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ABSTRACT: 1-Sulfonylcyclopropanols are employed here as efficient cyclopropanone equivalents in a formal vinylidene insertion process, 
providing the first general synthetic route to enantioenriched alkylidenecyclobutanones. The addition of an alkenyl-Grignard reagent to the 
cyclopropanone leads to an alkenylcyclopropanol capable of electrophilic activation by NBS, triggering a regio- and stereospecific 1,2-
migration and the formation of a brominated cyclobutanone intermediate prone to elimination. The parent β-amino ketone can also be ac-
cessed by one-pot aza-Michael addition to the resulting product, and activation of the alkenylcyclopropanol intermediate with other electro-
philes such as HCl or mCPBA led to the controlled formation of a variety of chiral cyclobutanones and γ-lactones via alternative pathways.

The ring expansion or ring-opening of strained cyclic compounds 
constitutes a key strategy in organic synthesis for the elaboration of 
complex molecules.1 The relevance of cyclobutanone derivatives in 
this regard cannot be understated,2 with countless strain-releasing 
transformations now available to synthetic chemists, thus allowing 
rapid access to a range of structurally complex and diverse scaf-
folds.3 More particularly, alkylidenecyclobutanones4,5 have been 
employed as privileged substrates in stereospecific ring-opening or 
rearrangements4a-b and constitute divergent substrates leading to 
functionalized cyclobutanones via conjugate addition of heteronu-
cleophiles4c,5o-p or organometallic reagents,4d-e,5t conjugate reduc-
tion4f-h,5c,q-r or hydroformylation reactions.4i Moreover, these species 
have been employed as unique precursors of oxatetrameth-
yleneethane intermediates via photoinduced electron transfer.4j-l 
While they can be accessed in racemic form by a variety of ap-
proaches including the [2+2] cycloaddition of ketenes with al-
lenes,5a-f the carbonylation or oxidation of alkylidenecyclopro-
panes,5g-k the rearrangement of 1-alkynylcyclopropanols5l-n or by 
classical condensation or cyclization strategies,5o-z the general enan-
tioselective access to alkylidenecyclobutanones still remains elu-
sive. An interesting approach to racemic cyclobutanones reported 
by Wasserman and co-workers involves the electrophilic activation 
and ring expansion of 1-vinylcyclopropanol, which in turn can be 
synthesized by vinyl Grignard addition to hemiketal 1, used as a 
cyclopropanone surrogate (Scheme 1a).6,7 While cyclobutanone 
derivatives are relatively stable to isolation and storage, cyclopro-
panones are often highly unstable and prone to multiple decompo-
sition pathways,1d,8,9 and it is thus often more convenient to form 
them in situ via elimination from a surrogate such as 1 (Scheme 
1b).8d,10 Due in part to the poor leaving group ability of alkoxides, 
hemiketals 1 require harsh conditions to equilibrate to the cyclo-
propanone and often lead to low yields of the desired rearranged 
products, as exemplified here in a racemic cyclobutanone synthesis 
(29% overall yield, see Scheme 1a).6a Recently, our group reported 
an expedient synthesis of optically active 1-sulfonylcyclopropanols 
2,11 which constitute stable yet highly reactive and modular surro-
gates of cyclopropanone derivatives.12 This approach is in fact the 
first general enantioselective route to cyclopropanone equivalents, 

and later allowed us to access enantioenriched 4-substituted β-
lactams using a formal nitrene insertion reaction with simple N-
substituted hydroxylamines as reagents (Scheme 1c).11 
Scheme 1. Reactivity of various cyclopropanone equivalents and 
application in (3+1) ring expansion processes. 

 
Cognizant of the superior reactivity of surrogates 2 towards the 
addition of organometallic reagents to afford chiral tertiary cyclo-
propanols,12a we envisioned that they would constitute privileged 
substrates for the production of optically active cyclobutanones via 
an analogous stereospecific ring expansion pathway. Herein we 
report the first general route to enantioenriched alkylidenecyclobu-
tanones via a formal vinylidene insertion process into chiral cyclo-
propanones starting from readily accessible 1-
sulfonylcyclopropanols 2 as surrogates (Scheme 1d). The addition 
of an alkenyl nucleophile to substrates 2 followed by appropriate 
electrophilic activation with N-bromosuccinimide (NBS) was 
found to trigger a fully regio- and stereospecific 1,2-migration, lead-
ing to a bromocyclobutanone prone to elimination. A number of 
chiral alkylidenecyclobutanones could be obtained through varia-
tion of the alkenyl nucleophile and cyclopropanone substituents, 
and alternative activation of the allylic alcohol with HCl or mCPBA 
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led to the controlled formation of chiral saturated cyclobutanones 
and γ-lactones instead. Other applications of this chemistry docu-
mented here include the synthesis of β-aminocyclobutanones via in 
situ aza-Michael addition, the use of a β-bromo alkylidenecyclobu-
tanone as a cross-coupling partner, and the stereospecific formation 
of α-quaternary cyclobutanones. Considering the relevance of chi-
ral cyclobutanones and alkylidenecyclobutanones as strained build-
ing blocks in synthesis,2,4 this work should find broad applicability 
in the elaboration of complex and biologically relevant molecules. 
Our preliminary studies focused on the addition of vinylmagnesi-
um bromide to substrate 2a to yield the corresponding 1-
vinylcyclopropanol, and identified the use of an excess organome-
tallic reagent at –78 °C as crucial to the overall reaction efficiency.13 
We also observed that NBS was a superior electrophile to trigger 
the subsequent ring expansion, presumably via an hydroxycyclo-
propylbromonium species, leading to quantitative NMR yields of 
the ring-expanded bromocyclobutanone from the crude 1-
vinylcyclopropanol intermediate. This brominated product was 
found to be highly sensitive to elimination by mild base,14 which 
prompted us to pursue a one-pot sequence to alkylidenecyclobuta-
nones 3. To our delight, optimal conditions for the overall process 
from 2a were rapidly identified, involving the sequential stoichio-
metric addition of NBS and Et3N at room temperature to the crude 
1-vinylcyclopropanol intermediate, affording 3a in 76% isolated 
yield from 1-sulfonylcyclopropanol 2a with complete regio- and 
stereospecificity (Scheme 2). Using our previously developed two-
step sequence to enantioenriched cyclopropanone equivalents 
from methyl phenyl sulfone11 and in order to explore the scope of 
accessible alkylidenecyclobutanones, diverse chiral substrates 2a-2g 
were synthesized and submitted to our formal vinylidene insertion 
sequence. When employing vinylmagnesium bromide as nucleo-
phile, chiral methylenecyclobutanones 3a-3e were obtained in 
moderate to good overall yields and high enantiomeric purity, tol-
erating either monosubstituted (3a-3c), gem-disubstituted (3d) or 
2,3-disubstituted (3e) substrates with similar efficiency. In the case 
of 3d, additional time and heat was required for the elimination to 
proceed, presumably due to increased steric hindrance during 
deprotonation. The use of commercially available 2-methyl-1-
propenylmagnesium bromide as nucleophile led to tetrasubstituted 
olefin 3f in moderate yield. Employing freshly prepared trans-β-
styrenylmagnesium bromide efficiently gave access to β-phenyl 
alkylidenecyclobutanones 3g-3i in various E:Z ratios, where alkene 
isomerization was found to occur during chromatography.5l,13 
Gratifyingly, all products 3a-3i were obtained as single regioisomers 
without the need for purification of the vinylcyclopropanol inter-
mediates, and no significant loss of stereochemical information was 
observed in any case, confirming the stereospecificity of the 1,2-
migration occurring upon olefin bromination. Interestingly, the 
alkylidenecyclobutanone initially produced can be directly em-
ployed as an electrophile in an aza-Michael reaction in one-pot, 
leading to the clean formation of a β-aminoketone such as 4 
(Scheme 3). Upon heating and addition of a catalytic amount of 
Yb(OTf)3 as Lewis acid, the succinimide liberated as byproduct 
during olefin activation can act as a nucleophile in the final step to 
directly afford a protected β-amino cyclobutanone 4 with high 
efficiency. A single trans diastereomer of the cyclobutanone is ob-
tained in the process, likely due to thermodynamic keto-enol equi-
libration occurring under these conditions.5q,7f 
 

Scheme 2. Scope of accessible alkylidenecyclobutanones by formal 
vinylidene insertion into cyclopropanone equivalentsa,b 

 
aIsolated yields from 2a-2g. bEnantiomeric excesses were determined 

by HPLC analysis using a chiral stationary phase (ee of starting materi-
al 2 in parentheses). cHeated to reflux for 18 h after addition of Et3N. 
dRacemic substrate 2e was used. 

Scheme 3. Direct synthesis of enantioenriched β-aminoketone 4 by 
one-pot aza-Michael addition of the succinimide byproducta,b 

 
aIsolated yield from 2a. bEnantiomeric excess was determined by 

HPLC analysis using a chiral stationary phase  

The addition of a 1-substituted alkenyl-metal reagent such as α-
styrenylmagnesium bromide as initial nucleophile in this transfor-
mation efficiently leads to an enantioenriched α-quaternary β-
bromocyclobutanone (e.g. 5), which cannot undergo further elimi-
nation to an alkene following olefin activation and 1,2-migration 
(Scheme 4a). When ethynylmagnesium bromide was employed 
instead, the 1-alkynylcyclopropanol initially formed underwent an 
analogous rearrangement upon activation with NBS, directly af-
fording β-brominated alkylidenecyclobutanone 6 (Scheme 4b). 
This compound can then be effectively employed as a substrate in a 
Suzuki cross-coupling reaction to furnish an ester-functionalized 
alkylidenecyclobutanone 7. Such a sequence should prove particu-
larly useful as an alternative route to alkylidenecyclobutanones 
when functional group compatibility is an issue, either during the 
initial Grignard addition or the electrophilic alkene activation step. 
Scheme 4. Synthesis and application of brominated cyclobuta-
nones 5 and 6 via the addition of α-styrenylmagnesium bromide 
(a) or ethynylmagnesium bromide (b) as initial nucleophilesa,b 

 
aIsolated yields. bEnantiomeric excesses were determined by HPLC 

analysis using a chiral stationary phase.  
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The stereospecific 1,2-migration of the ring expansion sequence 
can also be triggered by the addition of electrophiles other than 
NBS to the crude 1-vinylcyclopropanol intermediate, directly lead-
ing to the corresponding saturated chiral cyclobutanones in mod-
erate to good overall yields (Scheme 5).6a,10a-b For example, treat-
ment of this intermediate with a few drops of concentrated HCl in 
CH2Cl2 at room temperature led to enantioenriched α-methylated 
cis-cyclobutanone 8 as a single diastereomer, following protonation 
of the vinyl group and 1,2-migration (Scheme 5a, top). Stoichio-
metric addition of mCPBA instead led to epoxidation of the allylic 
alcohol, initiating a stereospecific 1,2-migration and affording cis-β-
hydroxycyclobutanone 9 in good overall yield (Scheme 5a, bot-
tom). During this process, we observed the formation of a small 
amount of γ-lactone 10a, presumably arising from Baeyer-Villiger 
oxidation of product 9, even when only one equivalent mCPBA was 
added for the epoxidation step. This result highlights the fact that 
β-hydroxycyclobutanone 9 constitutes a particularly reactive ke-
tone in such a strain-releasing esterification, and prompted us to 
investigate a one-pot double ring expansion sequence in the pres-
ence of two equivalents mCPBA, directly affording optically active 
cis-γ-lactones 10a-10b in good overall yields (Scheme 5b).15 This 
diastereoselective formal [3+1+1] sequence should prove highly 
useful considering the relevance of chiral γ-lactones as synthetic 
fragments in the formation of biologically active compounds.16 
Scheme 5. Alternative activation of the vinylcyclopropanol inter-
mediate with HCl or mCPBA (a) and stereospecific synthesis of γ-
lactones via one-pot Baeyer-Villiger oxidation (b)a,b  

 
aIsolated yields from 2a or 2c. bEnantiomeric excesses were deter-

mined by HPLC analysis using a chiral stationary phase. cee of starting 
material 2a or 2c in parentheses. 

In summary, the first general synthesis of enantioenriched alkyli-
denecyclobutanones is reported via a formal vinylidene insertion 
into cyclopropanone derivatives, starting from readily accessible 1-
sulfonylcyclopropanols as versatile surrogates.11,12 The addition of 
an alkenyl nucleophile followed by electrophilic activation of the 
resulting crude allylic alcohol with NBS triggers a stereospecific 
ring expansion occurring in a fully regioselective manner, favoring 
migration of the most substituted (stereogenic) carbon of the cy-
clopropyl group. Other activating agents such as HCl or mCPBA 
efficiently led to the formation of chiral saturated cis-
cyclobutanones instead, which can be further expanded to cis-γ-
lactones in situ by Baeyer-Villiger oxidation in the presence of 
mCPBA. An alternative divergent route to functionalized alkyli-
denecyclobutanones is also documented, involving the synthesis of 

an enantioenriched β-bromo alkylidenecyclobutanone capable of 
subsequent Suzuki cross-coupling in good efficiency. Moreover, the 
one-pot synthesis of a protected β-aminocyclobutanone is demon-
strated via aza-Michael addition, and the stereospecific formation 
of an α-quaternary cyclobutanone is achieved through the use of a 
1-substituted alkenyl-metal reagent as initial nucleophile. Consider-
ing the prevalence of chiral cyclobutanones2 and alkylidenecyclobu-
tanones4 as strained synthetic intermediates and of chiral γ-lactones 
in medicinal chemistry,16 this work should find general applicability 
in the elaboration of complex and biologically relevant molecules. 
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