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Recent years have seen a large interest in using the Simplified Molecular Input Line Entry System 
(SMILES) chemical language as input for deep learning architectures solving chemical tasks. Many 
successful applications have been demonstrated within de novo molecular design, quantitative 
structure-activity relationship modelling, forward reaction prediction and single-step 
retrosynthetic planning as examples. PySMILESUtils aims to enable these tasks by providing ready- 
to-use and adaptable Python classes for tokenization, augmentation, dataset, and dataloader 
creation. Classes for handling datasets larger than memory and speeding up training by minimizing 
padding are also provided. The framework subclasses PyTorch dataset and dataloaders but should 
be adaptable for other deep learning frameworks. The project is open-sourced with a permissive 
license and made available at GitHub: https://github.com/MolecularAI/pysmilesutils  

Introduction 
Machine learning and deep learning have seen a research boom in the latest years. Deep learning in 

particular has significantly improved some long standing problems in machine learning, such as image 

recognition, speech recognition, and natural language processing (NLP). Deep learning can be 

understood as automatic feature extraction, rather than engineering features for shallow neural 

networks or other machine learning algorithms. In deep learning, the first layers extract and create 

useful features for the subsequent layers and final predictions. As such, deep learning can use formats 

that are more “raw” and yet reach similar or better performance than approaches that use engineered 

approaches. On the downside, deep learning needs enough data to learn the complex, often non-

linear, transformations necessary to convert the raw format into useful features for predictive 

modelling. 

In chemistry, molecules have previously been featurized with descriptors and fingerprints[1], but 

recently other formats such as images[2], strings[3] and graphs[4] have been used as input to deep 

neural networks which solve chemically related tasks such as property prediction. Moreover, the 

graphs and strings can also be sampled autoregressively and thus used to predict molecular 

structures[5], [6]. This particular generative or molecular read-out capability has enabled a wide range 

of advanced algorithms ranging from autoencoders[7] to molecular transformers for e.g. reaction 

informatics[8], representation learning[9] and molecular optimizations[10]. 

The Simplified Molecular Input Line Entry System (SMILES) format is a single-line molecular notation, 

which has been widely used for handling molecules in a convenient way. The SMILES strings can easily 

be organized in common spreadsheets and sent by e-mail. However, in combination with NLP network 

architectures, it provides an easy and convenient way to do deep learning on molecules. Techniques 

https://github.com/MolecularAI/pysmilesutils
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such as data augmentation[3] can improve performance and bring the fidelity of the molecular 

creation close to 100%[11]. 

PySMILESUtils strives to make the use of SMILES for deep learning applications even easier by providing 

reusable and flexible objects for turning SMILES into tensors for deep learning, and sampled tensors 

back to SMILES again, as illustrated in Figure 1. SMILES strings can be tokenized in different ways, the 

most simple isto encode each character as a token. However, single atoms are often encoded on their 

own, so that e.g. chlorine “Cl” and bromine “Br” have their own token and can easily be distinguished 

from carbon “C” and boron “B”. The tokenization class supports different tokenization schemes and 

can use regular expression patterns or explicit token patterns to search for tokens in the strings in the 

dataset. The token patterns are used to analyze the dataset and build the vocabulary that contains the 

translation table between tokens and integer indexes or one-hot encoding. For multicharacter tokens 

with potential overlap, ambiguity can exists, as example if both “ccc”, “cc” and “c” token patterns exits. 

In that instance the order in the token list is important, as the tokens are extracted in order. 

Additionally. a class for data augmentation of the SMILES is also provided, as are PyTorch[12] 

compatible datasets and dataloaders. 

The framework is available under the Apache 2.0 license on GitHUB: 

https://github.com/MolecularAI/pysmilesutils 

 
 

Figure 1 The tokenization process. A) The tokenizer is central to converting SMILES strings into tensors for training. The 
datasets are analyzed with the given patterns to create the vocabulary that contains the translation table between tokens 
and integers. The tokenize function splits the given SMILES strings into lists of tokens. The encode function uses the 
tokenization and the vocabulary to produce an encoded SMILES in tensor form. The decode function reverse translates the 
encoded tensor back to a SMILES string. B) The SMILES augmentation object can be configured and called to augment 
SMILES string either via shuffling the atom-order and creating non-canonical SMILES strings[3], or by randomizing the 
string during SMILES creation[13]. 

https://github.com/MolecularAI/pysmilesutils
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PySMILESUtils 

 
 

Figure 2 PySMILESUtils consists of reusable and customizable elements that work together to create mini-batches for 
training of artificial neural networks. Datasets provides a consistent interface that can be customized for different data 
types. The SMILES augmenter and tokenizer augments and converts SMILES strings into tensors, respectively. The 
DataLoader chooses samples from datasets and collates them into minibatch tensors ready for training. 

PySMILESUtils has a range of different classes and sub-classes that serve different purposes during the 

creation of minibatches (Figure 2), and are similar to and compatible with the framework available 

within PyTorch, but has been customized to enable handling of the data in SMILES format. 

Tokenizers 
The tokenizers are central for working with text-based formats such as SMILES strings. The tokenizer 

in PySMILESUtils consists of an abstract class with methods that are considered common to tokenizers. 

A provided subclass, the SMILESAtomTokenizer, uses regular expression token patterns for 

tokenization. Regular token strings can be provided as well. Given token patterns and potential tokens, 

the dataset is analyzed and the found tokens are used to build the vocabulary that will be used to 

encode and decode the SMILES strings into tensors of indices ( ). Optionally one-hot encoded tensors 

can be created. Code Box 1 shows an example of how to work with the SMILESAtomTokenizer using 

the default regular expression patterns to create a vocabulary from the SMILES in the dataset. The 

tokens created are chemical symbols, where e.g. Chlorine is not split into “C” and “l”, but rather kept 

as “Cl”. After fitting the vocabulary it’s easy to convert a given SMILES string into a PyTorch tensor of 

indices that could go into an embedding layer of a deep learning model. 
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Code Box 1: Example of working with the SMILESAtomTokenizer. A vocabulary is created upon instantiation from the 
provided SMILES using the default regular expression token pattern, and the tokenizer is then called to tokenize a single 
SMILES. 

import pandas as pd 

from pysmilesutils.tokenize import SMILESAtomTokenizer 

 

data = pd.read_csv("data/pande_dataset.csv") #Example dataset 

tokenizer = SMILESAtomTokenizer(smiles=list(data.reactants + data.products)) 

print(tokenizer.vocabulary) 

 
>>> {' ': 0, '^': 1, '&': 2, '?': 3, 'C': 4, 'S': 5, '(': 6, '=': 7, 'O': 8, 
')': 9, '[': 10, '@': 11, 'H': 12, ']': 13, '1': 14, '.': 15, 'F': 16, 'c': 17, 
'N': 18, '2': 19, 'n': 20, '3': 21, '4': 22, 'Cl': 23, '5': 24, 's': 25, 'B': 
26, 'Br': 27, '+': 28, '-': 29, 'o': 30, '/': 31, 'Li': 32, '\\': 33, '#': 34, 
'Si': 35, 'I': 36, 'P': 37, 'Mg': 38, 'Se': 39, '6': 40, '7': 41, 'Sn': 42, 'K': 
43, 'Zn': 44, 'Cu': 45, 'se': 46, 'Pt': 47, '8': 48, '9': 49, 'Fe': 50, 'Pd': 
51, 'p': 52, 'Pb': 53} 
 

tokenizer("c1ccccc1N") 
 
>>> [tensor([ 1, 17, 14, 17, 17, 17, 17, 17, 14, 18, 2])] 

 

SMILES augmentation 
SMILES augmentation is provided via the SMILESAugmenter object. After instantiation and 

configuration, the object itself can be called with a SMILES string or list of SMILES strings and will return 

a list of augmented SMILES strings. By default, the object will use atom order permutation[3], but full 

randomization[13] is also available. The augmenter object can be deactivated by setting the .active 

property to False, and it will then pass through the SMILES strings unaltered. This makes it possible 

to switch off the augmentation if needed, for example during model evaluation or inference. 

Code Box 2: SMILES Augmentation example. The augmenter object provides easy SMILES augmentation with both full 
randomization and by default atom-order randomization (restricted). The augmenter accepts both single SMILES strings or 
lists of SMILES strings. The object can be temporarily deactivated, for example during evaluation. 

from pysmilesutils.augment import SMILESAugmenter 

augmenter = SMILESAugmenter() 

augmenter(["Cc1ccccc1", "Oc1ccccc1"]) 
>>> ['c1(C)ccccc1', 'c1cccc(O)c1'] 
 

augmenter("Cc1ccccc1") 
>>> ['c1(C)ccccc1'] 
 

augmenter.active = False 

augmenter(["c1c(C)cccc1"]*5) 
>>> ['c1c(C)cccc1', 'c1c(C)cccc1', 'c1c(C)cccc1', 'c1c(C)cccc1', 'c1c(C)cccc1'] 

 

Datasets 
A couple of different datasets are provided with the PySMILESutils package. An example of a simple 

dataset is the SMILESDatasets, which uses one or more lists or list-like objects of SMILES strings, that 

it returns tuples from when indexed. Furthermore, the object has a property .sorted_indices, which 

contains the indexes of the samples sorted by the lengths of the elements of the first list, which is 
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necessary for the efficiency of the BucketBatchSampler (see section Combining the objects …). The 

usage of SMILESdatasets is illustrated in Code Box 3. 

An example of a more advanced dataset is the MultiDataset, demonstrated at the bottom of Code Box 

3. Here the MultiDataset is used to step through a list of data, which can then be used one after 

another. This is useful if there is a need to switch dataset in between epochs, one example could be to 

switch dataset because offline data augmentation such as Levenshtein augmentation[14] has been 

used. Subclassing the MultiDataset would then be necessary to load the data off the disk. An example 

of a MultiDataset loading from disk is available in the PickledMultiDataset, which uses a list of 

filenames of pickle files to load them one by one.  

Code Box 3: Datasets 

from pysmilesutils.datautils import SMILESDataset 

 

mysmilesdataset = SMILESDataset(data.reactants, data.products) 

mysmilesdataset[10] 
>>>('CCCCCBr.O=Cc1ccc(Oc2ccc3ccccc3n2)cn1', 
'CCCCCC(O)c1ccc(Oc2ccc3ccccc3n2)cn1') 

shortest_smiles_index = mysmilesdataset.sorted_indices[0].item() 

mysmilesdataset[shortest_smiles_index] 
>>>('CI.CO', 'COC') 

longest_smiles_index = mysmilesdataset.sorted_indices[-1].item() 

mysmilesdataset[longest_smiles_index] 
('C=C/C=C\\[C@H](C)[C@H](O)[C@@H](C)[C@@H](CC[C@H](C)C[C@H](C)[C@@H](O[Si](C)(C)
C(C)(C)C)[C@@H](C)/C=C\\[C@H](C[C@H](O[Si](C)(C)C(C)(C)C)[C@H](C)/C=C/C=C\\C(=O)
OC)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C', 
'C=C/C=C\\[C@H](C)[C@H](O)[C@@H](C)[C@@H](CC[C@H](C)C[C@H](C)[C@@H](O[Si](C)(C)C
(C)(C)C)[C@@H](C)/C=C\\[C@H](C[C@H](O[Si](C)(C)C(C)(C)C)[C@H](C)/C=C/C=C\\C(=O)O
)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C') 
 

from pysmilesutils.datautils import MultiDataset 

 

# each list in the element represents one dataset 

data_list = [list(range(5*idx, 5*(idx+1))) for idx in range(4)] 

 

dataset = MultiDataset(data_list, repeats=False, shuffle=False) 

 

for _ in range(dataset.num_steps): 

    print(dataset[:]) 

    #Do training for an epoch with dataset 

    dataset.step() 
>>>[0, 1, 2, 3, 4] 
 [5, 6, 7, 8, 9] 
 [10, 11, 12, 13, 14] 
 [15, 16, 17, 18, 19] 

 

DataLoaders and variants 
If a single epoch of the prepared dataset can’t fit in memory, the BlockDataloader can provide efficient 

mitigation. The BlockDataloader loads data in chunks or blocks into memory from e.g. an HDF file that 

is too large for the machine memory. The chunck size can be chosen to fit the resource restraints, i.e. 

the amount of memory. The minibatches are then sampled randomly from the current in-memory 
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chunk. The dataloader discards the current block from memory and loads the next chunk when 

needed. If the chunks are sufficiently large, the random minibatches will probably be different between 

each epoch, while at the same time loading from disk into memory is efficient as the read is 

consecutive. The approach breaks with a full stochastic sampling of the dataset, but in practice we 

have not observed a difference in training and test performance if the dataset is pre-shuffled and the 

blocks are kept sufficiently large, as was done with the pre-processed graph tensors and action tensors 

in GraphInvent[15]. 

Combining the objects for an efficient whole 
As shown in Figure 2, the individual elements must be combined to enable the creation of mini-batches 

for training. However, the objects are flexible and can be combined in several different ways. To 

investigate the most efficient way we constructed a small transformer model[16] and trained it with 

several different ways of organizing the code and training. First, we put the tokenization and collating 

of the mini-batches into the training loop itself. Secondly, we put the tokenization into the dataset and 

padded it with a customized collate function in the dataloader. Alternatively the dataset could produce 

padding of a fixed width. Lastly we added both the tokenization, padding and collating into a custom 

collate function used by the dataloader. The timings for training an epoch of test data (USPTO-50K[17] 

has 40.000 training samples) are shown in Table 1. 

 

Table 1: Training efficiency comparison of different code organizations. 

Code strategy Epoch time (s) Samples/s Avg. batch length 

In training loop 110 454 113 
In Dataset 115 434 113 
In Collate function 66 757 113 
+ Sorted lengths 36 1390 60 
+ BucketBatchSampling 39 1299 61 

 

It is evident that the slowest option is to put the tokenization into the training loop itself or using the 

pre-tokenized dataset. Customizing the collate function is nearly twice as fast, presumably because 

this enables the dataloader to work on one or several workers in parallel to the GPU training. The 

bottom half of Table 1 shows the speedup that can be obtained by bundling together SMILES of similar 

length in the mini-batches. Sorting the samples by length is the optimal case for speed-up, but would 

likely be detrimental to training as the mini-batches would be the same in each epoch. The 

BucketBatchSampler object balances the need for similar size batches with the need for random 

batches, by dividing the data into a number of “buckets” based on the length of the SMILES strings. 

Mini-batches are then drawn randomly from each bucket, ensuring different mini-batches of similar 

length SMILES for each epoch. Padding is thus minimized and it is evident from Table 1 that the training 

performance in terms of speed is close to the optimally obtainable with the sorted lengths. The full 

example code for the different code organizations can be found as a %delimited examples_training.py 

script in the examples directory in the code package. 

Comparable frameworks and projects 
Several other projects and frameworks contain code for working with SMILES based deep learning for 

chemistry. One such project is SMILES-enumeration (https://github.com/EBjerrum/SMILES-

enumeration)[3]. It is a more or less monolithic class for both tokenization and data augmentation 

aimed at providing tensors for Keras[18] training. It only supports single-character based tokenization, 

https://github.com/EBjerrum/SMILES-enumeration
https://github.com/EBjerrum/SMILES-enumeration
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one-hot encoding and fixed-length padding. It has been superseded by MolVecGen, which also 

contains SMILES based tensor generation as well as objects for creating chemception images[2] or 

tensors based on RDKit fingerprints[1] (https://github.com/EBjerrum/molvecgen). The well-

established DeepChem[19] project has a SmilesToSeq class amongst the featurizers 

(https://deepchem.readthedocs.io/en/latest/api_reference/featurizers.html#smilestoseq), which 

supports character-based tokenization and fixed width padding, where it uses indices-based 

encodings. Augmentation utilities seem not to be available and would have to be coded independently. 

OpenChem[20] is another project which can be used for SMILES based deep learning 

(https://github.com/Mariewelt/OpenChem/tree/master/openchem/data). The project seemingly 

aims to both provide models and various dataset classes, where one supports SMILES tokenization and 

augmentation. The code is adapted from the SMILES enumeration project mentioned above.  

In comparison with the other frameworks, PySMILESUtils aims to only handle the SMILES conversions 

and datamodel in a flexible and extendible way and is fully model agnostic, so that it can be adapted 

to the needs of the task and deep learning algorithm. Many other projects aimed for single models or 

algorithms, also contain code for tokenization and handling, but are not aiming to be libraries or 

frameworks. As examples can be mentioned Reinvent[21] and Molecular Transformer[8], for de novo 

design and synthesis prediction. A full review of all projects using SMILES based deep learning is 

however out of scope of this application note. 

Conclusion 
PySMILESUtils is a framework for working with SMILES based deep learning architectures in PyTorch. 

It has classes for efficient vocabulary and tokenization, data augmentation, as well as optimized data 

loading for pre-augmented datasets, out-of-memory datasets. Significant speedups can be achieved 

by smart sampling of mini-batches based on SMILES length. The framework should provide a good and 

extensible starting point for building SMILES based deep learning models. By releasing it as open-

source we hope to lower the barrier in for using SMILES based methods in deep learning for the 

molecular data science community and allow for greater collaboration and consistency across projects 
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