only if these correlation effects are precisely accounted for, the triplet

37



is predicted to be the ground state.16–18

A (14, 16) active space erroneously predicts a quintet ground state, even when coupled

to the post-CASSCF perturbative CASPT2 correction.16

If the active space is substantially enlarged, CAS(32, 34),16 consisting of the entire ligand-

based π system, the σ donating orbitals, and the valence and double-shell d orbitals, complex

mechanisms like 3 d− 3 d′ − π∗ excitations are observed in the wave function,18 that can be

ascribed to correlation induced delocalization of metal charge to the macrocycle, a correlated

π−backdonation. Only then a triplet ground state is predicted.16 In a joint FCIQMC and

DMRG study, we have also analyzed the CI-expansion of the wave function and the orbital

entanglement to visualize the complex correlation mechanisms taking place in this system.18

In the same work, a prototype Stochastic GAS implementation for disconnected spaces was

used to quantitatively probe the importance of π-backdonations and was found to have an

effect of 2.5 kcal mol−1 on the spin gap.18

Even if the (32, 34) active space describes qualitatively well the necessary correlation

mechanisms, dynamic correlation effects exist that go beyond the (32, 34) active space. Semi-

core correlation has been accounted for by further enlarging the active space, CAS(40, 38),

including the 3 s and 3 p orbitals, and ultimately increasing the spin gap to 4.4 kcal mol−1, at

the Stochastic-CASSCF level of theory.17 Coupled cluster calculations with up to quadruple

excitations (CCSDTQ) inside the Stochastic-CASSCF(40, 38) orbital space yielded a spin

gap of 4.8 kcal mol−1.17 Several methods exist to treat efficiently dynamic correlation effects

on top of CASSCF wave functions. However, the list dramatically reduces when a large

CASSCF wave function is used as reference. The multi-configuration pair-density functional

theory, MCPDFT, is one of the few methods that can be effectively coupled to very large

CAS reference wave functions. MCPDFT calculations on top of DMRG-CASSCF(32, 34)

active space where performed by Zhou et al. and further stabilized the triplet over the quin-

tet with an estimated spin gap of 12.6 kcal mol−1.90 Although this method can be coupled

to large CAS wave functions, it is not possible to systematically improve it. Moreover, al-
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though the delocalization error91 does not affect the SCF procedure in MC-PDFT, as this

is carried exclusively using the preceding CASSCF procedure, it is possible that the delocal-

ization error bias, dependent on the chosen exchange and correlation translated functional,

still exists that overstabilizes the triplet spin-state. Another example is the tailored cou-

pled cluster approach (TCC) that performs Full CI within the active space and uses those

CI coefficients as fixed amplitudes in the subsequent coupled cluster equations, which are

then solved to account for the remaining dynamic correlation.92 The tailored distinguishable

cluster method with singles and doubles (TDCSD) and F12 correction93,94 gave a spin gap

of 5.8 kcal mol−1.95

For the current application, the Stochastic-GAS approach has been applied to build and

stochastically solve a large RAS-CI wave function. The converged CASSCF(32, 34) MOs

have been used as one-electron basis.16,18 The 34 active orbitals have been included in the

RAS2 space. The RAS1 space was selected by identifying plateaus in the orbital energy of

the inactive orbitals for each irreducible representation and including orbitals above these

plateaus. In total 32 doubly occupied orbitals were chosen for the RAS1 space, including the

four 3 s and 3 p semi-core orbitals from the metal center and the 28 additional σ−orbitals

from the macrocycle. Since there were no well defined plateaus in the orbital energies of

the virtual orbitals the RAS3 space was simply defined by an energy threshold of 0.85Eh.

The threshold was chosen such that the resulting memory demand could be still fullfilled by

the smallest node used for these calculations. All virtual orbitals below this threshold were

included into the RAS3 space. A total of 93 empty orbitals were selected for the RAS3 space.

Up to double excitations out of RAS1 and into RAS3 were allowed, leading to a total of nine

supergroups and a memory requirement of 97.64 GB for the PCHB probability distributions.

In total, a RAS(96, 2, 2; 32, 34, 93) active space has been selected, where the notation

RAS(n, l,m; i, j, k) is used, with n representing the number of active electrons, l the maxi-

mum number of holes allowed in RAS1, and m the maximum number of electrons allowed

in RAS3. Active orbitals are labeled by i, j, k and refer to those placed in RAS1, RAS2, and
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RAS3, respectively. This scheme correlates 96 electrons into 159 orbitals.

The Stochastic-GAS scheme is conceptually equivalent to a stochastic uncontracted

Multi-Reference Configuration Interaction approach with single and double excitations from

the occupied space (Stochastic-MRCISD). Clearly, no conventional uncontracted or con-

tracted MRCI procedure can be carried that uses the large CAS(32, 34) reference wave

function. In that respect the present calculation is unprecedented and it is only possible

using our Stochastic-GAS strategy.

The spin gap, ∆E = E(5A1g)−E(3Eg), predicted by our large Stochastic-GAS approach,

is 6.8 kcal mol−1, a value that is considerably larger than any result previously reported. The

Stochastic-GAS spin gap is reported in Table 3 together with the results obtained with other

methods on the same model system. Computational details related to the Fe(II)-porphyrin

applications can be found in the supporting information.

Table 3: Spin gap ∆E = E(5A1g)− E(3Eg) between the quintet and triplet state of Fe(II)-
porphyrin for different methods from the literature. The results are sorted by increasing spin
gap. The MRCISD result in the last row is from this work.

Algorithm ∆E/(kcal mol−1)

CASSCF(14, 16)/CASPT216 −0.5
Stochastic CASSCF(32, 34)16,18 3.5
DMRG(M=1 · 104) CASSCF (32, 34)18 3.5
Stochastic CASSCF(40, 38)17 4.4
Stochastic CASSCF(40, 38)/CCSDTQ17 4.8
Stochastic CASSCF(40, 38)/CCSDTQ + F1217 5.7
Stochastic CASSCF(32, 34) + TDCSD 2.6
Stochastic CASSCF(32, 34) + TDCSDF12 5.8
DMRG(M=300) CASSCF(34, 35) + MCPDFT90 16.1

Stochastic CASSCF(32, 34) + RASCI(96, 2, 2; 32, 34, 93) 6.8± 0.1

The spin gap increases from 3.5 kcal mol−1 to 6.8 kcal mol−1, in going from CASSCF(32, 34)

to the large Stochastic-RASCI calculations. The more than doubled spin gap prediction

clearly shows the importance of dynamic correction effects on top of an already large ac-

tive space, that describes most of the valence correlation mechanisms. This unprecedented

result should also be compared to the CASSCF(14, 16)/CASPT2 approach used earlier.16
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While the CASPT2 also aims at recovering dynamic correlation outside the active space,

the chosen active space was too small, and important high-order excitations effects (such as

the correlation induced π−backdonation discussed in Reference 16,18) were missed by the

second order perturbative correction. It is also important to emphasize that our approach

can be further systematically improved by increasing the excitation level from RAS1 and to

RAS3, a study that goes beyond the scope of the present work.

4.3 Fe4S4 cubane spin structure

In this section, the Stochastic-GAS paradigm is used to investigate correlation effects in spin

ladders of exchange-coupled poly-nuclear transition metal clusters, here exemplified by an

all-ferric Fe (III)
4 S4 cubane complex.

The GAS strategy is first applied to an N4 tetrahedron model system as a proof of

concept. The smaller N4 model is chosen to mimic the weak magnetic interactions across

the four magnetic centers of the transition metal cubane. In the all-ferric Fe (III)
4 S4 cubane,

each magnetic center is in a local spin sloc = 5/2 with five unpaired electrons, for a total

of 20 unpaired electrons. The (20, 20) active space is the smallest, that can be chosen

to describe spin interactions in this system, which is already too large for conventional

multiconfigurational techniques. The N4 model is characterized by three unpaired electrons

per site, a local spin sloc = 3/2, and a total of 12 valence electrons. Conventional CAS(12, 12)

calculations are routinely feasible and fast and will be used as a reference for comparisons with

GAS(12, 12) calculations, in Slater determinant and spin-adapted basis. Considering that the

current implementation of the Stochastic-GAS operates on the basis of Slater determinants

(SDs), the N4 will also be used to address the question of whether spin-pure solutions can

be obtained from our SD based Stochastic-GAS method.

SDs are not necessarily eigenfunctions of the spin operator Ŝ2, but they are always

eigenfunctions of the spin-projection operator, Ŝz. Since Ŝ2 and Ŝz commute, a basis of joint

eigenfunctions exists. If the respective quantum numbers of Ŝ2 and Ŝz are s and ms, for a
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common eigenfunction of Ŝ2 and Ŝz we know that

|ms| ≤ s (25)

implying that eigenfunctions of Ŝz with eigenvaluems cannot form a basis for an eigensolution

of Ŝ2 with |ms| > s, but they can form a basis for any eigensolution of Ŝ2 with |ms| ≤ s.

Starting from an SD as reference, the FCIQMC dynamics preserve the spin projection, ms,

and convergence to the lowest spin state with s ≥ |ms| is to be expected. It follows that for

antiferromagnetically coupled systems, it is possible to target spin pure states by adjusting

the spin projection of our starting guess. However, for ferromagnets, where higher-spin

means lower energy, any spin-unconstrained optimization will inevitably lead to the high-

spin ground state, independently of the initial choice of ms. The analysis of the following

spin-systems is carried with this limitation in mind.

N4. The distorted N4 tetrahedron model system is discussed first. The N atoms are at

the equivalent positions of the four metal centers of the Fe4S4 system. Two N−N bond

distances are 2.85Å and four are 2.75Å. The selected active space consists of the twelve

2 p orbitals. A conventional CASSCF(12, 12) was performed, the optimized natural orbitals

were subsequently localised with the Pipek-Mezey method and used as starting orbitals for

subsequent GAS-CI calculations. No SCF orbital optimizations have been carried for this

system, as our main focus is the rationalization of electron correlation mechanisms that

are missed with respect to the corresponding CAS, when interspace excitations are sevelery

constrained by GAS. This comparison is only possible if the same active orbitals are utilized

for CAS and GAS approaches, except for the invariant rotations among the active orbitals.

The GAS active space was defined as [4 ·(3, 3)] with the three 2 p orbitals of each nitrogen

atom grouped in a separate GAS subspace. The charge-transfer excitations between the
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magnetic centers were controlled using cumulative constraints

Ñmin
i = 3i− nexc

Ñmax
i = 3i+ nexc

(26)

and excitation levels nexc between 0 and 2 were considered. Interestingly, convergence with

respect to nexc is reached for 2 interspace excitations, and GAS schemes with larger nexc

values were not necessary. For nexc = 1, the number of supergroups is 19 and a memory of

56.2 MB has been allocated to store the PCHB probability distributions. For nexc = 2 the

number of supergroups is 85 and 250 MB are required. GAS calculations were performed

in both spin pure and SD bases and compared to each other. The supporting information

contains further computational details.

The CAS and GAS spin ladders of N4, for the different choices of nexc, and using both

spin-pure and SD-based GAS are depicted in Figure 7. In addition, the spin quantum number

s is computed from the 〈ψ|Ŝ2|ψ〉 expectation value for each chosen ms value in the SD based

calculations, also reported in Figure 7. In the supporting information we derive the working

equations for how Ŝ2 is evaluated using the RDMs.

The highest spin state (s = 6) of the N4 system can be represented by a single SD (or CSF)

with all orbitals occupied by exclusively α (or exclusively β) electrons (|ms| = s = 6). The

energy of this state is unaffected by GAS constraints, as particles cannot be excited among

GAS subspaces anyway, due to the Pauli exclusion principle. For |ms| < 6 numerous forms of

electron correlation can potentially take place. Three main excitation types are recognised:

(a) On-site excitations (with electron pairing) may lead to non-Hund contributions into the

multiconfigurational wave function, (b) exchange interactions, that introduce long range

correlation effects, and (c) charge-transfer excitations across the sites that reduce on-site

electron repulsion.

As shown in Figure 7, for spin-adapted and SD based CAS, the lower spin states of the

N4 model are energetically more stable than higher spin states (an antiferromagnet). For
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GAS wave functions with connected spaces (to the limit of single inter-space excitations)

the same result is obtained. The agreement between CAS and GAS wave functions with as

little as single interspace excitations, nexc = 1, is impressive, even though the GAS space is

considerably smaller than the CAS space. The CAS(12, 12) space consist of 853 776 SDs,

while the GAS[4 · (3, 3)] space with single interspace excitations nexc = 1 consists of 468 942

SDs which is 55 % of the CAS space size. The largest energy difference between CAS and

GAS with single interspace excitations, is obtained for the s = 0 spin state and is only

0.36 kJ mol−1, a negligible quantity.

The N4 cluster is anti-ferromagnetically ordered for CAS and connected GAS spaces,

hence we conclude from the previous discussion that we can target spin pure states with

selected ms values and s = |ms|. The results in Figure 7 confirm precisely this aspect. CAS

and connected GAS energies, obtained using the SD representation, are undistinguishable

from the corresponding energies obtained in a spin-adapted basis. Also, the calculated spin

quantum number from the expectation value of the Ŝ2 operator (Figure 7) confirms that for
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this system all states are pure spin eigensolutions, despite the fact that an SD basis has been

utilized.

For disconnected GAS spaces (nexc = 0), the spin ladder is inverted to ferromagnetic

order. This can be explained by considering the two main competing correlation mecha-

nisms, spin exchange and charge-transfer. The exchange energy favors parallel alignment

of spins across the sites, while charge-transfer correlation across magnetic centers allows

for correlation induced differential stabilization of the lower spin states. In the absence of

charge-transfer excitations (nexc = 0), only exchange interactions remain that stabilize the

high spin states, leading to a ferromagnetically ordered system.

Thus, for disconnected spaces, independently of the chosen ms value for the SD based

Stochastic-GAS dynamics, the final state is the one with the highest spin, s = 6. For this

reason, neither a spin ladder nor spin expectation values have been reported in Figure 7 for

disconnected GAS calculations in an SD basis. A spin-adapted Stochastic-GAS implementa-

tion is currently under development, that relies on the GUGA technique to build and couple

CSFs via the Hamiltonian operator. The development of the spin-adapted Stochastic-GAS

is precisely motivated by the above discussed limitation. It is also important to mention

that spin purification techniques exist for ensuring that the eigenvectors of a SD based CI

expansion have the desired 〈Ŝ2〉.96

Fe4S4. For the Fe4S4 system, the active space consisted of the twenty 3 d orbitals of the

Fe3+ ions and their 20 electrons. The structure of the cluster can be found in the compu-

tational details of the supporting information. This (20, 20) active space exceeds the limits

of conventional CAS; thus, only the stochastic-CAS and GAS strategies will be presented in

this section. The spin-pure CASSCF(20, 20) localized orbitals from reference 97 were used,

and only CASCI and GASCI calculations were performed here. The GAS active space was

defined as [4 ·(5, 5)] with each of the localized Fe(III) orbitals being in a separate GAS space.

While for the N4 system, cumulative GAS constraints have been used (for direct comparison
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with the conventional GAS method where only cumulative constraints are available), the

excitation level between the irons was controlled by local constraints

Nmin
i = 5− nexc

Nmax
i = 5 + nexc .

(27)

As shown for the benzene stack, differences between local and cumulative GAS constraints

exist, but their practical effect on the energetics is in general negligible. GASCI calculations

with an excitation level nexc of 1 and 2 were performed. Higher excitation levels were not

necessary as convergence is reached already for nexc = 2. As in the case of N4 it was not

possible to use disconnected spaces (nexc = 0) due to the ferromagnetic ordering.

The spin ladder of Fe4S4 calculated with the SD-based Stochastic-CASCI and Stochastic-

GASCI methods is depicted in Figure 8, together with the deviation from the spin-adapted

Stochastic-CASSCF results from reference 97.

The analogy between the Fe4S4 and the N4 spin-ladders is to be noted. The highest-

spin s = |ms| = 10 configuration for Fe4S4 is an eigenfunction of both Ŝ2 and Ŝz and the

CI-expansion consists of precisely one configuration. For this case, neither difference exists

between SD and CSF bases, nor between the GAS and the CAS expansions. Moreover, as

for the N4 system, also the Fe4S4 system is an antiferromagnet and it is thus possible to

target spin eigenstates using the SD representation, without requiring spin-adaptation or

spin-purification strategies.

We will first discuss the difference between the SD-based Stochastic-CASCI and the spin-

adapted Stochastic-CASCI spin-ladders. Figure 8 shows that the CASCI spin ladder in SD

basis is in good agreement with the spin-adapted CASCI results. Some marginal deviations

appear for s ≤ 3. The largest deviation occurs for s = 2, and it is less than 1 kcal mol−1.

For higher spin-states the deviation becomes vanishingly small. This difference has been

attributed in an earlier work81 to the slow convergence of the FCIQMC dynamics in SD

basis with respect to the number of walkers (initiator bias). The number of possible SDs for
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a given number of electrons N , orbitals n and spin projection ms is given by

ΩSD(N, n,ms) =

(
n

N
2

+ms

)
·
(

n
N
2
−ms

)
(28)

which reaches its maximum for ms = 0, if n = N as in our case. If the initiator bias is

directly bound to the size of the Hilbert space, it should be highest for the lowest spin-state.

Why, then, is the slowest convergence observed for the s = |ms| = 2 state? The answer is

offered by the CI expansion in CSF basis. The Fe4S4 cluster behaves to the leading terms

as spin-system, with exchange-interactions representing the main form of spin interactions

across the sites.98 CSFs with singly occupied orbitals represent the leading configurations of

such a spin-system, and their number is promptly given by the van Vleck-Sherman formula:99

ΩCSF(no, s) =

(
no

no

2
− s

)
−
(

no
no

2
− s− 1

)
. (29)

where no and s refer to the number of singly occupied orbitals and the target spin, respec-

tively. For the (20, 20) active space, ΩCSF attains its maximum at s = 2. The multi-reference

character in a CSF basis is amplified when transformed to the corresponding SD basis, and

more walkers are required within the FCIQMC algorithm for a correct stochastic represen-

tation of the more complex wave function. Therefore, while it is possible to calculate pure

spin states for such systems using an SD basis, the number of walkers required for converging

the FCIQMC dynamics is far larger than in a CSF basis. While the reference calculation

in a spin-pure basis was converged with Nw = 1 · 106 walkers,97 the SD based calculations

used Nw = 5 · 107 walkers and was not fully converged in all spin states, as shown by the

difference in Figure 8. We would like to stress that the SD based dynamics were not at the

computational limits and increasing the walker number to achieve convergence in the SD

based FCIQMC would have been possible but expensive. This was not done as it was not in

the scope of the present investigation. The main goal was to compare the truncation effects

of GAS compared to CAS.
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We now turn our attention towards the error that is introduced from a limited number of

GAS interspace excitations. As already observed for the N4 system, disconnected GAS model

calculations lead to the unphysical inverted and ferro-magnetically ordered spin-ladder. In-

terestingly, already a GAS with single interspace excitations is enough to obtain a spin

ladder in excellent agreement with the corresponding CAS wave function and energetics.

The largest deviation from the SD-based Stochastic-CASCI calculation is only 1.2 kJ mol−1,

and the deviation from the spin-adapted Stochastic-CAS is around 4 kJ mol−1 (See lower part

of Figure 8). If double excitations among the iron atoms are allowed, the Stochastic-GASCI

recovers the CASCI energy with a maximum deviation of 0.3 kJ mol−1 from the SD-based

Stochastic-CAS energy.

With these examples we demonstrated how the GAS strategy can be used, to probe the

effect of charge transfer excitations, and to reduce the size of the Hilbert space by limiting

the number of interspace excitations.

5 Conclusion

In this work, the Stochastic-GASSCF method has been introduced based on a new PCHB

excitation generator in FCIQMC for the stochastic sampling of the GASCI space, the stochas-

tic sampling of RDMs and the Super-CI method for the variational orbital relaxation. In

Stochastic-GAS both local and cumulative particle number constraints can be imposed, a fea-

ture that is unique to Stochastic-GAS, and allows to explore both the cumulative constraints

of the conventional GAS,27 as implemented in OpenMolcas,33 and the local constraints, as

implemented in the ORMAS method, and made available in GAMESS-US.31 GAS allowed

electronic configurations are classified into supergroups based on the number of electrons

per GAS subspace. The concept of supergroups is at the core of the new GAS-PCHB exci-

tation generation, since the GAS constraints only require knowledge about the supergroup

of a configuration. Since the GAS constraints are ingrained in pre-calculated probability
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distributions per supergroup, our algorithm adds practically no runtime overhead to an un-

constrained Full CI PCHB calculation. On the other hand, the higher number of probability

distributions increases the memory demand compared to Full CI PCHB.

Three different potential showcase applications have been discussed that demonstrate

how Stochastic-GAS can be used to reduce computational costs of FCIQMC by operating

on pre-selected truncated CI spaces or to enhance our understanding of the role of different

electron correlation pathways.

The first example was a stack of five benzene molecules. We separated the system into five

GAS spaces to enable full correlation inside each molecule, but allowed only a limited number

of excitations between the fragments. Depending on the distance between the fragments,

a different number of interspace excications was necessary to recover the Full CI energy,

but already with one interspace excication the error was well below 1 kJ mol−1 for distances

of 3Å or larger. By this application, we show that Stochastic-GAS can easily be tailored

towards fragment-based compounds, and thus operate in a mode that is conceptually similar

to other techniques, such as NOCI-RCMO and ASD-DMRG. However, while NOCI-RCMO

and ASD-DMRG are exclusively tailored towards fragments, GAS can be applied to a wider

range of chemical situations. With suitably chosen orbitals and GAS subspaces the new

method is practically size-extensive.

In the second example we used Stochastic-GAS to perform a very large uncontracted

stochastic-MRCISD calculation (using the RAS strategy) on an Fe(II)-porphyrin model sys-

tem, where a total of 96 electrons and 159 orbitals have been correlated over a (32, 34)

RAS2 space. While the RAS2 space accounts for relatively strong forms of electron cor-

relation, as we have discussed already in earlier works,16–18 single and double excitations

out of the occupied space (RAS1) and into the virtual orbitals (RAS3) account for dynamic

correlation. By considering both static and dynamic electron correlation, we could greatly

improve the theoretical estimate for the spin gap between the 5A1g and 3Eg state to be around

(6.8± 0.1) kcal mol−1, substantially larger than our previous estimate exclusively based on
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the Stochastic-CASSCF(32, 34) energetics. This application shows how Stochastic-GAS can

be utilized to account for dynamic correlation in a systematically improvable way, as op-

posed to other methodologies such as DFT100,101 or MC-PDFT102 that rely on the accuracy

of (translated) functionals to describe exchange and correlation effects.

In the last example, we calculated the spin ladder of an Fe4S4 cubane cluster and used

Stochastic-GAS to understand the role of charge-transfer excitations in differentially stabi-

lizing the low-energy spin-states. We showed that although the current Stochastic-GAS is

based on an SD many-body basis, it is possible to efficiently use the method to selectively

target pure-spin states of antiferromagnets. A limitation still exists in using the SD-based

approach; for some spin states, a relatively slower convergence is observed with respect

to the walker number, compared to the spin-adapted implementation. This limitation is

independent of the GAS constraints, but depends on the system. This limitation mostly

characterizes systems featuring a large number of unpaired electrons, where denser wave

functions exist and spin interactions are harder to describe using a SD basis. This limitation

is to a large extent removed using spin-adaptation. A spin-adapted Stochastic-GAS strategy

is under development and will be presented in a separate work. Via Stochastic-GAS it is

demonstrated that the exchange interactions stabilize the high spin states (inverted spin-

ladder for disconnected GAS subspaces with ferromagnetically ordered spin states), while

low-spin states are stabilized via charge-transfer excitations, that are included as soon as

connected-GAS spaces are considered. For the Fe4S4 cubane system, GAS calculations with

single interspace excitations already recover the CAS energy with an error ≤ 1.2 kJ mol−1

and two interspace excitations decrease this error to ≤ 0.3 kJ mol−1.

As a final remark for possible future applications, we note that the Stochastic-GAS

strategy can be utilized also for core-excitations, necessary in simulating X-ray diffraction

spectroscopy.103,104 As for the conventional GAS strategy, core orbitals can be included in

one of the GAS subspaces and constrain them to have a minimum number of holes. The

advantage of Stochastic-GAS over conventional GAS is that in the former the GAS subspaces
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can be made substantially larger. Thus, dynamic correlation effects for the core-excited states

can be accounted for already at the level of Stochastic-GAS.

Future development of methods in our group will concentrate on GAS in a spin-pure

basis using GUGA.

52



6 Appendix

6.1 Compositions, Supergroups, and Indexing

In this subsection we derive a fast on the fly algorithm for calculating the supergroup index of

a given determinant. We will first discuss how to calculate the index for a given composition

and apply this knowledge to supergroups. We repeat the definitions formally.

Definition 6.1 (Compositions and Supergroups). For n ∈ N0, k ∈ N we call a solution of

the following equation

x1 + . . .+ xk = n (30)

a composition of integers. We define p(k, n) to be the number of different compositions.

Solutions with a different order of summands are considered to be different.

If we identify n with the number of particles and k with the number of possible GAS spaces

then a supergroup is a composition that is allowed by local or cumulative GAS constraints.

We define pl(k, n,Nmin, Nmax) and pc(k, n, Ñmin, Ñmax) to be the number of supergroups

for local and cumulative constraints respectively.

We trivially note that p(1, n) = p(k, 0) = 1 and in general we have the following lemma.

Lemma 6.2 (Number of compositions). For n ∈ N0, k ∈ N the number of compositions is

given by:

p(k, n) =

(
n+ k − 1

k − 1

)
(31)

Proof. If there are k summands, there are (k−1) “+” symbols in the composition. If we have

n symbols “*” and denote numbers with a corresponding number of those symbols we can

write compositions with arrangements of “+” and “*” symbols. For example 8 = 3+0+3+2

can be denoted as 8 = ∗ ∗ ∗+ + ∗ ∗ ∗+ ∗ ∗. The number of compositions is then the number

of different arrangements.
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Definition 6.3 (Composition and supergroup index). We assume lexicographical decreasing

order of the compositions and assign the composition index based on this order.

In the same way, we assume lexicographical decreasing order of the supergroups and

assign the supergroup index based on this order.

In Table 4, we show an example for the composition of three with three summands and

the supergroups from example GAS constraints and the respective indices.

Table 4: Example for the supergroups of a GAS constraint with a cumulative minimum and
maximum of [0, 1, 3] and [2, 2, 3]. The composition index is iC and the supergroup index
isg. GAS allowed compositions, i.e. supergroups, are highlighted.

isg iC x1 x2 x3

1 3 0 0
2 2 1 0

1 3 2 0 1
4 1 2 0

2 5 1 1 1
3 6 1 0 2

7 0 3 0
4 8 0 2 1
5 9 0 1 2

10 0 0 3

Lemma 6.4 (Determine composition index). For a composition C ∈ Nk
0 the composition

index iC is given by:

iC = 1 +
k−1∑
i=1

|Ci+1:|1−1∑
j=0

p(k − i, j) (32)

where

|Ci+1:|1 =
k∑

j=i+1

|Cj| =
k∑

j=i+1

Cj . (33)

Proof. We know that all elements of the composition lie between 0 and n.

If the first element C1 is equal to n, all other elements of the composition have to be zero

and the composition index has to be one. (First row of Table 4)

If C1 is smaller than n, all compositions with a leading term L, C1 + 1 ≤ L ≤ n
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have a lower index. The number of all compositions with a first element of L is given by

p(k − 1, n− L), because we write the sum of n− L with k − 1 summands.

By summing the number of all compositions with a leading term L, C1 + 1 ≤ L ≤ n, we

can now calculate the index of the first composition which has a leading term of C1 as

iC([C1, ?, . . . , ?]) = 1 +

n−C1−1∑
j=0

p(k − 1, j) . (34)

If we keep in mind that n− C1 =
∑k

i=2Ci = |C2:|1 we can rewrite equation 34 as

iC([C1, ?, . . . , ?]) = 1 +

|C2:|1−1∑
j=0

p(k − 1, j) . (35)

If we look at the second element C2, we are either finished, because C1 +C2 equals n, or

all compositions with a second element L,C2 + 1 ≤ L ≤ n− C1 are larger than C in lexico-

graphical order. We can repeat the previous steps to calculate the number of compositions

and continue this procedure for all elements of C to arrive at the final equation 32.

We give an illustrative example and determine the index of the composition [1, 0, 2]. Since

the leading term is a 1, we can “jump” over all compositions with a leading 3 or 2 and arrive

at [1, 2, 0], which is the first composition with a leading 1. The number of terms with a

leading 3 is given by p(2, 3− 3) = p(2, 0). The number of terms with a leading 2 is given by

p(2, 3 − 2) = p(2, 1). Then we can repeat the same logic to jump over [1, 1, 1] to arrive at

[1, 0, 2]. In total this gives:

[3, ?, ?] [2, ?, ?] [1, 2, ?] [1, 1, ?]

iC([1, 0, 2]) = p(2, 0)+ p(2, 1)+ p(1, 0)+ p(1, 1) + 1

= 1+ 2+ 1+ 1 + 1

= 6

(36)
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which agrees with Table 4. Since p(k, n) only requires the binomial coefficient which can

be implemented as lookup table, the whole calculation may become a summation of values

from a lookup table.

If we had a general closed solution to calculate the number of supergroups pc and pl,

we could apply the same logic of “jumping over” leading terms to calculate the supergroup

index. Unfortunately only recursive solutions are known for pc and pl which do not lend

themselves to an efficient implementation.66

For this reason, we generate all possible supergroups in the beginning. This step does

not have to be performant, one can e.g. generate all compositions and just test if they

adhere to GAS constraints. After lexicographical sorting of the supergroups we calculate the

composition index for each of them and store it.

If we now want to calculate the supergroup index for a determinant, we count the number

of particles per GAS space to get a supergroup, calculate the composition index of the

supergroup using Lemma 6.4, and look up the position of this composition index in our

stored list. We can calculate for example the supergroup index of [1, 0, 2] as

[1, 0, 2]
Lemma 6.4−−−−−−→
Equation 36

6
binary search in Table 4−−−−−−−−−−−−−→ 3 . (37)

6.2 Conversion of constraints

In this section, we want to show that cumulative and local GAS constraints are not always

equivalent and that there are systems which can be expressed in only one of them. We also

want to prove Equation 4 for the conversion between these constraints when it is possible.

We write again N and nGAS for the number of particles and GAS spaces. If Nmin, Nmax

denote local GAS constraints and Ñmin, Ñmax denote cumulative ones, then we write for the

set of all supergroups under local constraints Sl(N, nGAS, N
min, Nmax) and for the set of all

supergroups under cumulative constraints Sc(N, nGAS, Ñ
min, Ñmax).

We start with an example that shows that there is at least one cumulative constraint
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that cannot be expressed with local ones.

Example 6.5. We define a system comprising of four GAS spaces using cumulative con-

straints and eight particles and tight inequalities Ñmin
4 = Ñmax

4 = 8 in the last space in Ta-

ble 5. We assume that local constraintsNmin, Nmax exist such that Sl(N, nGAS, N
min, Nmax) =

Sc(N, nGAS, Ñ
min, Ñmax) and lead this to a contradiction.

Proof. The compositions [1, 3, 1, 3] and [3, 1, 3, 1] are contained in Sc(N, nGAS, Ñ
min, Ñmax).

This implies that for all spaces Nmin
i ≤ 1 and 3 ≤ Nmax

i . We immediately conclude:

Sl(N, nGAS, [1, 1, 1, 1], [3, 3, 3, 3]) ⊂ Sl(N, nGAS, N
min, Nmax)

⊂ Sc(N, nGAS, Ñ
min, Ñmax) .

(38)

Since [1, 1, 3, 3] ∈ Sl(N, nGAS, [1, 1, 1, 1], [3, 3, 3, 3]) we see from Equation 38 that [1, 1, 3, 3] ∈

Sc(N, nGAS, Ñ
min, Ñmax). But calculation shows that [1, 1, 3, 3] cannot be contained in the

cumulative GAS constraints from Table 5.

Table 5: An example system with cumulative constraints Ñmin, Ñmax which cannot be ex-
pressed using local constraints.

Ñmin
i Ñmax

i

1 3
4 4
5 7
8 8

In a next step, we prove Equation 4 with the following Lemma.

Lemma 6.6. If for a given number of particlesN and GAS spaces nGAS local GAS constraints

Nmin, Nmax and cumulative GAS constraints Ñmin, Ñmax exist such that:

Sl(N, nGAS, N
min, Nmax) = Sc(N, nGAS, Ñ

min, Ñmax) (39)
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and if for each i > 1 there exists a composition x ∈ Sc(N, nGAS, Ñ
min, Ñmax) such that

xi = Ñmin
i − Ñmax

i−1 (40)

and if for each i > 1 there exists a composition y ∈ Sl(N, nGAS, N
min, Nmax) such that

yi = Nmin
i (41)

and if for each i > 1 there exists a composition x′ ∈ Sc(N, nGAS, Ñ
min, Ñmax) such that

x′i = Ñmax
i − Ñmin

i−1 (42)

and if for each i > 1 there exists a composition y′ ∈ Sl(N, nGAS, N
min, Nmax) such that

y′i = Nmax
i (43)

then the following relationships must hold:

Nmin
i =


Ñmin
i − Ñmax

i−1 i > 1

Ñmin
i i = 1

Nmax
i =


Ñmax
i − Ñmin

i−1 i > 1

Ñmax
i i = 1

.

(44)

Proof. The relationship is true for i = 1. We now prove for i > 1 that Nmin
i = Ñmin

i − Ñmax
i−1 .

By definition of Nmin
i , we have for the composition from condition 40 that

Nmin
i ≤ xi = Ñmin

i − Ñmax
i−1 . (45)
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On the other hand, we have for every composition y ∈ Sc(N, nGAS, Ñ
min, Ñmax)

yi =
i∑

j=1

yj −
i−1∑
j=1

yj =
i∑

j=1

xj︸ ︷︷ ︸
≥Ñmin

i

+

(
−

i−1∑
j=1

xj

)
︸ ︷︷ ︸
≥−Ñmax

i−1

≥ Ñmin
i − Ñmax

i−1 . (46)

Since we assume that y is also contained in the set of supergroups under local constraints

(condition 39), we conclude for every z ∈ Sl(N, nGAS, N
min, Nmax)

zi ≥ Ñmin
i − Ñmax

i−1 . (47)

Since we also assume, that at least one zi admits the extremal value Nmin
i (condition 41) we

conclude

Nmin
i ≥ Ñmin

i − Ñmax
i−1 . (48)

With inequality 45 we arrive at Nmin
i = Ñmin

i − Ñmax
i−1 . The proof of Nmax

i = Ñmax
i − Ñmin

i−1

can be performed in exactly the same way.

It might seem very difficult to use Lemma 6.6 in practice, because the equality of local and

cumulative constraints is an assumed condition that has to be verified (Equation 39). But it

is very useful not so much to convert between constraints that are known to be equivalent,

but to prove that a given type of constraint has no equivalent.

We could have proven example 6.5 by directly applying the conversion formulas (Equa-

tion 4) to the cumulative constraints Ñmin, Ñmax. The obtained local constraints Nmin, Nmax

and the original cumulative constraints fulfill the conditions 39 – 43, but as in the original

proof of example 6.5 the obtained local constraints have different supergroups Sl(N, nGAS, N
min, Nmax) 6=

Sc(N, nGAS, Ñ
min, Ñmax). With Lemma 6.6 we conclude that there are no local constraints

that are equivalent to the cumulative constraints from Table 5.
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