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Abstract 
 

  The electronic transmission and conductance produced by Dirac electrons in an armchair 

graphene nanoribbon under an external voltage are investigated with the transfer matrix method. 

We investigate the velocity and voltage of nanoribbons in the presence of single and multiple 

barriers and show that the transmission coefficients can be controlled by varying the order of the 

mode, the number of carbon atoms, and the barrier velocities. In particular, we find that the 

nanoribbon appears to be fully transparent when the barrier and Fermi velocities are equal. Our 

numerical results show that the electronic conductance is sensitive to the applied external voltage 

and number of carbon atoms, which can be used to tailor the electronic properties of graphene-

based devices. 

   

1. Introduction 

The electronic and optical properties in graphene-based heterostructures continue to garner 

immense interest due to their technological applications in new devices such as graphene-based 

memory, field-effect transistors, and molecule sensors [1-5]. In particular, many of these devices 

utilize nanoribbons, which exhibit electronic properties that considerably differ from bulk graphene 

[6-9]. For example, a monolayer graphene sheet is a semimetal with a zero gap between the 

conduction and valence bands; however, nanoribbon materials have a non-zero bandgap and can 

be either metallic or semiconducting, depending on their width. 

  In contrast to single-well quantum structures, superlattices can be harnessed for 

manipulating the electronic properties of semiconductor materials [10-12]. In particular, graphene-

based superlattices that have ordered or disordered superlattices [13-18] can be controlled and 

manipulated via an applied voltage, magnetic field, and Fermi-velocity barriers [19-27].  For 

instance, applying a moderate external magnetic field within the barrier regions can break valley 

degeneracies for use in valleytronic devices [28, 29]. Moreover, magnetic fields can be used to 

ensure the opening and closing of the energy gap in metallic armchair-edge graphene nanoribbons 

(AGNs) [30]. 
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  In addition, the transmission coefficient and electronic conductance can also be modulated 

by tuning the intensity of an applied voltage or by varying the widths of the quantum wells and 

barriers of the heterostructure. Modulating the Fermi velocity [31] can also tune the energy gap to 

adjust the desired transmission from 0 to 1, which can effectively alter the on/off states in graphene-

based transistors. The Fermi velocity in AGNs can be modulated by different techniques such as 

the insertion of impurities, strain, and applied electric fields [32]. In previous work, Haiyan Wang 

et al. studied the electronic properties of AGNs with double magnetic barriers and showed that the 

conductance exhibits quantized plateaus in both metallic and semiconducting cases [33]. The 

electronic properties of AGNs modulated with a potential barrier were examined by Benliang Zhou 

et al., [34] who showed that the conductance could exhibit distinct minima when the barrier width 

was altered.  Nascimento et al. [35] studied the electron transport of Dirac electrons through a 

nanoribbon and showed that the Fermi and barrier velocities could be tuned to modulate the 

electronic properties of graphene-based materials. Despite the previous studies on this topic, an 

investigation of the transmission coefficient and electronic conductance through multibarrier 

armchair graphene nanoribbons under the effect of an applied voltage has not been carried out. To 

this end, we examine the electronic transmission and conductance under an applied voltage, barrier 

velocity, and different numbers of barriers and carbon atoms. The present paper is structured as 

follows: Section 2 outlines our theoretical model, Section 3 presents our numerical results, and 

finally, Section 4 summarizes our important findings and conclusions. 

 

2. Theory  

 

In the present paper, we consider an AGN in the xy-plane that is subjected to an applied 

external voltage. The voltage acts only on the substrates that constitute the barriers. These 

substrates are also used to adjust the value of the barrier velocity 𝑣𝑏, which will be expressed as a 

function of the Fermi velocity 𝑣𝐹. A schematic of the system under study is presented in Fig. 1. 

 

Figure1: Schematic diagram of an armchair graphene nanoribbon. The total width of the nanoribbon is LG. Lb and Lw denote the 

barrier and channel widths, respectively.  

https://www.sciencedirect.com/science/article/abs/pii/S092145261731044X#!
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The motion of Dirac electrons is described by the following Hamiltonian [31, 32, 35]: 

    

𝐻 = −𝑖ℏ (√𝑣𝐹(𝑥)𝜎𝑥𝜕𝑥√𝑣𝐹(𝑥) + 𝑣𝐹(𝑥)𝜎𝑦𝜕𝑦) + 𝑉(𝑥),                    (1) 

where ℏ is the reduced Planck constant, 𝑣𝐹(𝑥) is the Fermi velocity, and 𝜎𝑥,𝑦 are the Pauli matrices. 

These matrices act on the pseudo-spin wavefunctions describing the two sublattices of the graphene 

nanoribbons. In this situation, the two spinor wavefunctions associated with the total Hamiltonian  

are 𝛹(𝑥, 𝑦) = [𝛹𝐴(𝑥, 𝑦), 𝛹𝐵(𝑥, 𝑦)], where the 𝐴 and 𝐵indices denote the two graphene sublattices. 

By making the change of variable 𝛹(𝑥, 𝑦) =
𝜙(𝑥,𝑦)

√𝑣𝐹(𝑥)
, equation (1) can be readily transformed as 

[32]:   

𝐻𝜙(𝑥, 𝑦) = (−𝑖ℏ𝑣𝐹(𝑥)(𝜎𝑥𝜕𝑥 + 𝜎𝑦𝜕𝑦) + 𝑉(𝑥)) 𝜙(𝑥, 𝑦).                    (2) 

The motion along x and y can be decoupled, and the wavefunction 𝜙(𝑥, 𝑦) can be written as 

𝜙(𝑥, 𝑦) = 𝛷(𝑥)exp(𝑖𝑘𝑦𝑦). Equation (2) can be transformed to the following [32]: 

(
𝑉(𝑥) ℏ𝑣𝐹(𝑥)⁄ −𝑖(𝜕𝑥 + 𝑘𝑦)

−𝑖(𝜕𝑥 − 𝑘𝑦) 𝑉(𝑥) ℏ𝑣𝐹(𝑥)⁄
) (

𝛷𝐴

𝛷𝐵
) = 𝐸 ℏ𝑣𝐹(𝑥)⁄ (

𝛷𝐴

𝛷𝐵
) .                    (3) 

The total length of the nanoribbon is fixed to 𝐿𝐺; therefore, the wavevector 𝑘𝑦 satisfies the 

boundary condition:                          

                                   

𝑘𝑦𝐿𝐺 = 𝜋(𝑚 + 𝛽),          𝑚 = 0, ±1, ±2, …               (4) 

 

In addition, the total length of the nanoribbon 𝐿𝐺 is related to the number of carbon atoms p by the 

relation 𝐿𝐺 = (𝑝 + 1) 𝑎 2⁄ , where a = 0.246 nm [36]. For instance, the schematic in Fig. 1 has p = 

8 with a total length of 𝐿𝐺 = 9𝑎 2⁄ .  

In equation (4), 𝑚 labels the mode of propagation, and 𝛽 is equal to 1/3 (0) for a 

semiconductor (metallic) nanoribbon [37].  In matrix equation (3), the applied potential 𝑉(𝑥) and 

the Fermi velocity 𝑣𝐹(𝑥) are given in the barrier and well regions by the following expressions 

[35, 36]: 

         

𝑉(𝑥) = {
0 in quantum well regions
𝑉 in barrier regions

,                    (5) 

         

𝑣𝐹(𝑥) = {
𝑣𝐹 in quantum well regions
𝑣𝑏 in barrier regions

.                    (6) 

By solving equation (3), the wavefunctions describing the Dirac electrons in the quantum well and 

barrier regions can be written as: 
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𝛷well = 𝑇𝑊 (
𝐴𝑚

𝐵𝑚
) = (

𝑒𝑖𝑘𝑥 𝑒−𝑖𝑘𝑥

𝑘𝑥+𝑖𝑘𝑦

𝐸
𝑒𝑖𝑘𝑥 −𝑘𝑥+𝑖𝑘𝑦

𝐸
𝑒𝑖𝑘𝑥) (

𝐴𝑚

𝐵𝑚
),                    (7) 

                          𝛷barrier = 𝑇𝑏 (
𝐶𝑚

𝐷𝑚
) = (

𝑒𝑖𝑞𝑥 𝑒−𝑖𝑞𝑥

𝑞𝑥+𝑖𝑘𝑦

𝐸−𝑉
𝑒𝑖𝑘𝑥 −𝑞𝑥+𝑖𝑘𝑦

𝐸−𝑉
𝑒𝑖𝑘𝑥) (

𝐶𝑚

𝐷𝑚
),            (8) 

where the wavevectors 𝑘𝑥 and 𝑞𝑥 are given by: 

                                 

𝑘𝑥 = √(
𝐸

ℏ𝑣𝐹
)

2

− 𝑘𝑦
2,               (9) 

                                      

𝑞𝑥 = √(𝐸 −
𝑉

ℏ𝑣𝑏
)

2

− 𝑘𝑦
2.               (10) 

𝑇𝑊 and 𝑇𝑏 denote the transfer matrix [39] in the well and barrier regions, respectively. Using the 

continuity of the wavefunction in each barrier interface, the total transfer matrix through the 𝑗 + 1 

barrier can be obtained as follows: 

                                

𝑇𝑗 = 𝑇𝑤
−1(𝑥𝑗)𝑇𝑏(𝑥𝑗)𝑇𝑏

−1(𝑥𝑗 + 𝐿𝑤)𝑇𝑤(𝑥𝑗 + 𝐿𝑤).               (11) 

For the Nth barrier, the total transfer matrix of the system becomes: 

                                              

𝑇 = (
𝑇11 𝑇12

𝑇21 𝑇22
) = ∏ 𝑇𝑗

𝑁−1

𝑖=0

.               (12) 

Finally, the transmission coefficient for the mth mode is readily given by 

                                                   

𝑇𝑚(𝐸) =
1

|𝑇11|2
.               (13) 

After calculating the transmission coefficient, the electronic conductance 𝐺(𝐸) is easily obtained 

from the Landauer-Buttiker formalism [35]: 

                                                   

𝐺(𝐸) =
4𝑒2

ℎ
∑ 𝑇𝑚,

𝑝−1

𝑚=0

               (14) 

where 𝑝 represents the number of carbon atoms, and the factor of 4 accounts for both the spin and 

valley degeneracy. The physical parameters used in this paper are Lb = Lw = 1.2 nm, 𝑣𝐹 =
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1 × 106 m ∙ s−1, and ℏ = 1.0545718 × 10−34 m2 ∙ kg ∙ s−1. The number of carbon atoms, barrier 

velocity, and applied voltage are taken as parameters of the simulation. 

 

3. Results and discussion  

In Fig. 2a - 2c, we plot the variation of the transmission coefficients as a function of the 

incident energy for three different barrier velocities. We also considered different widths of the 

nanoribbon by varying the number of carbon atoms between 7 and 13. The applied voltage is 

switched off, and we limit our interest to the first m = 1 mode.  When the barrier velocity is equal 

to the Fermi velocity (𝑣𝑏 = 𝑣𝐹) (Fig. 2a), the transmission coefficient is equal to unity, and the 

nanoribbon appears transparent to the electrons regardless of their energies. In other words, in the 

absence of defects, the nanoribbon can be fully transparent, which can be used for the realization 

of on/off states in graphene-based transistors. Furthermore, it is important to note that the 

transmission coefficient starts from lower energies when the number of carbon atoms is high. For 

instance, the transmission starts at E = 2.1 eV for 𝑝 = 7 but begins at E = 1.1 eV for 𝑝 = 13. In 

Fig. 2b, the barrier velocity is fixed at 𝑣𝑏 = 1.5𝑣𝐹, and the transmission coefficient exhibits an 

oscillatory behavior where the starting energy value (threshold energy) of the transmission 

coefficient is inversely related to the number of carbon atoms. The transmission coefficient peaks 

become wider and tend to unity for higher-incident electron energies. To get a consistent 

comparison, Fig. 2c plots the transmission coefficient for a barrier velocity less than the Fermi 

velocity (𝑣𝑏 = 0.5𝑣𝐹). From this figure, the transmission coefficient presents additional oscillations 

compared to the 𝑣𝑏 = 1.5𝑣𝐹 case, and the peaks are sharper compared to previous cases. All of 

these findings show that more resonant states can be obtained by inserting a substrate on top of the 

nanoribbon to ensure that its barrier velocity is less than the Fermi velocity (𝑣𝑏 < 𝑣𝐹). In general, 

modulating the velocity in the barrier regions is crucial for obtaining the desired transmission and 

conductance.     
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Figures 2:  Transmission coefficient as a function of incident energy for different barrier velocities a) 𝑣𝑏 = 𝑣𝐹, b) 

𝑣𝑏 = 1.5𝑣𝐹, and c) 𝑣𝑏 = 0.5𝑣𝐹.  

 

Figs. 3a – 3c plot the transmission coefficient as a function of the incident energy for three 

different modes of propagation (m = 1, 3, and 5). In this case, we fix the number of carbon atoms 

at 𝑝 = 7, the barrier velocity is set to 𝑣𝑏 = 0.5𝑣𝐹, and the voltage is switched off. By examining 

these figures, we observe that the transmission coefficient exhibits oscillations with increasing 

energy, and the number of peaks diminishes for higher modes. For instance, only 6 peaks are 

observed for m = 5; however, 11 peaks emerge for m = 3. In addition, we observe that the threshold 

energy (starting energy) for the transmission coefficient increases with m. For example, the 

transmission coefficient starts at 2 eV for m = 1 but emerges at 10.5 eV for m = 5. Furthermore, we 
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observe that for 𝐸 > 10 eV, the transmission coefficients exhibit oscillations for m = 3 and 5, but 

for m = 1 (see Fig. 3a), the transmission coefficient reaches unity and plateaus for 𝐸 > 10 eV. The 

oscillations observed in Figs. 3a – 3c can be interpreted as follows: when the Dirac electron energy 

is very close to the eigenenergy of the quantum wells formed between the barriers (modulated by 

the substrates), the electron wavefunction is trapped in the well regions, reflecting back and forth 

between the barriers in such a phase as to produce constructive interference. This interference is 

the origin of the resonant feature of the transmission coefficient.  
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Figures 3:  Transmission coefficient as a function of incident energy for three modes a) m = 1,  b) m = 3, and c) m = 

5 

 

Another important physical parameter is the applied voltage. Figs. 4a – 4c plot the 

transmission coefficient as a function of the incident energy for three different applied voltages (V 

= 0, 5, and 7 volts) for the m = 1 mode. The heterostructure contains one barrier, and the number 

of carbon atoms is fixed to p = 7. For these parameters, the threshold energy does not depend on 

the value of the applied voltage, with all the transmissions starting at E = 2 eV. In the absence of 

an applied voltage (Fig. 4a), the transmission coefficient exhibits more oscillations (compared to 

other cases when the external voltage is applied); however, their peaks are less sharp.  When the 

applied voltage is switched on (Figs. 4b and 4c), the transmission coefficients exhibit sharper peaks 
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than those obtained in Fig. 4a, and the amplitudes of the oscillations are large. Furthermore, we 

observe that the transmission coefficients vanish for certain energies centered around the value of 

the applied voltage potential, indicating that the electronic transmission is suppressed. For instance, 

when the applied voltage, V, is 5 volts, the transmission vanishes for all energies between 4 and 6 

eV; when V = 7 volts, the transmission coefficient is zero for all incident energies between 6 and 8 

eV. In addition, we find that the transmission gap separates two series of oscillations. The first 

series is situated at the left of the gap and contains sharper peaks; however, the second series 

exhibits damped oscillations with small amplitudes. Moreover, we note that the number of resonant 

states increases with the applied voltage. For instance, three peaks emerge in the first series of 

resonant energies for V = 5 volts (Fig. 4b), and five peaks in the first series of resonant energies 

emerge for V = 7 volts (Fig. 4c). The overall behavior of these transmission coefficients provides 

guidance for nanoribbon applications since they enable the creation of on/off states that are required 

in the design of field-effect transistors. In other words, the on/off states can be obtained simply by 

modulating the incident energy of Dirac electrons through the armchair nanoribbon. 
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Figures 4:  Transmission coefficient as a function of incident energy for three applied voltage a) V = 0,  b) V = 5,  

and c) V = 7 volts 

    

We now investigate the effect of multiple barriers on the transmission coefficient and 

conductance. Such barriers can be realized by the deposition of additional substrates on top of the 

nanoribbon. In Fig. 5, we consider an AGN structure containing 7 carbon atoms without an applied 

voltage for the first mode (m = 1). The barrier velocity is fixed at 𝑣𝑏 = 0.5𝑣𝐹. We plot the 

transmission coefficient as a function of incident energy for three barrier numbers (N = 1, 3, and 
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5). As shown in these figures, the number of peaks strongly increases, and their amplitudes increase 

with the number of barriers (the number of resonant states increases by adding more barriers on 

the top of the nanoribbon). Fig. 6 depicts the same structure in Figs. 5a – 5c but with an external 

voltage of V = 5 volts. The transmission coefficient presents the same oscillatory behavior, which 

contains a gap for all energies situated around the applied voltage value (5 volts). In this region, 

the evanescent character of the wavefunctions is responsible for reducing the transmission 

coefficient, and the Dirac electrons are consequently backscattered. To the right of the transmission 

gap, these peaks are separated by parabolic gaps for N = 1 and 2. However, for N = 5, the peaks are 

longer than those in the cases for N = 1 and 2 and are separated by straight gaps (Fig. 6c). 
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Figure 5:  Transmission coefficient as a function of incident energy for three different barrier numbers a) N = 1, b) N = 3, and c) N 

= 5 
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Figures 6:  Transmission coefficient as a function of incident energy for three barrier numbers a) N = 1, b) N = 3, and 

c) N = 5 for an applied voltage of 5 volts 

 

 

In the remainder of this paper, we discuss the variations of the electronic conductance in 

AGNs restricted to one barrier. Figs. 7a – 7c plot the variation of the conductance for three different 

barrier velocities 𝑣𝑏 = 0.5𝑣𝐹, 𝑣𝐹, and 1.5𝑣𝐹 without an applied voltage. When 𝑣𝑏 = 𝑣𝐹 (Fig. 7a), 

the electronic conductance shows a series of “jumps” when the incident energy is increased. These 

jumps appear when the energy increases, which correspond to new modes of propagation along the 

channel. Furthermore, for a given energy interval, the number of jumps increases with the number 

of carbon atoms. For 𝑣𝑏 = 1.5𝑣𝐹 (Fig. 7b), the electronic conductance peaks are curved since the 

transmission coefficients oscillate, as shown in Fig. 2b. In addition, the conductance starts at lower 

energies for a higher number of carbon atoms, but their steps are narrower. Fig. 7c plots the 

conductance for 𝑣𝑏 = 0.5𝑣𝐹 and shows that the number of jumps  increases more than the previous 

case of 𝑣𝑏 = 1.5𝑣𝐹 with their shapes becoming rounder. Moreover, the threshold energies are 

shifted to lower values. Finally, at lower energies, the conductances are similar to each other 

regardless of the number of carbon atoms; however, we observe a large splitting at higher energies. 
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Figure 7:  Conductance as a function of incident energy for different barrier velocities a) 𝑣𝑏 = 𝑣𝐹, b) 𝑣𝑏 = 1.5𝑣𝐹, 

and c) 𝑣𝑏 = 0.5𝑣𝐹.  
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Finally, Fig. 8 plots the electronic conductance as a function of the incident energy for three 

different applied voltages (V = 3, 5, and 7 volts) for the case of one barrier and a barrier velocity 

of 𝑣𝑏 = 0.5𝑣𝐹. We find that the number of jumps is identical regardless of the applied voltage on 

the barrier. The first jump exhibits a constant value with higher jumps exhibiting rounded 

oscillations. The number of oscillations increases with the voltage and incident energy. In addition, 

we find that the threshold energy moves to higher values when the applied voltage is increased. 

We also note that the threshold energy is equal to the applied voltage and demonstrates that an 

experiment can obtain the desired threshold energy by selecting the appropriate applied voltage. 

For higher energies, the peaks of the conductance are reduced and tend to the same value. 
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Figure 8:  Conductance as a function of incident energy for different applied voltages 

 

4. Conclusion 

 

In this work, we have examined the transmission coefficient and electronic conductance 

across multibarrier armchair graphene nanoribbons. These barriers can be realized by depositing 

substrates on the AGN, which can also tune the barrier velocity 𝑣𝑏 and applied voltage. Our results 

indicate that the transmission coefficient is equal to unity for all energies when the Fermi and 

barrier velocities are equal (𝑣𝑏 = 𝑣𝐹), and the AGN is transparent to electron transmission. 

However, for 𝑣𝑏 ≠ 𝑣𝐹, the transmission coefficient oscillates, and the peaks are sharper for 𝑣𝑏 <

𝑣𝐹 compared to the 𝑣𝑏 > 𝑣𝐹 case. We also find that the threshold energy of the transmission 

coefficient increases for higher modes and a large number of atoms. In addition, the transmission 

coefficients exhibit gaps for certain external voltage values. These gaps are centered around the 

applied voltage and enable the realization of optoelectronic devices based on (on/off) states such 

as field-effect transistors. Furthermore, the electronic conductance of an AGM exhibits sudden 
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“jumps” when the incident energy is increased. The jumps are “rounded” for 𝑣𝑏 ≠ 𝑣𝐹 but become 

more abrupt when 𝑣𝑏 = 𝑣𝐹. Moreover, the conductance increases with the number of carbon atoms 

due to the additional modes. Finally, the effect of an applied voltage on the conductance was 

examined, and our findings indicate that the threshold energy of the conductance is shifted towards 

higher energies when the applied voltage is increased. Collectively, our results provide theoretical 

guidance in the design and realization of other nanoribbon-based devices [38] for promising 

applications. 
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