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Abstract

We present an approximation to the state-interaction approach for matrix product

state (MPS) wave functions (MPSSI) in a non-orthogonal molecular orbital basis, first

presented by Knecht et al. [J. Chem. Theory Comput., 2016, 28, 5881], that allows for

a significant reduction of the computational cost without significantly compromising

its accuracy. The approximation is well-suited if the molecular orbital basis is close

to orthogonality, and its reliability may be estimated a-priori with a single numerical

parameter. For an example of a platinum azide complex, our approximation offers up

to 63-fold reduction in computational time compared to the original method for wave-

function overlaps and spin-orbit couplings, while still maintaining numerical accuracy.
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1 Introduction

Accurate calculations of many photochemical processes can be a daunting task. Excited

state are often governed by strong electron correlation effects and many close-lying excited

states, where multiconfigurational electronic structure methods1,2 are indispensable.

Multiconfigurational methods based on the complete active space self-consistent-field

(CASSCF)3 are well established for handling strong correlation effects. These approaches

require selecting an orbital subspace called active orbital space whose size determines the

computational cost. Traditional CASSCF methods scale exponentially with the number of

the active orbitals and electrons, allowing for calculations of up to 22 electrons in 22 orbitals

with a massively parallel approach,4 but limiting its size to approximately 18 electrons in

18 orbitals5 under more moderate computational time requirements. These limits can be

reached very quickly, especially in polynuclear transition metal complexes. One approach to

overcome the exponential scaling of CASSCF is the density matrix renormalisation group

(DMRG)6,7 for quantum chemistry,8–16 which, combined with self-consistent field orbital

optimisation (DMRG-SCF)17,18 is able to variationally approximate CASSCF wavefunctions

to arbitrary accuracy at a polynomial instead of exponential scaling of the computational

cost.

In the CASSCF paradigm, and also with DMRG-SCF, excited states are usually cal-

culated with a state-average ansatz, where a single orthonormal set of molecular orbitals

(MOs) is optimised to provide a balanced representation of several states. This allows for a

straightforward calculation of transition densities and moments that are required to compute

properties such as oscillator strengths, magnetic properties or spin-orbit couplings. However,

state-averaging is not always possible or desired: (i) the individual state characters differ

too much for an average set of orbitals to yield an adequate description; (ii) state-averaging

e. g. between different spin multiplicities is not supported by the computer implementation

of the method, or (iii) a single molecular set of orbitals is simply not possible at all because,

for example, the states in question belong to different molecular structures. In such cases,
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each state is optimized independently and the resulting MO bases for the individual states

are no longer the same. As a consequence, the states are no longer mutually orthogonal,

turning the calculation of transition densities and moments into a challenging task.

A solution to this predicament is to use the complete active space state interaction

(CASSI) method, proposed by Malmqvist and Roos,19,20 who suggested to transform the

MO bases for the individual states to a biorthonormal basis. Along with the orbital rotation,

this requires a simultaneous “counter-rotation” of the wavefunction expansion coefficients:

for a configuration interaction (CI)-type wavefunctions, which include CASSCF wavefunc-

tions, this step can be achieved with a series of single-orbital transformations.20,21 After

transformation to biorthonormal basis, wavefunction overlaps and transition densities may

be evaluated at little to no computational overhead.

The CASSI approach was soon extended to calculate spin-orbit couplings,22 and with

the advent of DMRG for quantum chemistry, the DMRG-based version of CASSI, later

named the matrix product state state interaction (sic!) (MPSSI) has been introduced.23 To

account for spin-orbit interaction with DMRG wavefunctions, several other approaches based

on spin-free wavefunctions that share a common MO basis were developed24–26 as well as a

fully-relativistic four-component approach27,28 .

Multiconfigurational methods and, specifically, the CASSCF method, are often used as an

underlying method for the electronic structure calculations for ab-initio nonadiabatic dynam-

ics:29 partially due to its computational efficiency for small systems and ability to describe

strong correlation, but also because of the readily-available implementations for gradients

and non-adiabatic couplings.30–33 With the help of the CASSI method, ab-initio nonadiabatic

excited state dynamics with spin-orbit couplings, e. g. with the SHARC approach34 may be

employed to study processes involving different spin states coupled via intersystem crossing.

Additionally, overlaps between wavefunctions at different time steps may also be calculated

with CASSI and may serve to approximate non-adiabatic couplings that are included in the

on-the-fly propagation of nuclear wavefunctions.35 The steep scaling of CASSCF with re-
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spect to the active orbital space may be tamed with DMRG-SCF also with surface-hopping

dynamics, as the calculation of the analytical gradients and nonadiabatic couplings has been

recently reported,36 and spin-orbit couplings and wavefunction overlaps may be calculated

with MPSSI. DMRG-SCF, despite its polynomial scaling of the computational time with

the active space size, is, nevertheless computationally very intensive, and MPSSI is also a

cost-intensive method with a computational cost comparable to that of DMRG-SCF. Dy-

namics calculations, however, require a cheap and performant electronic structure method,

as electronic structure calculations of energies, gradients and couplings are carried out for

hundreds or thousands of time steps. Accordingly, elimination of every possible bottleneck

in the electronic structure calculations is extremely beneficial for dynamics calculations.

In this work, we identify and address the bottlenecks of the MPSSI approach, allowing us

to significantly improve its performance by introducing two approximations, whose accuracy

can easily be assessed based on a single parameter. We demonstrate the effectiveness of

these approximations by means of MPSSI calculations of wavefunction overlaps and spin-

orbit couplings for a medium-sized transition metal complex.

2 Theory

As the starting points of this work, we first outline the CASSI and the MPSSI approaches.

Assume two sets of multiconfigurational wave functions
∣∣ΨX

〉
and

∣∣ΨY
〉
, each expressed in

their own MO basis {φX
p } and {φY

p }, respectively, which are not mutually orthogonal. The

goal of the CASSI approach is to find the biorthonormal MO bases {φA
p } and {φB

p }, such

that

〈φA
p |φB

q 〉 = δpq (1)

and a corresponding transformation of the wavefunctions
∣∣ΨX

〉
and

∣∣ΨY
〉
, such that the

transition matrix elements 〈ΨX|Ô|ΨY〉pq of any operator Ô may be calculated with very

little additional computational effort compared to the case where
∣∣ΨX

〉
and

∣∣ΨY
〉

belong to
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the same MO basis. To this end,20 an LU decomposition of the inverse of the orbital overlap

matrix SXY (with SXY
pq = 〈φX

p |φY
q 〉) is constructed:

(
SXY

)−1
= CXA

(
CYB

)†
(2)

The CXA and CYB matrices define the transformation from the MO to the biorthogonal

basis, such that

φA = φXCXA; φB = φYCYB. (3)

Before proceeding to the transformation of the wave functions
∣∣ΨX

〉
, let us briefly intro-

duce the wave function ansatz employed with DMRG, the matrix product states. A general

CI ansatz for an arbitrary wave function |Ψ〉 in a Hilbert space spanned by L spatial orbitals

may be expressed as

|Ψ〉 =
∑

k1...kL

ck1...kL |k1 . . . kL〉 (4)

with ck1...kL as the CI coefficients and |k1 . . . kL〉 as occupation number vectors. The notation

|k1 . . . kL〉 reflects the fact that for each spatial orbital l we may have a local basis state |kl〉 =

{|↑↓〉 , |↑〉 , |↓〉 , |0〉} and the total occupation number vector consists of local occupations of

all orbitals 1, . . . , L.

The CI coefficients ck1,...,kL may be reshaped as an L-dimensional tensor and decom-

posed37,38 by repeated application of the singular value decomposition into a product of

matrices Mkl , yielding a matrix product state (MPS):

|Ψ〉 =
∑

k1...kL

∑
a1...aL−1

Mk1
1a1
Mk2

a1a2
· · ·MkL

aL−11
|k1 . . . kL〉 (5)

The dimension of matrices (i. e. the a indices) may be limited to a certain maximum

dimension m, usually referred to as number of renormalised block states or maximum bond

dimension. This way, the number of parameters entering the wave function ansatz definition

is reduced from exponential, as it is in full CI, to polynomial. The optimisation of MPS
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wave functions is most commonly carried out with the DMRG approach, for the explanation

of which we refer the reader to the comprehensive reviews of Schollwöck 37 , 38 and Ref. 16.

Analogously to the MPS, operators may be expressed in a matrix product operator (MPO)

form as,

Ŵ =
∑
k,k′

∑
b1...bL−1

W
k1k′1
1b1

W
k2k′2
b1b2
· · ·W kLk

′
L

bL−11
|k1 . . . kL〉 〈k1 . . . kL| (6)

We consider next the transformation algorithm for wave functions
∣∣ΨX

〉
, when

∣∣ΨX
〉

are

MPS, as introduced in Ref. 23. We perform another LU decomposition, this time of the

CXA matrix, and from its lower- and upper triangular parts (CXA
L and CXA

U , respectively),

we construct the matrix t, with its lower and upper triangular part being

tU = (CXA
U )−1 (7)

tL = 1−CXA
L . (8)

The matrix t is then used to transform the wave functions
∣∣ΨX

〉
as follows:

• First, the inactive orbitals are transformed by scaling the MPS with a factor α given

by

α =

nI∏
i=1

t2ii, (9)

where i runs over all inactive orbitals.

• For the subsequent transformation with respect to the active orbitals, the following

steps are repeated for each active orbital l:

i) Each matrix Mkl is multiplied with t2ll for kl = |↑↓〉 and with tll for kl = |↑〉 and

|↓〉,
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ii) an MPO Ŵ is applied to the scaled MPS |Ψ̃X〉 yielding a transformed MPS

∣∣∣Ψ̃A
〉

= Ŵ
∣∣∣Ψ̃X

〉
(10)

with

Ŵ =

(
1̂ + T̂ +

1

2
T̂ 2

)
(11)

and

T̂ =
L∑

m6=j

tmj

tjj

(
a†m↑aj↑ + a†m↓aj↓

)
. (12)

iii) In the last step, one performs an SVD compression of
∣∣∣Ψ̃A

〉
to obtain the final

MPS
∣∣ΨA

〉
, a representation of the original state in the biorthonormal basis {φA}.

Analogously,
∣∣ΨB

〉
may be constructed by repeating the steps above with the CYB

matrix and
∣∣ΨY

〉
MPS.

∣∣ΨA
〉

and
∣∣ΨB

〉
are then employed to calculate transition

density matrix elements and properties.

While the original MPS transformation algorithm (MPSSI) as been shown to be highly

accurate for various properties, including spin-orbit couplings and g-factors of actinides,23

its current implementation has two major bottlenecks.

The first bottleneck originates from the SVD compression from step iii: the application

of the MPO in Eq. (10) to an MPS results in a transformed MPS with the maximum bond

dimension of b × m, where b is the maximum bond dimension of the MPO Ŵ and m the

maximum bond dimension of MPS |Ψ̃X〉. The final SVD compression in step iii) reduces the

final bond dimension of the transformed MPS, which is necessary since the storage size of

the MPS and the cost of transition density matrix element evaluation39 scales with O(m2L),

and thus becomes prohibitively expensive for large m. However, MPS compression itself is

a computationally expensive step with a computational cost of O(m3L), and constitutes a

crucial bottleneck in MPSSI. The original MPSSI implementation23 employs a fixed value

of m = 8000, preserving the expectation value of the energy up to 10−8 a. u., but at a price
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of significant computational cost.

The second bottleneck arises from the construction of the Ŵ MPO: as shown in Eq. (11),

this step requires the construction of the T̂ 2 operator, which is not trivial. The original

implementation23 avoids this problem by calculating T̂
∣∣∣Ψ̃X

〉
and T̂

(
T̂
∣∣∣Ψ̃X

〉)
and adding

the resulting MPS afterwards. Applying the T̂ operator twice, however, increases the bond

dimension of the resulting MPS by a factor of b2 and requires an additional MPS compression

step between the first and the second application of T̂ .

In this work we improve the efficiency of the MPSSI method by introducing two simple

but effective changes to the MPS transformation algorithm. The first is the first-order

approximation of Eq. (11) by neglecting the final second-order term. This approximation

may be justified as follows: since to allow for the formation of biorthogonal bases the original

MO bases have to be sufficiently similar, i. e. show an overlap fairly close to unity, the

resulting t matrix should not deviate significantly from the identity matrix. Eq. (11) can

be clearly recognised as a second-order Taylor approximation to the exponential of T̂ , and

in the regime of t close to identity also the linear approximation should hold. In addition,

Eq. (12) shows that the T̂ operator is scaled with the ratio between the off-diagonal and

diagonal elements of t. For an orthogonal basis, t will be the identity matrix and this ratio

will be zero. Therefore, a simple estimate based on off-diagonal elements of t, such as the

L2 norm of t− IL (with IL as an L× L identity matrix) may be employed as a measure of

the accuracy of the approximation.

The second approximation is the reduction of the maximum bond dimension of the com-

pressed MPS, therefore reducing the computational cost of the MPS compression.

In the following section we demonstrate that both approaches significantly improve the

computational cost of MPSSI with almost no effect on accuracy. Although both steps reduce

the accuracy of the transformation, the following numerical test demonstrate that the errors

introduced are negligible for several types of properties.
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3 Numerical Examples

As a testbed we employ trans,trans,trans-[Pt(N3)2(OH)2(NH3)2] (in the following referred to

as 1), which is a flagship Pt(IV) azide complex, relevant in photoactivated cancer chemother-

apy.40–42 As the majority of 5d metal compounds, 1 shows strong spin-orbit couplings and

since its photoactivation mechanism involves azide dissociation, such process is best described

by multiconfigurational methods.43

Performance of MPSSI approximation on wavefunction overlaps. In principle,

CASSI/MPSSI allow for an easy calculation of wavefunction overlaps constructed with

nonorthogonal orbital sets. Wavefunction overlaps, especially between states at different

molecular structures or spin multiplicities, are widely used in ab-initio excited state molecu-

lar dynamics35,44–46 or in wavefunction analysis.47 Here we investigated the goodness of the

linear approximation to Ŵ (in the following called as “MPSSI approximation”) for wave-

function overlaps of both ground and excited states for varying molecular structures of the

same molecule. With an increasing deviation of molecular structures, the dissimilarity of the

orbitals and the L2 norm of the ||t− IL|| matrix also increases, allowing us to assess also

the limits of the MPSSI approximation with the increasing norm.

We performed CASSCF and DMRG-SCF calculations with a comparably small active

space of 8 electrons in 9 orbitals. This active space is capable to qualitatively describe the

energies of the lowest excited states, and is also small enough for DMRG-SCF to be able

to reproduce the CASSCF results almost exactly: the final DMRG-SCF energies differ from

their CASSCF counterparts by no more than 10−7 a. u.

We performed a rigid scan along the Pt–N bond of one of the azide ligands with CASSCF

and DMRG-SCF, and calculated the wavefunction overlap of the lowest five singlet states at

structures with an elongated Pt–N bond with their counterparts at the equilibrium structure.

We calculated the overlaps of the CASSCF wavefunctions with CASSI, those of DMRG-SCF

wavefunctions with full and approximate MPSSI: the average pairwise differences between
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these are shown in Fig. 1a. The overlap difference between CASSCF and full MPSSI (green

line) reflects the error arising only due to DMRG approximation to the CASSCF wavefunc-

tion. The effect arising due to the MPSSI approximation can be fully estimated from the

approximate to full MPSSI difference (red line). The corresponding changes in the L2 norm

of t− IL matrices are shown in Fig. 1b.
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Figure 1: (a) Average differences of overlaps calculated with CASSCF, full and approximate
MPSSI; (b) L2 norm of t− IL matrices, with IL as the identity matrix; XA corresponds to
the orbitals at the equilibrium structure, YB to orbitals at a given r − req.

Given the tightly-converged DMRG-SCF wavefunction, the errors arising due to the

DMRG approximation are negligible: for all r−req values except 2.8 Å the overlap error is less

than 3× 10−4, whereas for the latter calculation it rises slightly to 2× 10−3. This discrepancy

is due to a slightly poorer convergence of the wavefunction at this particular r − req value
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than for other Pt–N bond lengths. Recalling that, in contrast to the quadratic convergence of

the energy, property calculations converge linearly with respect to the wavefunction quality,

the maximum energy error for this case is closer to 10−7 a. u., whereas for other Pt–N bond

lengths it is well below this value. Nevertheless, all of these errors are so small they may be

considered negligible. The MPSSI approximation error is however larger than the DMRG

approximation error for all calculations, and rises with increasing t norm: starting with

approximately 4× 10−4 at r−req =0.2 Å with a corresponding t− IL norm of 0.4 (and thus

remaining in the same order of magnitude as the DMRG approximation errors), it steadily

increases with increasing t− IL norm, reaching values of 8× 10−3 for the extended Pt–N

bonds.

In the range of r− req of 1.2 Å to 1.8 Å we see a particularly large increase of the MPSSI

approximation error, which corresponds to t− IL norm values of 0.9 to 1. Therefore, we

propose a conservative cut-off t− IL norm value of 1, below which we recommend to use

the approximation. This choice is, however, largely arbitrary: the average overlap error at

the cutoff value is 2× 10−3, and even the largest error value of 8× 10−3 in these calculation

series is still sufficient for a qualitatively correct calculation.

The suitability of larger MPSSI approximation errors for qualitative calculations is best

illustrated if one compares the results to those from a partially-converged DMRG-SCF calcu-

lation, which is a common practice in the literature. Figure 2 shows the same overlap errors

displayed in Fig. 1a but for partially converged DMRG-SCF wavefunctions, where energy

differences to the corresponding CASSCF wavefunction are up to 2× 10−4 a. u. The norms of

the t− IL matrices are similar and the MPSSI approximation errors are almost the same as

the corresponding errors for the fully-converged DMRG-SCF wavefunctions. However, the

errors arising due to the DMRG approximation increase sharply with the decreasing DMRG-

SCF wavefunction quality. For energy errors in the range of 10−4 a. u. to 10−5 a. u., typical

for large-scale DMRG calculations, the order of magnitude of the MPSSI approximation and

the DMRG approximation error is similar, and therefore approximate MPSSI is still suitable
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for a partially-converged DMRG-SCF wavefunction. Maximum energy error with respect to
a corresponding CASSCF calculation is shown in black.

for qualitative calculations.

We may conclude that the MPSSI approximation error is independent of the DMRG

wavefunction quality but rather depends only on the t matrix. Thus, the L2 norm of the

t− IL matrix constitutes an easy metric available prior to the MPSSI rotation, that allows

a simple decision whether the MPSSI approximation should be employed or not.

Performance of MPSSI approximation on spin-orbit couplings. Here we investi-

gate the MPSSI approximation performance in the calculation of spin-orbit coupling matrix

elements, which is another typical use case for MPSSI. We employ the same active space of

8 electrons in 9 orbitals as in the previous example, but calculate energies and spin-orbit

coupling matrix elements for the five lowest singlets and triplet states of 1 at the equilibrium

structure.

Figure 3a shows spin-orbit couplings calculated with CASSCF, DMRG-SCF employing

the original (full)-,23 and the approximate MPSSI scheme. As in the previous example,
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Figure 3: (a) Spin-orbit coupling (SOC) matrix elements for the first 5 singlet and 5 triplet
states at the equilibrium structure of 1 for an active space of 8 electrons in 9 orbitals. (b)
Absolute errors of the SOC matrix elements in panel (a).

DMRG-SCF wavefunctions have been converged so that the DMRG-SCF energies differ

from their CASSCF counterparts by less than 10−7 a. u.: therefore any error arising from

the DMRG approximation is negligible. The differences between the calculated values are

displayed in Figure 3b and show that the effect of the DMRG approximation (green curve)

is indeed negligible: the largest error due to the DMRG approximation does not exceed

0.02 cm−1. The error due to the MPSSI approximation is, similarly to the previous example,

slightly larger, but still negligible for all practical purposes: the average error is 0.077 cm−1

and the maximum error is approximately 0.8 cm−1.

As in the previous example, we also consider the case of a partially-converged DMRG-SCF

wavefunction, where the energies of some states differ up to 10−5 a. u. from their CASSCF

counterparts. This accuracy is typical for large-scale DMRG-SCF calculations and is more

than sufficient for accurate absorption energies up to 10−5 a. u. The results are displayed in

Figure 4. We note that in this case the SOC error arising from the DMRG-SCF approxima-

tion increases by several orders of magnitude up to 30 cm−1, while the MPSSI approximation

error remains the same. Thus, in this case the total error in the DMRG calculation largely

consists of the DMRG approximation error while the MPSSI approximation error is com-

pletely negligible.
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Figure 4: (a) Spin-orbit coupling (SOC) matrix elements for the first 5 singlet and 5 triplet
states at the equilibrium structure of 1 with a partially-converged DMRG-SCF wavefunction
(b) Absolute errors of the SOC matrix elements in panel (a).

Finally, we would like to mention the computational time savings arising from the ap-

proximation. Due to the small size of the active space, the MPSSI approximation is not

the bottleneck in this calculation, but it already reduces the computational time by approxi-

mately 40%, i. e. from 10 min 7 s to 6 min 6 s of run time on 4 cores of an Intel Xeon E5-2650

CPU.

Performance of the methods with a larger active space. From a calculation us-

ing time-dependent density functional theory (TD-DFT, CAM-B3LYP/def2-TZVPP) and

including several low-lysing singlet excited states of 1, we know that CASSCF and DMRG-

SCF calculations with an active space of 8 electrons in 9 orbitals, as employed in the previous

section, cannot even qualitatively account for the spin-orbit couplings: the largest absolute

value for the spin-orbit coupling between five lowest singlet and triplet excited states was

434 cm−1, whereas an analogous value from the TD-DFT calculation was found to be ap-

proximately 1800 cm−1.

This insufficiency can be remedied by a DMRG-SCF calculation with 26 electrons in 19

orbitals, as employed in Ref. 43. As this active space is computationally too expensive for a

CASSCF calculation, only DMRG-SCF calculations with subsequent approximate and full
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MPSSI calculations are performed. In addition, we assess the error arising due to the MPS

compression step in the MPS transformation by testing various m values for the compressed

MPS: the DMRG-SCF calculations were performed for m = 500, but during the MPSSI

procedure the intermediate MPS during rotation was compressed either to the original m =

500, or to m = 2000. Note that we cold not afford a post-compression m value of 8000

from the original paper of Knecht et al. 23 due to its prohibitive computational requirements.

Furthermore, in the following we consider the 10 lowest singlet and 9 triplet states. The

calculated SOC and their errors are shown in Fig. 5.
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Figure 5: (a) Spin-orbit coupling (SOC) matrix elements for the first 10 singlet and 9 triplet
states at the equilibrium structure of 1, for an active space of 26 electrons in 19 orbitals.
(b) Absolute errors of the SOC matrix elements in panel (a).

As can be seen from Fig. 5a, all methods yield almost identical values for the SOC. A

closer look at errors (Fig. 5b) reveals a maximum error of approximately 15 cm−1, which

arises entirely due to the MPS compression. The MPSSI approximation error is negligible:

the maximum MPSSI approximation error is 0.41 cm−1 for m = 500 and just 1× 10−3 cm−1

for m = 2000. The small MPSSI approximation error is not surprising for this calculation, as

the t− IL norms are only 0.002 and 0.006. We can also see that the MPSSI approximation

is affected by compression, but only very slightly: it is the compression error in the first place

that contributes to the total error, which is nevertheless still small enough for quantitative

results.
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Table 1: Runtimes for approximate and full MPSSI calculations with intermediate and final
MPS compression to m = 500 and 2000, as run on 24 cores of an AMD EPYC 7502 CPU.

m approx. full

500 6h 2m 21h 46m
2000 2d 3h 15d 19h

Table 1 discloses the massive speedup that both the MPSSI approximation and the com-

pression entail. Compared to a full MPSSI calculation with m = 2000, the MPSSI approxi-

mation gains a 7.5-fold speedup, the compression alone to m = 500 gains a 18-fold speedup,

and the combination of both methods gains an overwhelming 63-fold speedup. Both, the

MPSSI approximation and compression are essentially able to eliminate the bottlenecks in

the MPSSI method, while still retaining for quantitative accuracy.

Although the smallest m value of 500 chosen by us is dictated by the original m value

employed during the wave function optimisation, it is tempting to use an even smaller value

to save further computational time. However, given the comparably larger compression error

that would increase even further for smaller m values, we do not recommend such a reduction.

4 Conclusion

In this work we presented two modifications to the original formulation of the MPSSI method

by Knecht et al. 23 , which despite simple allow for drastic computational savings while re-

taining controlled accuracy in the DMRG-SCF calculation of properties.

The first modification, named the “MPSSI approximation”, is based on the omission of

the quadratic term in the operator that is employed to counterrotate the MPS, to match

the effect of the basis transformation. The second modification consist of decreasing the

maximum bond dimension of the intermediate and the final counterrotated MPS by the

SVD compression with a smaller m value. The accuracy of both modifications may be

controlled independently of each other by a numerical parameter. In case of the MPSSI

approximation, it is the L2 norm of the t− IL matrix employed for the orbital rotation,
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which is known before the time-consuming MPS counterrotation, and thus allows for an

error estimate of the MPSSI approximation beforehand. For the MPS compression, it is the

m value of the intermediate and the final compressed MPS.

We have tested both modifications in two common useful scenarios where efficiency is

highly desired: the calculation of wavefunction overlaps and spin-orbit couplings. Both quan-

tities are for example indispensable to perform efficient ab initio non-adiabatic simulations

on-the-fly. In all our examples the discrepancies in these properties due to the MPSSI ap-

proximation error were very small. For tightly-converged DMRG-SCF wavefunctions, close

enough to CASSCF wavefunctions, the MPSSI approximation error was found to be larger

than the DMRG approximation error, but unlike the latter not dependent on the wave-

function quality. Instead, it shows monotonous dependence on the L2 norm of the t− IL

matrix. When DMRG-SCF employs large active spaces, the MPS compression to the original

m value of the unrotated MPS allows for very substantial computational time savings but

introduces an additional source of error: although the MPS compression error is larger than

that of the MPSSI approximation, it is still small enough to allow quantitative computation

of properties.

In the current calculations, the MPSSI approximation and the MPS compression to

m = 500 gave us a total 63-fold speedup compared to a calculation with compression to

m = 2000, while maintaining a total error still small enough for quantitative computation

of properties. The compression to m = 8000 as in the original implementation could not be

performed due to excessive computational requirements: the performance gain compared to

such a calculation would have been even larger. We believe that the speedups achieved with

the improvements in this work will pave the way to faster and more affordable large-scale

multiconfigurational calculations, as well as allow DMRG-SCF to be applied in computa-

tionally intensive scenarios, e. g. in ab-initio excited state molecular dynamics simulations.
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