
Machine-Learned Energy Functionals for

Strongly Correlated Systems

Daniel S. King,† Donald Truhlar,∗,‡ and Laura Gagliardi∗,¶

†Department of Chemistry, University of Chicago, Chicago IL

‡Department of Chemistry, University of Minnesota, Minneapolis MN

¶Department of Chemistry, Pritzker School of Molecular Engineering, James Franck

Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago IL

E-mail: truhlar@umn.edu; lgagliardi@uchicago.edu

Abstract

We introduce multiconfiguration data-driven functional methods (MC-DDFMs), a

group of methods which aim to correct the total or classical energy of a qualitatively

accurate multiconfigurational wave function using a machine-learned functional of some

featurization of the wave function, such as the density or on-top density. On a dataset

of carbene singlet-triplet energy splittings, we demonstrate that MC-DDFMs are able

to achieve near-benchmark performance on systems not used for training with a ro-

bust degree of active space independence. This data-driven approach holds particular

promise for the development of new functionals for multiconfigurational pair-density

functional theory (MC-PDFT), because corrections to the CASSCF classical energy

appear to be more transferable to types of molecules not included in the training data

than corrections to total energies yielded by wave function methods such as CASSCF

or NEVPT2.
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Introduction

Although current Kohn-Sham density functional theory (KS-DFT) is highly accurate for

many interesting chemical systems, it is well-known to be less accurate for strongly corre-

lated systems than for systems well-described by a single Slater determinant.1–7 This has

motivated interest in combining density functionals with multiconfigurational wave function

methods8–11 (e.g., CASSCF) that explicitly express the wave function as a superposition of

electronic configurations. However, because multiconfigurational wave function methods are

generally limited to a set of configurations that is too small to yield quantitatively accurate

correlation energies, one must augment them by a post-MCSCF procedure in order to obtain

quantitative accuracy. The most widely used of these methods include multireference pertur-

bation theory (MRPT)11–14 (e.g., CASPT2 and NEVPT2) and multireference configuration

interaction (MRCI),15,16 which are both very expensive.

As an alternative to MRPT and MRCI, we have proposed multiconfiguration pair-density

functional theory (MC-PDFT)17 and multiconfiguration density-coherence functional theory

(MC-DCFT).18 These methods share the feature that they compute an energy by combining

wave function theory for the classical components (kinetic energy, electron-nuclear attraction,

and classical electron-electron interactions) with a functional for the nonclassical components

of the energy (exchange and correlation), and together they may be grouped as examples

of multiconfigurational nonclassical functional theory (MC-NCFT). The general MC-NCFT

energy expression is given by:

EMC-NCFT[ψMC] = EMC
class + Enc[f [ψMC]] (1)

where the classical energy EMC
class accounts for nucleus-nucleus repulsion, nucleus-electron at-

traction, classical electron-electron repulsion, and electron kinetic energy, and EMC
nc is a

nonclassical functional (NCF) dependent on a featurization f of the reference wave func-
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tion ψMC, which may be the density, on-top density, density coherence, gradients of these

quantities, or any other featurization of the wave function.

Inspired by both the success of these methods and recent work that has used neural net-

works to develop density functionals for KS-DFT,19–22 we introduce a broader class of meth-

ods named "multiconfiguration density-driven functional methods" (MC-DDFMs) which aim

to correct the classical or total energy Eref of a multiconfigurational wave function method

through the use of a machine-learned functional EML:

EMC-DDFM[ψMC] = EMC
ref + EML[f [ψMC]] (2)

in which EML plays the generalized role of Enc. In this work we introduce four new MC-

DDFMs which use functionals of ρMC and ΠMC trained to correct four different reference

energies Eref :

1) Data driven functional ’21 (DDF21), a MC-NCFT functional trained to correct the clas-

sical energy:

EDDF21 = EMC
class + EDDF21[ρMC,ΠMC] (3)

2) ∆tPBE-21, a functional trained to correct the translated PBE (tPBE) energy of MC-

PDFT:17

E∆tPBE-21 = EMC
tPBE + E∆tPBE-21[ρMC,ΠMC] (4)

3) ∆CASSCF-21, a functional trained to correct the CASSCF energy:

E∆CASSCF-21 = EMC
CASSCF + E∆tPBE-21[ρMC,ΠMC] (5)
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4) ∆NEVPT2-21, a functional trained to correct the NEVPT2 energy:

E∆NEVPT2-21 = EMC
NEVPT2 + E∆NEVPT2-21[ρMC,ΠMC] (6)

Below, we present the development of these MC-DDFMs as well as three different tests of

their generalization to molecules outside of the training set: (i) test data similar to training

data; (ii) test data using other active spaces; and (iii) test data using aryl and biradical

systems. These results are quite encouraging, and we believe that further progress in this

direction – particularly towards designing new functionals for MC-NCFT – has the poten-

tial to systematically achieve low-cost quantitative accuracy for a variety of different wave

function methods.

Training Geometries. We have taken our training geometries from the QMSpin database of

Schwilk et al.,23 which contains carbenes optimized in the singlet state using CASSCF(2,2)/cc-

pVDZ-F12 as well as benchmark-quality vertical singlet-triplet splittings obtained using ex-

plicitly correlated multireference configuration interaction with single and double excitations

and the Davidson quadruples correction (MRCISD-F12+Q).24–27 In this work we have used

a subset of these carbenes that contain only carbon and hydrogen atoms.

Network Architecture. We have taken an approach very similar to the recent work of Dick

and Fernandez-Serra in their development of NeuralXC.19 Atomic feature vectors for atoms

I are obtained by projecting the density ρMC and on-top density ΠMC onto atom-centered

basis functions φnlm via quadrature:

cI,ρnlm =

∫
r

φInlm(r)ρMC(r) cI,Πnlm =

∫
r

φInlm(r)ΠMC(r) (7)

and these features are then made rotationally invariant by the transformations:19,22
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dI,ρnl =
∑
m

cI,ρnlm
2 dI,Πnl =

∑
m

cI,ρnlm
2 (8)

In this work we used the 108 optimized basis functions developed by Chen et. al. for

featurization on each atom;28 this results in a total of 36 rotationally invariant features for

each atom I and density ζ (ρ or Π): 12 "s" features (l = 0, dI,ζ1,0 . . . d
I,ζ
12,0), 12 "p" features

(l = 1, dI,ζ2,1 . . . d
I,ζ
13,1), and 12 "d" features (l = 2, dI,ζ3,2 . . . d

I,ζ
14,2). We then input each atomic

feature vector vI = {dI,ρnl , d
I,Π
nl } into its respective element network, fλI to obtain the total

energy correction:

E =
∑
I

fλI (vI) (9)

as in the work of Behler and Parrinello.29

Networks were implemented and developed in PyTorch30 from the starting point of Neu-

ralXC available on GitHub.31 Element networks consist of an input layer, nlayers fully con-

nected hidden layers each with nnodes, and a one-node output layer, with nlayers and nnodes

treated as hyperparameters. The GELU activation function32 was used for all nodes.
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Figure 1: Network training scheme. Given a starting reference energy Eref with output
∆Eref , the element networks {α, β, . . .} are regressed to minimize the mean squared deviation
between corrected energy differences ∆Eref +∆EML and the target energy difference ∆Etarget.

Network Training. We focus our non-classical functionals on predicting benchmark-quality

energy differences between two states |ψ〉1 and |ψ〉2, in particular the singlet and triplet state

of a single geometry. Given a difference in energy between these states from a reference

method, ∆Eref , we train functionals to minimize the mean squared deviation between the

corrected energy difference, ∆Eref + ∆EML, and a target energy difference, ∆Etarget (in

this work, singlet-triplet energy splittings from MRCISD-F12+Q); this training scheme is

outlined in Figure 1. This centering of the loss function solely on relative energies stands in

contrast to previous work in NeuralXC,19 DeepKS,21 OrbNet,20 and KDFA,22 but it has three

advantages: (i) it allows benchmark results to be obtained from a variety of different sources

(including experiment, which almost always yields relative energies); (ii) relative energies

are the quantities of most interest to chemists, since bond energies, energies of reaction, and

barrier heights are all relative energies; and (iii) theoretical data used for training is almost

always more accurate for relative energies than for absolute energies.

For optimization of parameters and hyperparameters, the 360 carbenes were split into a

training set of 287 carbenes, a validation set of 37 carbenes, and a test set of 36 carbenes.
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All features were normalized using a StandardScaler fit on the training set,33 and networks

were optimized to reduce the mean squared error loss over the entire training set in Pytorch

using the Adam optimizer34 with a learning rate of 0.01 for a maximum of 20001 steps.

A PyTorch scheduler (torch.optim.lr_scheduler.ReduceLROnPlateau) was used to decrease

the learning rate over time upon an observed plateau in the loss to a minimum learning rate

of 1.1e-7, after which the training was stopped early. The hyperparameters considered were

the weight decay of the Adam optimizer and the number of nodes and layers in the element

networks, and these hyperparameters were optimized using Optuna35 by minimizing loss on

the validation set. The final hyperparameters of all networks and the ranges explored are

given in the Supporting Information.

Wave Function Generation. State-averaged (2,2)-CASSCF wave functions, along with

tPBE and NEVPT2 energies for the singlet and triplet states of each carbene, were ob-

tained using PySCF,36 as integrated with MC-PDFT capabilities using publicly available

development code.37 Atomic feature vector inputs (eq 7) were obtained via quadrature using

the highest grid quality (grid_level=9). During development it was found that these input

features converge at significantly lower thresholds than the CASSCF energy, and therefore

more stringent CASSCF optimization parameters were used in obtaining the singlet and

triplet wave functions to insure consistency (mc.conv_tol = 1e-10, mc.conv_tol_grad =

1e-6, mc.ah_lindep = 1e-14, and mc.ah_conv_tol = 1e-12).

Active Space Selection. With the exception of benzene, all active spaces for CASSCF

calculations were chosen automatically using the ranked-orbital approach.38 The highest

23 doubly occupied orbitals and the lowest 23 virtual orbitals of an ROHF wave function

were individually Boys-localized39 and the approximate pair coefficient (APC) method38 was

employed on all doubly occupied orbitals and the localized virtual orbitals to approximate

orbital entropies (the remaining virtual orbitals were not considered for the active space).

These entropies were then used to rank the orbitals in terms of importance, and the final

active space was selected by setting a maximum number of allowed CSFs in the wave function
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expansion (e.g., max(2,2), max(4,4), and max(6,7)) and dropping orbitals from the active

space until the size of the active space satisfied the threshold. In the training data we selected

all active spaces at the max(6,7) level.

Active Space Error. Although the ranked-orbital approach above is imperfect at ranking

orbitals in importance for the active space, at the max(6,7) level our method failed to select

active spaces with qualitatively accurate CASSCF excitation energies (<1 eV in absolute

error) in only a small number of cases; these cases were rejected from the training, validation,

and test sets. However, in addition to the calculations at the max(6,7) level that were used to

train the functionals, we performed some tests with minimal active spaces generated at the

max(2,2) level, which requires a perfect ranking of the orbitals; in these tests we experienced

a much higher failure rate (33%), and therefore these tests were carried out on a test subset

of only 24 carbenes (listed in the Supporting Information).
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Figure 2: Mean absolute errors (MAEs) on MRCISD-F12+Q benchmark data for a test set
of 36 carbenes excluded from the training data. For each MC-DDFM (DDF21, ∆tPBE-21,
∆CASSCF-21, and ∆NEVPT2-21, shown in green), we show the performance of its reference
method (tPBE, CASSCF, and NEVPT2, shown in blue) as well as a one-parameter mean-
corrected method (Reference-µ) shown in orange. The MAE of the CASSCF classical energy
(1.1eV) is not shown due to scale.

Results. Figure 2 shows the performance of the four MC-DDFMs in comparison to their

respective reference methods on the test set of 36 carbene singlet-triplet energy splittings.

For comparison, we also show the performance of a simple one-parameter mean correction to

the singlet-triplet energy splittings, in which ∆Eref is corrected by its mean deviation from

MRCISD-F12+Q on the training data. Encouragingly, all four functionals are able to greatly

improve upon these one-parameter corrections, surpassing the mean absolute errors (MAEs)

of their reference methods by factors of 29 (DDF21), 16 (∆tPBE21), 3 (∆CASSCF-21),

and 2 (∆NEVPT2-21). Additionally, although all functionals presented in the article proper

depend on both the density and on-top density, additional results given in the Supporting

Information show that we obtain similarly high accuracy using only density features or only
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on-top density features.

Figure 3: Mean absolute errors on MRCISD-F12+Q benchmark data from a test subset of
24 carbenes for which our automated scheme chose a reasonable (2,2) active space, tested
with the cc-PVTZ basis at four different active space sizes: max(2,2), max(4,4), max(6,7),
and max(8,8).

We tested the active space dependence of our data-driven functional methods on 24 car-

benes with four different active space sizes whose number of configurations vary by four

orders of magnitude: max(2,2), max(4,4), max(6,7), and max(8,8). Figure 3 shows that

all MC-DDFMs maintain their near-benchmark accuracy across this wide range of active

spaces, despite being trained on only max(6,7) active spaces. We note that this active space

robustness is likely a result of the sole dependence of our loss function on relative energies

rather than absolute ones. However, we find that one drawback of our approach is that the

parameters do not seem to be easily transferable to other basis sets; when switching to either

a cc-pVDZ or cc-pVQZ basis the errors of the MC-DDFMs tend to increase dramatically

(Supporting Information).
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Figure 4: Mean absolute error of reference and data-driven functional methods on three
difficult singlet triplet gaps, consisting of one aryl system (C6H6, using the standard mini-
mal cc-pVTZ@UNO-(6,6) active space40) and two biradical systems (cyclobutadiene, C4H4,
and 1,3-bis(methylene)-cyclobutadiene (C4H2-(1,3)-(CH2)2), using automatically selected
max(10,10) active spaces).

As a final test of generalizability, we tested the MC-DDFMs on three difficult singlet–triplet

energy splittings quite different than any data in the training set: benzene and two biradical

systems; cyclobutadiene (C4H4) and 1,3-bis(methylene)cyclobutadiene (C4H2-(1,3)-(CH2)2)

(Figure 4). These systems were taken from previous benchmark studies on translated func-

tionals,41,42 with benchmarks for benzene taken from experiment43 and benchmarks for the

biradicals from theoretical results.44 While MC-DDFMs correcting total energies (∆tPBE-

21, ∆CASSCF-21, and ∆CASSCF-21) all performed worse on average than their respective

reference methods, DDF21 maintains a large improvement upon the CASSCF classical en-

ergy, reducing its MAE from 0.77 eV to only 0.25 eV. This suggests that corrections to the

classical energy – as is done in MC-NCFT – may be more transferable to types of molecules

not included in the training data than corrections to "complete" methods such as CASSCF

or NEVPT2. Similar generalizability in this regard is achieved by MC-DDFMs trained solely

on the density or on-top density (Supporting Information).
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Conclusions. We have presented a data-driven approach to the development of energy

functionals for strongly correlated systems utilizing neural networks parametrized in terms

of the density and on-top density. Using a dataset of carbene singlet-triplet energy splittings

taken from the QMSpin database,23 we find that the new multiconfiguraional data-driven

functional methods (MC-DDFMs) are able to achieve benchmark-quality accuracy on car-

benes not included in the training set and improve markedly on approaches using translated

MC-PDFT functionals even when extended to different active spaces. Furthermore, this

work shows that data-driven functionals hold particularly great promise for multiconfigu-

rational nonclassical functional theory, as corrections to the classical energy appear to be

more transferable to types of molecules not included in the training data than corrections to

total energies such as yielded by CASSCF or NEVPT2. It will be interesting to see if this

good performance can be maintained when the functionals are parameterized using larger

and more diverse sets of training data.
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