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Abstract 

To fully exploit nanomaterials as components for advanced materials, they have to be made in a 
reproducible manner. As components, the nanomaterials do not have to be perfectly homogeneous 
nor uniform, but must adhere to the specifications required for the target application e.g. as building 
block for fluorescent composite materials. Here, polystyrene nanoparticles (PS NPs) were fabricated 
from an emulsion of PS/toluene in water using various surfactants, and purified via dialysis in a 
simple procedure. The synthesis process was carried out at room temperature, without hazardous 
chemicals, and with a workload of 5 hours. All relevant parameters – surfactant type, component 
concentrations, solvent volumes, polymer chain length, sonication time – were varied and the effect 
on the size of the resulting PS NPs were determined. These investigations were performed to 
evaluate the limits for production of PS NPs with comparable properties. A robust PS NP synthesis 
procedure was developed, repeated, and tested by three independent researches. The procedure 
was up-scaled to prove the applicability of the method and the NPs were prepared with four 
different hydrophobic dyes. All products were found to be comparable, and it was concluded that 
the method reported here can provide PS NPs with or without dye dopants, and that it provides 
access to PS NPs with an average diameter of 25 nm in a reproducible size distribution. 

Keywords: fluorescent materials; fluorescent nanoparticles; nanomaterials; nanoparticle synthesis; 
polystyrene nanoparticles;  

Introduction 

With an interest in functional fluorescent materials,[1-5] we have followed the development of 
fluorescent nanomaterials that has seen a great development since the coining of the term in the 
1950s.[6] Today, luminescent quantum dots, fluorescent polymer nanoparticles (NPs), luminescent  
nanodiamonds, and lipid-based nano-assemblies are used in various applications from display 
technologies for household electronic products and smartphones to cancer theranostics.[7-16] Most 
prevalent in industrial use are quantum dots, or specifically fluorescent semiconductor nanoparticles, 
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which over three decades have been engineered to the point where bulk production (hundreds of 
kilograms to tons) of emitters with colours all across the spectrum are possible.[7, 17-19]  This has led 
to an industrialization of the material and products like quantum-dot TV,[20] and quantum-dot based 
solar cells.[21] A similar evolution of other fluorescent nanomaterials is yet to happen, and there are 
only few industrial fluorescent nanomaterials. 

Fluorescent nanomaterials offer high brightness and photostability in components that on the 
macroscale distribute as if they were molecules. Thus, they give rise to homogeneous fluorescent 
signals from bulk materials. The brightest nanomaterials are based on dye doped nanoparticles, where 
Reisch and Klymchenko have created super bright fluorescent nanomaterials by doping polymer 
nanoparticles with rhodamines ion paired with bulky fluorinated anions.[22-24] While this method is 
limited by aggregation-indused quenching,[25, 26]  several high performing materials have been 
reported.[27-29] Very recently, fluorescent materials with a record brightness have been reported by 
Flood and Laursen. The technology, based on small-molecule ionic isolation lattices (SMILES) surpass 
all other organic dye-based fluorescent materials,[25, 30] and has recently been used to make 
fluorescent nanomaterials.[31] All these ultrabright nanomaterials constitute great advances in 
nanoscience, yet for nanotechnological applications, controlled manufacture is still needed. 

Quantum dots are often made from heavy metals which, despite the excellent photophysical 
properties, limits applications.[32-35] Fluorescent materials for biological applications has to pass USP 
class IV certification (U.S. Pharmacopeia), which limits the amount of hazardous material that can be 
included. Here, polymer based nanoparticles synthesized from certified starting materials with low 
intrinsic toxicity and good biocompatibility have a significant advantage. Polystyrene (PS) in particular 
is a good material which is widely used and the synthesis of PS NPs has received a great deal of 
attention as a model system for developing polymer nanotechnology.[36, 37] By functionalizing the 
NPs with dyes or biological molecules, PS NPs have been used in optical sensors for metabolism 
tracking, [38] and commercial PS beads doped with fluorophores are sold at high prices.  

PS NPs are normally synthesized by the microemulsion polymerization method, by polymerizing the 
monomer styrene directly in the emulsion. [39-47] In these systems an emulsifier, an initiator, and a 
cross-linker are also needed.[48] Briefly, the NP fabrication occurs in the emulsion at temperatures in 
the range of 65-80 °C, which is kept for 6-8 hours in an N2 atmosphere.[44, 45] The emulsion 
polymerization has been used to synthesize polymer particles for more than 50 years, and it has been 
shown in the scientific literature that this method allows for production of batches of monodisperse 
PS NPs smaller than 100 nm. However, these beads may contain residual contaminant from the 
synthesis, and to our knowledge an industrial supply of dye doped PS NP is still to emerge. To remedy 
this, we here explored an alternative PS NP production process. By starting from PS, we have no 
additives, which should ensure USP class IV certification. 

In this work, we report a standard method for making dyes doped PS NPs. We fabricated PS NPs using 
a purely physical method directly from bulk PS polymer. We used a surfactant enabled microemulsion 
method based on toluene/water mixtures.[49-51] There are several parameters that change the 
outcome of the synthesis: 

 Surfactant type 
 Surfactant concentration 
 Ratio of toluene to water 
 PS in toluene concentration 
 PS molecular weight 
 Sonication effect (power) in each refinement 
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 Number of refinements (sonication cycles) 
 Waiting time between refinements 
 Addition of hydrophobic additives (dyes) 

We chose to vary all above to thoroughly investigate how each factor influence the PS NPs produced 
using our protocol. We mapped the influence of each parameter, and tested the repeatability of the 
fabrication protocol. Finally, we explored the potential for industrial scale production by increasing 
the scale five times. As part of the study, we included four different hydrophobic dyes and found that 
they were all included in the PS NPs, and all maintained their photophysical properties.  

Results  

Protocol for polystyrene nanoparticle preparation 
Polystyrene nanoparticles (PS NPs) were prepared with the sonication microemulsion method.[52-56] 
PS beads (Mw, 35,000, 280,000 or 350,000, with or without dye) were dissolved in toluene at 
concentrations between 0.5 and 2 w/w%, and a surfactant (sodium dodecyl sulphate (SDS), 
cetrimonium bromide (CTAB), Triton X-100 or Synperonic F108) in a concentration between 1 µg/ml 
and 20 mg/ml was dissolved in water. The NP synthesis was performed using a standardized method 
as shown in Scheme 1. The two phases were mixed by sonication for 1 min (cycling the sonication with 
1 second on and 1 second off) using an immersion sonicator probe (7 mmØ) and sonication power of 
70 W. Each 1 minute sonication cycles is also known as a refinement.  

Each refinement was followed by stirring in a closed vessel at with a 20 by 5 mm bar magnet at 300 
rpm for 1 hour. This emulsification was done in a series of 5 refinements. Subsequently, the toluene 
was evaporated by stirring (300 rpm) at room temperature for 2 days. Finally, the PS NPs was isolated 
and purified by dialysis for 2 days, with 5 changes of the water. Several parameters affect this process 
and we set out to explore which were critical for obtaining similar products. 

 

Scheme 1. Standard synthesis procedure for the PS NPs. 

Probing the effects of each parameter 
Effect of the surfactant concentration 

Surfactants are used to stabilize the toluene/PS emulsion in the NP synthesis. As the concentration of 
the surfactant is expected to change the area of the water/toluene interface, NPs was expected to 
show different size distributions at different surfactant levels.[57, 58] 

We prepared PS NPs using different amounts of the surfactant sodium dodecyl sulfate (SDS) (from 1 
µg/ml to 20 mg/ml, see the synthesis procedure in experimental section).  Figure 1 shows SEM images 
of six different batches of PS NPs with varying concentrations. Diameters of more than 200 NPs in each 
image were measured using the ImageJ software. The size distribution statistics were plotted and 
included in Figure 1. The size distribution of the particles does change with the concentration of SDS, 
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but not significantly. Less SDS leads to a slightly wider size distribution and larger particles. However, 
NP diameter distributions are all centered around 20 nm. More SEM images can be found in Figure 
S1-S4. 

 

Figure 1: SEM images and corresponding size distributions for PS NPs with PDI at various SDS 
concentrations AB) 0.1, CD) 0.5, EF) 1.0 GH) 5.0, IJ) 10 and KL) 20 mg/ml. PS NPs were prepared 
according to the standard protocol with PS (Mw, 35,000) 1% w/w% in 2 mL toluene and corresponding 
amount of SDS in 14 mL water. Scale bars in the images are 100 nm. 
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Figure 2. DLS results of size distribution for PS NPs with PDI at various SDS concentrations: A) 0.001, 
B) 0.01, C) 0.1, D) 0.5, E) 1.0, F) 5.0, G) 10.0 and H) 20.0 mg/ml. PS NPs were prepared according to 
the standard protocol with PS (Mw, 35,000) 1% w/w% in 2 mL toluene and corresponding amount of 
SDS in 14 mL water. 

DLS was also used to evaluate the size distribution of the particles. Figure 2 shows the DLS results for 
the size distribution for the same batches of PS NPs with SDS concentrations varying from 1 µg/ml to 
20 mg/ml. Compared with SEM results, the DLS analysis results in larger diameters for PS NPs and also 
show palpable variations from 50 nm to 250 nm. SEM works by measuring the conductivity of the 
dried sample surface and converts it to the geometry signal and therefore provides the physical size 
of the solid particles. DLS measures the scattering light changing with the movement of the particles, 
which are covered stationary double-layers. Thus, the observed differences between DLS and SEM can 
have two origins.  

The first explanation is related to surface charge. Figure 2 includes the variations in the DLS results as 
the SDS concentration is decreased. This change can be caused by the changing of surface charge. As 
SDS is an ionic compound, a higher SDS level produces particles with more charge without considering 
the solid core size difference. Particles with higher zeta-potential tend to stay separately with high 
electrostatic repulsion among each other, while low charged particles have more risk to precipitate, 
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which benefits the larger diameter result from DLS. This would lead to the observed trend in size 
distribution.  

The second, trivial, explanation is that the larger NPs are underrepresented in the SEM images used 
to generate the size distribution plots. As multiple syntheses, SEM sample preparations, and several 
images gave rise to the same size distributions, we consider this origin of the difference between SEM 
and DLS results to be less likely, and assume that the differences between SEM and DLS are due to 
aggregation. 

 
Figure 3. SAXS result of size distribution for standard PS NPs with DMQA. PS NPs were prepared 
according to the standard protocol with PS (Mw, 35,000) 1% w/w% in 2 mL toluene and 1 mg/ml of 
SDS in 14 mL water. 

To verify the obtained size distribution, a third method that probes the ensemble was used. Small 
angle X-ray scattering (SAXS) data were measured for the batch of standard PS NPs made with SDS, 1 
mg/ml. The data was recorded on NPs isolated as a powder. Figure 3 shows the resulting size 
distribution that shows a mean diameter of d = 21 nm. The size distribution obtained from SAXS 
analysis is similar to the one obtained from SEM. The SAXS ensemble size distribution is narrower than 
what is indicated by the size statistics from the SEM images (Figure 1F), where outliers are readily 
identified. All SAXS modeling details are included below and in Figure S5. 

The confirmation of the size distribution by the SAXS experiment, allow us to conclude that SEM can 
be used as a representative tool to determine size distributions. Further we can conclude that the 
overall effect of the SDS concentration on the size distributions is small. 

To probe the effect of surfactant concentration in detail and to facilitate screening, we adopted an 
easy and direct way that manually measure the largest and smallest NP observed in the SEM images 
with ImageJ.  Figure 4 shows the largest and smallest particle size for the particle, with different 
amounts of SDS used in the synthesis. This analysis is more sensitive to changes than the overall size 
distribution. The data in Figure 4 shows that the smallest size does not change, it is limited by the 
resolution of SEM. The largest recorded NP size decreases with the concentration of SDS , but stops 
changing when the surfactant concentration reached the critical micelle concentration (CMC) of SDS 
(8.08 mM or 2.33 mg/mL in water, 25°C).[59] The inserted photo in Figure 4 shows that the NP 
synthesis solution is more transparent and creates more foam when stirred for solution with higher 
SDS concentration. 
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Figure 4: Size of largest and smallest observed nanoparticles in SEM images as a function of SDS 
concentration in mg/mL plotted on semi-log plot. Samples were prepared according to the standard 
protocol with 2 mL of the organic phase (PS, Mw, 35,000 1% w/w% in toluene) and 14 mL water phase 
containing corresponding SDS concentration. Inserted photo is for the PS NPs with PDI at various SDS 
concentrations in mg/mL. The picture was taken before purification. 

Effect of the relative volume of toluene and concentration of polystyrene 

In addition to the surfactant concentration, the amount of the other ingredients should also influence 
the size distribution. Thus, we prepared the PS NPs by varying the volume of toluene from 1 mL to 4 
mL to 14 mL of water, and the concentration of polystyrene in the toluene phase. The SDS 
concentration was kept constant at 0.01 mg/mL in each sample. We evaluated the effect using the 
largest and the smallest nanoparticles, see above. The data in Figure 5 shows that larger NPs can be 
found when the volume of the organic phase is increased, while a higher polystyrene concentration 
also gives a moderate increase in size. To ensure that it was not an effect related to a system where 
SDS was used as a surfactant, we also used Triton X-100, where the effects are the same (Figure S6). 
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Figure 5. Size of largest and smallest observed nanoparticles in SEM images as a function of various 
amounts of A) toluene (PS NPs were prepared according to the standard protocol with 17.3 mg of PS 
(Mw, 35,000) in 1 mL, 2 mL or 4 mL toluene; SDS 0.01 mg/mL in 14 mL of water) and B) polystyrene 
(PS NPs were prepared with respectively 0.5%, 1% or 2% of PS (Mw, 35,000)  in 2 mL of toluene; SDS, 
0.01 mg/ml in 14mL of water). Respective data was plotted on semi-logarithmic axes in smaller graphs 
inserted. 

Effects of surfactant type and polystyrene chain length. 

Both foaming capacity and CMC value vary between different types of surfactants.[59-62] Surfactants 
will affect many characteristics of an emulsion including charge of NPs, the interfacial layer thickness, 
and the permeability.[63-65] In this work, two ionic (SDS and CTAB) and two non-ionic (Triton X-100 
and Synperonic F108) surfactants (see the structures in Scheme S1) were used in the same molar 
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concentration to fabricate four batches of PS NPs following the standard synthesis procedure, see 
below. The size of the largest and the smallest nanoparticles found with SEM are plotted in Figure 6A. 
SEM images are shown in Figure S7. NPs with SDS and CTAB show narrower size distribution than the 
NPs with Triton X-100 and Synperonic F108, and we must conclude that the type of surfactant is the 
one parameter probes so far that has a substantial effect on the resulting particle size, as well as the 
particle properties. 

 

Figure 6. Size of largest and smallest observed nanoparticles in SEM images for samples prepared with 
A) 1.73mM of different surfactants (correspondingly SDS 0.5 mg/mL, CTAB 0.6 mg/mL, Triton X-100 
1.1 mg/mL, Synpernoic 25 mg/mL in 14 mL of water; PS (Mw, 35,000) 1%, w/w% in 2 mL of toluene; 
with the standard protocol)  or B) polystyrenes with Mw respectively 35,000, 280,000, and 350,000 
(1%, w/w% PS in 2 mL of toluene; SDS 1.0 mg/mL in 14 mL of water; with the standard protocol). 
Respective data was plotted on semi-logarithmic axes in smaller graphs inserted. 



10 
 

The molecular weight of the polystyrene can vary in several orders of magnitude, so we also 
considered this as a factor that influences the size distribution. We prepared the PS NPs with the 
standard method but with different kinds of PS (Mw, 35,000, 280,000, and 350,000) under the same 
weight percentage (1 %). Figure 6B shows the size of the biggest and the smallest nanoparticles found 
with SEM (Figure S8ABC ). We could find bigger NP for the sample prepared with a bigger molecular 
weight. DLS results are coincident with the SEM results showing mean diameters of the three batches 
of 48 nm, 68 nm, and 74 nm (Figure S10A), and they are not significantly different. Additionally, SAXS 
data were collected for these 3 batches. Unfortunately, the SAXS data could not be well modeled 
because the particles agglomerated into an ordered structure, with repeating distances of 18 Å and 
36 Å (Figure S11). However, the scattering patterns are similar to those obtained from the less ordered 
particles (Figure S11, 35,000_DMQA and Figure S5B), which means all the type of this PS-vary samples 
have size distributions that are close to the previous batch (SDS, 1 mg/ml; dye, DMQA). The molecular 
weight of PS does influence the size distribution, and larger Mw leads to larger particles. 
 

Final procedure optimization and scale-up  
We also tried to optimize the standard synthesis procedure by adjusting the number of refinements 
(sonication cycles)and duration between the refinements. A standard synthesis procedure was 
followed to prepare six samples where only the conditioning durations between the refinements were 
adjusted respectively to 15, 30, 45, 60, 75, and 90 min. The smallest and the largest nanoparticles of 
each sample were observed with SEM. Figure S12A shows no obvious difference when we tune the 
conditioning time between refinements. Different numbers (1 to 5) of refinement were also tested if 
it affected the properties of the NPs. Figure S12B shows the largest and the smallest nanoparticles 
observed for the samples prepared with the standard mixture of reagents (2 mL organic phase / 14 
mL water phase) with different times of refinements. No significant change was found. The photo in 
Figure S12C shows fewer times of sonicating leads to more PS toluene solution left as a separate layer. 
Although SEM results do not indicate a significant difference in micro scale, 5 times is considered to 
be preferable to make full use of the polystyrene solution by ensuring that all of it is in the suspension.  

In order to check the repeatability of this standard synthesis method, we fabricated another three 
batches of PS NP with respectively three different PS (Mw, 35,000, 280,000, 350,000) using 1 mg/mL 
SDS as the surfactant. SEM images in Figure S8DEF, DLS (Figure S10B), and SAXS (Figure S12) show 
how their size distributions are similar to the previous 3 batches (PS, Mw, 35,000, 280,000, 350,000) 
(Figure S9). Two batches of PS NP were prepared with PS (Mw, 35,000) and respectively CTAB and 
Triton X-100 as surfactants using the standard method. From SAXS (Figure S11), we observe how PS 
NP made from Triton X-100 shows a larger diameter while the one made from CTAB, which has similar 
size distribution as NPs prepared using the SDS. They are in agreement with the previous result, so our 
standard synthesis method is also repeatable for other surfactants.  

A five-times larger preparation for the PS NP (PS, Mw, 35,000; SDS, 1mg/ml) was prepared with the 
standard synthesis method. DLS shows the hydrodynamic radius is 66 nm which is larger than the NPs 
prepared in the normal scale (~24 nm from Figure S10). While SEM (Figure S13 & S9) and SAXS (Figure 
S11) results proved the size distribution is similar to the batch with normal amount ingredients.  

Functionalization of PS NPs with dye loading 
Most of the lipophilic fluorescence dyes can be quenched by water. In PS NPs the majority of the 
population of the fluorophores will be contained inside of the nanoparticle rather than on the surface, 
giving rise to stronger fluorescent signal. We tested the encapsulation of four dyes (PDI, DMQA, 
thioxanthene-9-one, and celestine blue, Scheme S2) using the standard preparation protocol. 
Fluorescence spectra show these purified dye-doped PS NPs in water solution are highly fluorescent 
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with spectra similar to the dyes dissolved in organic solvents. DMQA doped PS NPs have been 
characterized and used as a reference dye for the pH optical sensor in our lab (Figure S14).[70] Figure 
7 shows the fluorescence emission and excitation spectra, size distribution, and some SEM images for 
the thioxanthene-9-one doped PS NPs. Average diameter is 25 nm for these dyes doped NPs and size 
distribution does not change when the particles are doped with dyes.  

 
Figure 7. A) Excitation and emission spectra, B) size distribution counted from SEM image D (n=397, 
bin size 10 nm) and CDE) SEM images for PS NPs loaded with Thioxantene-9-one. 

 

Discussion 

Table 1. The summary for the effects of all the variable factors  

Name of a variable Magnitude of 
the effect 

Size of PS NPs Notes 

Increase Decrease 

Increasing surfactant concentration medium  √ - 

Increasing volume of toluene strong √  - 

Increasing concentration of PS medium √  - 

Type of surfactant strong - - Surfactant dependent 

Increasing of PS molecular weight medium √   

Increasing number of refinements low - - No apparent effect observed 

Increasing time between refinements low - - No apparent effect observed 

Addition of dye low - - No apparent effect observed 
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We have prepared more than 20 batches of pure and dye doped polystyrene nanoparticles. In addition 
to these preparations, where parameters were varied, three individual researchers have 
independently prepared batches of dye doped PS NP using our standard procedure. All three obtained 
comparable results. 

The knowledge gleaned from the collected experience is shown in Table 1. The ratio of the ingredients 
affects the size distribution, but the critical aspect is not the specific values used—volumes do not 
have to be measured to the third significant digit—but the nature of the chosen ingredients. The most 
prominent factors are the amount of polystyrene used, the nature of the surfactant, and the amount 
of toluene. Specifically, more PS, toluene or both lead to larger NPs and to wider size distribution.  

The surfactant type could dramatically influence the size distribution, and higher concentrations of 
surfactant leads to smaller NPs and narrower size distributions to a certain point. Meanwhile the 
influence of the PS molecule weight can be ignored.  

The procedure itself, such as the duration between refinements and times of sonication cycles, do not 
affect the largest or smallest size of NP. However, to make full use of the ingredients, 1-hour duration 
between refinements and 5 cycles of sonication are preferred.  

Finally, we saw no effect of adding dyes to the PS NPs. 

Conclusions 

We proposed a simple fabrication method for making dye doped polystyrene nanoparticles with a 
physical diameter of 20-25 nm in a reproducible manner. Four different dyes were successfully doped 
into polystyrene nanoparticles, and three different scientists have repeatedly prepared nanoparticles 
with similar properties and size distributions. Thus, we conclude that we have developed and mapped 
a robust procedure for preparing dye doped polystyrene nanoparticles, which can be applied in many 
areas including optical sensors, cell tracking, and optical microscopy. 

Methods and Materials  

Regents and materials 

Polystyrenes (Mw = 35,000, 280,000 and 350,000), sodium dodecyl sulphate (SDS), 
cetyltrimetylammonium bromide (CTAB), Triton X-100, Synperonic F-108, toluene, thioxanthene-9-
one, celestine blue and the dialysis tube (cellulose membrane, avg. flat width, 10 mm) were purchased 
from Sigma-Aldrich. N,N-bis(2,6-diisopropylphenyl)perylene-3,4:9:10-bis(dicarboximide) (PDI) was 
obtained from KU DYES, Denmark. N,N-(2-ethylhexyl)-1,13-dimethoxyquinacridinium 
hexafluorophosphate (DMQA) were synthesized in house.[66, 67] Milli-Q water was used for the 
preparation of the PS NPs. 

The standard PS NP synthesis procedure 

14 mg / 48.5 mmol of SDS was dissolved in 14ml of water. 0.3 mg of the desired dye was added to the 
PS toluene solution (17.34 mg 35.000 Mw polystyrene in 2 mL toluene).The two solutions were mixed 
and the resulting two-phase system was sonicated (sonicator probe, Dia.: 7 mm, sonicating power: 70 
W) with pulsed sonication (1 second on and 1 second off) for a total duration of 60 seconds while the 
solution was stirred at 300 rpm. This sonication process was described as a refinement and was 
repeated 4 more times, 5 refinements in total. In between refinements, the vial was left stirring at 300 
rpm with a closed cap for 60 minutes. After the final refinement, the sample was left stirring at 300 
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rpm for 48 hours with an open cap, which allowed most of the toluene to evaporate. Extra surfactant 
was removed by dialysis. Dialyzed sample should not foam when shaken. 

Variations over the standard PS NP synthesis Procedure 

PS NPs were prepared with different surfactant concentrations. Different amount of SDS (0.014, 0.14, 
1.4, 7, 14, 70, 140 or 280 mg) was dissolved in 14ml of water and 1% PS (Mw, 35,000) was prepared 
in 2 mL of toluene. For the rest of the synthesis procedure the standard process above was followed. 

For the PS NPs prepared with different surfactants, 1.73mM of different surfactants (correspondingly 
SDS 0.5 mg/mL, CTAB 0.6 mg/mL, Triton X-100 1.1 mg/mL, Synpernoic 25 mg/mL) was dissolved in 
14ml of water and 1% PS (Mw, 35,000) was prepared in 2 mL of toluene. No dye was loaded. For the 
rest of the synthesis procedure the standard process above was followed. 

For the PS NPs prepared with different PSs, the same weigh percentage 1% was used for each batch. 
SDS (1 mg/mL in 14 mL water) was used for each sample. No dye was loaded. The rest of the process 
was identical to the standard procedure. 

For the scaled-up PS NP batch, the organic phase was 10mL of 1% PS (Mw, 35,000) toluene solution, 
while 70 mL of SDS (1mg/mL) water solution was used as aqueous phase. No dye was loaded.The rest 
of the process was identical to the standard procedure. 

 

Instrumentation and measurements 

Scanning electron microscopic (SEM) images were obtained using a Jeol 7800F-prime scanning 
electron microscope (10kV) with a silicon wafer support. The samples were deposited on cleaned 
polished side of the silicon wafers and left them dry before the measurements.  

For dynamic light scattering (DLS), an ALV/LSE-3 & ALV-5000/60XO Correlator by ALV was used to 
measure the correlation function of the scattered laser intensity at 90° from the beam path of a 630nm 
Laser. The correlation function was then fitted using a regularized fit and then linear number weighted 
to yield the mean peak position. This was repeated for 5 runs per sample.  

Small-angle X-ray scattering (SAXS) was measured on a SAXSLab instrument (JJ-X-ray, Denmark) at the 
Niels Bohr Institute, University of Copenhagen.  PS NP solutions were dried by rotary evaporation at 
36°C and the as-prepared powders were loaded in sandwich cells and measured at room temperature. 
The instrument is equipped with a 100XL + microfocus sealed X-ray tube from Rigaku that produces a 
photon beam with a wavelength of 𝜆 = 1.54 Å and a 2D 300 K Pilatus detector from Dectris. The 2D 
scattering patterns were azimuthally averaged, normalised for sample transmission, primary beam 
intensity and exposure time and corrected for detector inhomogeneities using Saxsgui.  The 
scattering angles, θ, were converted to a Q-scale:  

𝑄 =
4𝜋

𝜆
∙ sin (𝜃) 

The data was fitted in Diffpy-CMI[68] and SASVIEW[69] with a power law to describe the long-range 
order of the particles and a spherical SAXS form factor, with a lognormal size-distribution, to describe 
the particle size and shape.  

Supporting information: 

Supporting Information File 1 
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Schemes for chemical structures, SEM images and size analyzing from SEM, DLS, SAXS for PS NPs. 
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