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Abstract 

Natural products (NPs) represent one of the most important resources for discovering new 

drugs. Here we asked whether NP origin can be assigned from their molecular structure in a 

subset of 60,171 NPs in the recently reported Collection of Open Natural Products 

(COCONUT) database assigned to plants, fungi, or bacteria. Visualizing this subset in an 

interactive tree-map (TMAP) calculated using MAP4 (MinHashed atom pair fingerprint) 

clustered NPs according to their assigned origin (https://tm.gdb.tools/map4/coconut_tmap/), 

and a support vector machine (SVM) trained with MAP4 correctly assigned the origin for 

94% of plant, 89% of fungal, and 89% of bacterial NPs in this subset. An online tool based 

on an SVM trained with the entire subset correctly assigned the origin of further NPs with 

similar performance (https://np-svm-map4.gdb.tools/). Origin information might be useful 

when searching for biosynthetic genes of NPs isolated from plants but produced by 

endophytic microorganisms.    

Keywords:  natural products, databases, cheminformatics, chemical space, visualization, 

molecular fingerprints, machine learning, support vector machine, origin classification. 
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Introduction  

Due to the importance of natural products (NPs) in drug discovery,[1, 2]  there is a 

considerable interest in describing and understanding their structural diversity, particularly by 

exploiting NP databases[3] using in silico methods such as machine learning (ML).[4] 

Computational approaches have been reported to distinguish between NPs and non-Nps,[5–9] 

between terrestrial and marine NPs,[10] and to classify NP structural types[11, 12] and 

visualize their chemical space.[13]  

 In our own approach to this problem,[14] we recently analyzed NPAtlas, an open-

access database listing 25,523 NPs from bacterial or fungal origin,[15]  by computing the 

MAP4 fingerprint (MinHashed Atom-Pair fingerprint up to four bonds)[16] of each NP and 

creating a TMAP (tree-map)[17] of the resulting high-dimensional dataset. In this analysis, 

NPs from bacterial or fungal origin formed separated clusters. This separation effect was 

confirmed by showing that a support vector machine (SVM) trained with the MAP4 of 

NPAtlas was able to distinguish bacterial or fungal origin, including a recently reported NP 

isolated from the marine sponge Phakellia fusca assigned by our classifier to be of bacterial 

origin, in line with the fact that many NPs from this sponge originate from endosymbiotic 

actinobacteria.[18, 19]  

 The possibility to assign the origin of NPs from their structure was intriguing because 

most NPs are secondary metabolites produced by biosynthetic gene clusters[20] which are 

sometimes transferred between different organisms.[21] Such horizontal gene transfer may 

reflect adaptative relationships between host organisms such as plants and sponges and 

endosymbiotic bacteria or fungi.[22] Among the many endophytic NPs,[23, 24] striking 

examples include the cancer drug paclitaxel, a plant NP also produced by endophytic fungi of 

the yew tree,[25, 26] and maytansine, used in antibody-drug conjugates for cancer therapy 
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and produced by endophytic bacteria in plants.[27] Due to the very widespread occurrence of 

endophytic bacteria and fungi in plants, we asked whether our MAP4 analysis might be able 

to distinguish plant NPs from bacterial and fungal NPs. To test this hypothesis, we considered 

the recently reported COCONUT database, a recently reported open-access database 

currently offering the most extensive coverage and including plant NPs.[28]   

Results and discussion 

Chemical space analysis of plant and microbial NPs from the COCONUT database 

COCONUT collects over 400 thousand NPs from 52 different databases, 135 thousand of 

which are annotated with a taxonomical origin. For our analysis, we considered the 68 

thousand entries annotated with a source organism that were also associated with a 

publication. We focused on those annotated as originating from plants (50 %), fungi (23 %), 

or bacteria (16 %), leaving out a smaller subset of NPs originating from animals (2 %), homo 

sapiens (2.5 %), of marine origin (1.5 %), or lacking a superclass annotation (5 %). The 

selected subset of 60,171 NPs contained 33,772 plant NPs, 15,648 fungal NPs and 10,751 

bacterial NPs.  

 The subset spanned from molecular weight MW = 81 Da for 1,2-dihydropyridine, a 

plant NP,[29] to MW = 2,901 Da for lacticin 481, a bacterial peptide.[30] Plant NPs 

dominated the intermediate molecular weight range (200 < MW < 800), while fungal NPs 

were most abundant in the low molecular weight range (MW ≤ 200) and bacterial NPs in the 

high MW range (MW ≥ 800). The three series had rather similar distributions of the fraction 

of sp3 carbon atoms (Fsp3), which measures the degree of saturation. However, the estimated 

octanol:water partition coefficient AlogP indicated that highly polar NPs were almost absent 

from fungal NPs. Furthermore, plant NPs had overall higher percentages of glycosides, while 

peptides were almost absent from plant NPs and most abundant in bacterial NPs (Table 1). 
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Table 1. Property distribution and origin of the 60,171 COCONUT entries with a DOI and annotated 

as plants, fungal, or bacterial. 
 Plants NPsa) Fungal NPsa) Bacterial NPsa) 

MW ≤ 200b) 7,072 (21%) 4,919 (31%) 2,237 (21%) 

200 ≤ MW < 80 b) 24,078 (71%) 10,111 (65%) 6,066 (56%) 

MW ≥ 800b) 2,622 (8%) 618 (4%) 2,448 (23%) 

Fsp3 ≤ 0.2c) 4,213 (13%) 1,580 (10%) 1,073 (10%) 

0.2 ≤ Fsp3 < 0.8c) 22,032 (65%) 11,334 (72%) 7,986 (74%) 

Fsp3 ≥ 0.8c) 7,527 (22%) 2,734 (18%) 1,692 (16%) 

AlogP ≤ -2 d)  4,855 (14%) 373 (2%) 1,446 (13%) 

-2 ≤ AlogP < 8 d) 28,315 (84%) 15,000 (96%) 8,906 (83%) 

AlogP ≥ 8 d) 602 (2%) 275 (2%) 399 (4%) 

Glycosides e) 8,260 (24%) 797 (5%) 1,793 (17%) 

Peptides f) 194 (<1%) 676 (4%) 2,053 (19%) 

a) COCONUT entries with a DOI and the specified taxonomical origin annotated; percentages refer to the total 

number of the selected entries within the specified class: 33,772 plants NPs, 15,648 fungal NPs, and 10,751 

bacterial NPs. b) Molecular weight (MW) calculated with RDKit. c) Fraction of sp3 (Fsp3) calculated with 

RDKit. d) Octanol: water partition coefficient calculated with RDKit following the Crippen method (AlogP). e) 

Containing a cyclic N- or O-acetal substructure defined through SMARTS language. f) Containing a dipeptide 

substructure defined through SMARTS language. 

 

To get a closer insight into structural features, we calculated the MAP4 fingerprint for each of 

the 60,171 selected NPs. MAP4 encoding combines the characteristics of substructure 

fingerprints, which are well suitable for small molecules, and of atom pair fingerprints, which 

are instead preferable for larger structures, and it has been proven suitable for both.[16] It 

consists of listing all pairs of circular substructures of radius 1 and 2 as SMILES, separated 

by their topological distance in bonds, and MinHashing the resulting set of SMILES pairs to a 

defined dimensionality (1024 in the present analysis). We then represented the MAP4 

annotated NP dataset using the dimensionality reduction method TMAP. This method is 

suitable for very large high-dimensional datasets and performs better than t-SNE or UMAP in 

preserving local and global relationships in the data.[17] To create a TMAP, the algorithm 

computes an approximate nearest neighbor graph by locality sensitive hashing (LSH), cuts 

edges to obtain the minimum spanning tree of this graph, and creates an optimized 2D 

representation of the minimum spanning tree, in which each node represent a molecule 

connected to its approximate nearest neighbors. This tree is then displayed with interactive 
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visualization tool Faerun. [31] Faerun shows each node as a sphere that can be color-coded 

according to various properties and uses Smilesdrawer[32] to depict molecular structures. 

The TMAP of our NP subset is available interactively at 

https://tm.gdb.tools/map4/coconut_tmap/. 

 The TMAP of our NP subset color-coded by MW showed that most high MW 

compounds appeared in two groups, the first one (at right on the TMAP), contained peptides 

and related macrocycles, and the second one (at middle/lower left on the TMAP) 

corresponded to glycosylated triterpenoids (Figure 1a). Color-coding by Fsp3 showed that the 

TMAP separated high Fsp3 molecules (left half of the TMAP), comprising many terpenes, 

steroids, and glycosides, from low Fsp3 molecules (right half of the TMAP) featuring many 

polyphenols and related polyaromatic molecules (Figure 1b). Furthermore, the color-code by 

the calculated octanol:water partition coefficient AlogP, estimating polarity, showed several 

islands of highly polar NPs (low AlogP, magenta) corresponding mostly to nucleosides and 

glycosylated polyphenols (upper part of the TMAP), glycosylated triterpenoids (lower left on 

the TMAP) and peptides (middle right on the TMAP), as well as a few groups of apolar NPs 

(high AlogP, red), corresponding primarily to lipids, terpenes, and steroids (Figure 1c). 

 Color-coding by the annotated origin showed that NPs from plants, fungi, or bacteria 

formed many well-defined clusters spread across the entire TMAP (Figure 1d). On the one 

hand, this separation illustrated how NP origin corresponded to differences in molecular 

structure that were well perceived by the MAP4 fingerprint used to generate the map. On the 

other hand, the taxonomical origin color code also showed that each subset contained diverse 

structural types. While there was no correlation of origin with properties such as MW, Fsp3, 

or AlogP, most glycosides were associated with plants, and most peptides were of bacterial or 

fungal origin, in line with Table 1 (Figure 1e). These relationships were also well visible by 

color-coding the TMAP by prioritized categories (Figure 1f).  

https://tm.gdb.tools/map4/coconut_tmap/
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Figure 1. MAP4 TMAP of the 60 thousand selected COCONUT entries. The maps are colored 

according to (a) molecular weight MW in Da, (b) fraction of sp3 carbon atoms Fsp3, (c) calculated 

octanol:water partition coefficient AlogP, (d) COCONUT annotated origin, (e) presence of a 

glycoside (blue) or peptide (green) substructure, or both (magenta), (f) prioritized categories:  

glycosides (blue) > peptides (cyan) > high MW (green) > high Fsp3 (yellow) > low Fsp3 (orange) > 

low MW (red). Entries not belonging to any category are reported in gray. All maps are accessible in 

an interactive format at https://tm.gdb.tools/map4/coconut_tmap/. 

 

Statistical modeling of NP origin using support vector machines (SVM) 

The clear separation of NPs from plants, fungi, or bacteria in the TMAP above clearly 

showed that our MAP4 fingerprint distinguished between NPs of plant, bacterial or fungal 

origin. To further investigate this separation, we trained an SVM classifier using the MAP4 

similarity matrix of half of the COCONUT subset and used the other half to evaluate it. 

Indeed, the obtained MAP4 SVM correctly predicted the origin of 94% of plant NPs, 89% of 

fungal NPs, and 89% of the bacterial NPs (MAP4 SVM), resulting in a balanced accuracy of 

0.897, an MCC (Matthews correlation coefficient) of 0.890, and an F1 score of 0.920 (for a 

detailed explanation of the used metrics, please refer to the method section 4.5).  

To better identify the role of the MAP4 molecular encoding in the reported successful 

prediction, we compared the performances of a MAP4 SVM with the performances of an 

SVM trained using ECFP4 (Extended Connectivity Fingerprint ECFP of radius 2, ECFP4 

SVM) and the RDKit atom pair fingerprint (AP SVM). We chose ECFP4 and the RDKit AP 

as widely used and available examples of substructures fingerprints and atom pair 

fingerprints. As a baseline model, we also included an SVM trained with a set of 11 

calculated physico-chemical properties, namely MW, Fsp3, HBD (hydrogen bond donor) 

count, HBA (hydrogen bond acceptor) count, AlogP, the number of carbons, oxygens, and 

nitrogens, the total number of atoms, number of bonds, and TPSA (topological polar surface 

area) (properties SVM). The selected 60 thousand COCONUT entries were divided into five 

subsets, and each model was trained and evaluated five times using the five different 80-20 

https://tm.gdb.tools/map4/coconut_tmap/
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training test splits combinations of one subset as test set and the other four as training set. 

Then the mean balanced accuracy, MCC, and F1 score of the five evaluations were 

calculated.  

The results of this evaluation are presented in Table 2 and Figure 2. Remarkably, all 

four SVM performed reasonably well. The good performance of the property based SVM 

reflected the fact that relatively large NP families with characteristic properties are essentially 

all from the same origin. For example, almost all large peptides or cyclic peptides are 

assigned to bacteria, while most glycosylated triterpenoids and polyphenols are assigned to 

plants. Nevertheless, there was a significant performance increase with the ECFP4 SVM and 

MAP4 SVM, which performed best, showing that correct origin assignment works better if 

specific substructures are considered. Among the four SVM evaluated, our MAP4 SVM 

performed best with significantly higher values compared to the ECFP4 SVM, probably 

because the MAP4 fingerprint encodes a more precise representation of the molecular 

structures than ECFP4. Indeed, MAP4 considers pairs of local substructures and the 

topological distance between them, while ECFP4 only encodes the presence of local 

substructures. 
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Table 2. SVM evaluation with balanced accuracy, MCC, and F1 score.  
 Balanced acc. MCC F1 

MAP4 SVM a,b) 0.919±0.005 0.879±0.005 0.929±0.003 

ECFP4 SVM a,b) 0.890±0.005 0.827±0.006 0.897±0.003 

RDKit AP SVM a,b) 0.735±0.005 0.592±0.006 0.752±0.004 

Properties SVM a,c) 0.758±0.005 0.613±0.007 0.761±0.004 
a) Mean value and standard deviation (σ) of the five different test/training sets split of the 5-fold cross-

validation. b) 1024 dimensions. c) 11 properties: MW, Fsp3, HBD) and HBA, calculated logP with the Crippen 

method (AlogP), number of carbons, oxygen, and nitrogen, the total number of atoms, number of bonds, and 

topological polar surface area (TPSA).   

 
Figure 2. 5-fold cross-validation mean values and 3σ confidence intervals of the (a) balanced 

accuracy, (b) MCC, and (c) F1 score for the four SVM classifiers. In all panels, the MAP4 SVM is 

reported in blue, the ECFP4 SVM in orange, the RDKit AP (AP) SVM in green, and the properties 

(Prop.) SVM in red. 

 

Using the MAP4 SVM to assign the origin of NPs  

The SVM evaluation above showed that the MAP4 analysis of NP molecular structure 

identified features distinguishing between NPs assigned to plants, fungi, and bacteria. 

Assuming that most of the assigned origins were correct among the 60,171 NPs used for 

training, one may use an SVM to tentatively assign the origin of further NPs as originating 

from plants, fungi, or bacteria. To best exploit the information in the COCONUT database, 

we trained a MAP4 SVM using the entire set of 60 thousand COCONUT NPs assigned to 

plants, fungi, or bacteria. We used the resulting classifier to build an online tool that takes 

any molecular structure as input (drawn or pasted as SMILES) and returns the assigned origin 

(a) (b) (c)
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and the corresponding percentages from the SVM classifier. This tool is freely accessible 

online at https://np-svm-map4.gdb.tools/.  

 The online tool performed quite well in assigning the origin of newly published NPs 

which were not present in COCONUT. Among thirteen recently reported NPs from plants, 

fungi, or bacteria, eleven were correctly assigned to their origin, while only two were 

misassigned (Table 3, Figure 3). In details, the fungal epicospirocin 1,[33] 

penicimeroterpenoid A,[34] and beetleane A,[35] the bacterial bosamycin A,[36] and the 

plant hunzeylanine A,[37] hyperfol B,[38] pegaharmol A,[39] mucroniferal A,[40] 

meloyunnanine A,[41] perovsfolin A,[42], and horienoid A[43] were correctly classified. On 

the other hand, the fungal rhizolutin[44] and the bacterial marinoterpin A[45] were 

misclassified as plant NP. Note that in these cases, the percentage values to the assigned class 

were lower than for the correct predictions.  

 

Table 3. MAP4 SVM origin prediction for thirteen recently published microbial and plants NPs that 

are not present in COCONUT.  
Natural Product Origin MAP SVM predictiona) 

epicospirocin 1 fungal fungal (97%) 

penicimeroterpenoid A fungal fungal (82%) 

beetleane A fungal fungal (97%) 

rhizolutin fungal plant (55%, fungal: 29%) 

bosamycin A bacterial bacterial (94%) 

marinoterpin A bacterial plant (44%, bacterial: 37%) 

meloyunnanine A plant plant (99%) 

hyperfol B plant plant (93%) 

pegaharmol A plant plant (77%) 

mucroniferal A plant plant (73%) 

hunzeylanine A plant plant (95%) 

perovsfolin A plant plant (92%) 

horienoid A plant plant (95%) 

a) Predicted using the MAP4 SVM available online at https://np-svm-map4.gdb.tools/. 

https://np-svm-map4.gdb.tools/
https://np-svm-map4.gdb.tools/
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Figure 3. Chemical structure of thirteen recently published microbial and plants NPs which are not 

present in COCONUT. The MAP4 SVM prediction is identical with the origin unless marked 

otherwise. 
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As an additional test of our online tool, we investigated the predicted origin of the 3,364 NPs 

in COCONUT reported with an origin and a publication for which the organism name was 

reported (e.g. Brachystemma calycinum) but not the corresponding superclass (e.g. plant). 

Checking individual predictions showed that the predicted origin superclass was in many 

cases correct, in line with our performance evaluation. For example, the 49 NPs with 

Euphorbia as a source, many of which were peracetylated polycyclic terpene alcohols, as 

well as the 45 NPs with Radula as a source, which were polyphenols and terpenes, were all 

correctly assigned to a plant origin.  

 In several cases, the SVM prediction conflicted with the superclass of the reported 

source organism. For example,  the indole alkaloids cephalinones A-D and cephalandoles A-

C isolated from the orchid Cephalanceropsis gracilis[46] and whose structures were partly 

revised by total synthesis,[47] were all assigned to bacteria by our SVM. In fact, These NPs 

might stem from an endophytic bacterium considering that endophytic microorganisms 

produce several related indole alkaloids.[48] Our SVM also reassigned the cancer drug 

maytansin from an annotated plant origin in the training set to a predicted bacterial origin, in 

line with its endophytic origin.[27] On the other hand, our classifier also assigned a bacterial 

origin to two cyclic peptides (CNP0085258 and CNP0085259)[49] and a cyclotide 

(CNP0085363)[50] isolated from plants. Although these plants indeed contain endophytic 

bacteria, the plant origin of such peptides is well established,[51, 52] and the SVM 

assignment to bacteria reflects the fact that the majority of cyclic peptides and cyclotides in 

the COCONUT set used for training the SVM were assigned to bacteria, compared to only a 

handful of cyclotides of plant origin.   

 While the classifier may point to the possible endophytic origin of NPs isolated from 

plants, its use on NPs from other sources is problematic. For instance, among the 1,035 

marine NPs from COCONUT with an annotated origin, 639 were assigned to plants by our 
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SVM. This prediction must be mostly wrong considering that most marine organisms such as 

algae, corals, and sponges are not plants. For example, the 44 NPs from the soft coral 

Sinularia, or the macrocyclic terpene lactone lobophytolide A (CNP0275045) stemming from 

the soft corral lobophytum cristagalli,[53, 54] were all incorrectly assigned to plants. 

However, the remaining 231 fungal and 165 bacterial predictions might be partly correct 

considering that many marine organisms carry endosymbionts. For example, our classifier 

assigned a bacterial origin for echinosulfonic acid B (CNP0318329), a brominated bis-indole 

NP isolated from the marine sponge Echinodictyum gorgonoides.[55] In this case, other 

authors have reported the isolation of a bacterial strain from the same sponge as a probable 

source of its biological activities.[56]  

Conclusion 

In summary, we visualized the chemical space covered by a subset of 60 thousand NPs from 

the COCONUT database with an assigned origin and publication using a TMAP calculated 

on the basis of MAP4 as molecular fingerprint, which is available at 

https://tm.gdb.tools/map4/coconut_tmap/. Analyzing this TMAP revealed that NPs from 

plant, fungal or bacterial origin form well separated groups. We then trained an SVM 

classifier with the MAP4 fingerprint to assign the origin of NPs and found that it performed 

excellently and significantly better than classifiers trained with ECFP4, RDkit AP, or 

physico-chemical descriptors.  

 To help assign NP origin, we then trained a MAP4 SVM classifier using the entire set 

of 60 thousand NPs. This tool is available online at https://np-svm-map4.gdb.tools/ and 

returns an origin prediction for any molecular structure drawn or pasted as SMILES. We 

found that this classifier correctly predicts the origin of plant, bacterial or fungal NPs not 

included in the 60 thousand COCONUT set used for training, as exemplified with the correct 

https://tm.gdb.tools/map4/coconut_tmap/
https://np-svm-map4.gdb.tools/
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prediction of eleven out of thirteen newly published NPs. Broader testing of the classifier 

with further NPs from COCONUT showed limitations for NPs not from plant or microbial 

origin, such as marine NPs, but it also led to interesting use cases suggesting that the tool 

might serve as a help to assign NP origin. This concerns in particular NPs isolated from plant 

but which might in fact be produced by endophytic microorganisms. Such information could 

be essential when searching for the corresponding biosynthetic genes. 

Methods 

Database preprocessing 

The coconut database was downloaded. Only the 135,091 (out of 400,837) entries having a 

taxonomical annotation were selected. The selected subset was further filtered down to the 

67,730 entries having an annotation not shorter than ten characters in the DOI field. Then, the 

taxonomy field was split by commas and match towards the words "plant"/"plants", 

"fungi"/"aspergillus", "bacteria"/"bacillus"/"bacta" to select the NPs with an annotated plant, 

fungal, or bacterial origin, respectively. The entries common between multiple origins were 

assigned with the following priority: human > animal > bacteria > fungi > plant > marine.  

The process led to the selection of 33,772 plant NPs, 15,648 fungi NPs, and 10,751 bacterial 

NPs with annotated DOI, for a total of 60,171 structures. The number of carbons, oxygen, 

and nitrogens, the total number of atoms, number of bonds, and TPSA were extracted from 

the COCONUT annotations. MW, Fsp3, HBD, and HBA count, AlogP, were calculated using 

RDKit.[57] The presence/absence of a peptide or a glycoside moiety was evaluated using 

Daylight[58] SMILES arbitrary target specification (SMARTS) language. SMARTS were 

used with RDKit to identify COCONUT entries containing a dipeptide substructure, defined 

as “[NX3,NX4+][CH1,CH2][CX3](=[OX1])[NX3,NX4+][CH1,CH2][CX3](=[OX1])[O,N]”, 
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or a containing a glycoside defined as cyclic N- or O-acetal substructure with the SMARTS  

“[CR][OR][CHR]([OR0,NR0])[CR]”. 

Fingerprint calculation 

The 1024 dimensions MinHashed atom pair fingerprint of radius 2 was calculated using the 

open-source code of MAP4. 

TMAP layout 

The indices generated by the MinHash procedure of the MAP4 calculation were used to 

create a locality-sensitive hashing (LSH) forest[59] of 32 trees. Then, for each structure, the 

20 approximate nearest neighbors (NNs) in the MAP4 feature space were extracted from the 

LSH forest, and the tree layout was calculated. The LSH forest and the minimum spanning 

tree layout were calculated using the TMAP open-source code. Finally, Fearun[31] was used 

to display the obtained layout interactively.   

MAP4 SVM implementation  

The coconut SUBSET entries used to generate the TMAP were assigned to training or test set 

with a 50% random split. The SVM was trained using the MAP4 fingerprints of the training 

set. It utilized a custom kernel that calculates the similarity matrix between two MAP4 

fingerprints, where the similarity of fingerprint a and fingerprint b is calculated (1) counting 

of elements with the same value and the same index across a and b, and (2) dividing the 

obtained value by the number of elements of fingerprint a. The class weights were inversely 

proportional to the class frequency, and the hyperparameter C was optimized using 5-fold 

cross-validation. During the hyperparameter optimization, 20% of the training set was left out 

as a validation set, and the balanced accuracy of the validation set was maximized. The 

hyperparameter C was optimized among the values 0.1,1, 10, 100, and 1000, resulting in C = 

1.  The classifier was implemented using scikit-learn[60] with the "one versus rest" strategy, 
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and all not mentioned hyperparameters were used in their default values. Platt scaling,[61] 

was used to obtain probabilistic prediction values. After the evaluation process, a second 

version of the MAP4 SVM classifier was trained using both training and test to learn from all 

curated 60 thousand data points.  

MAP4, ECFP4, RDKit AP, and properties SVMs comparison  

The MAP4, ECFP4, and the RDKit AP fingerprints and a set of 11 properties (MW, Fsp3, 

HBD and HBA count, AlogP, number of carbons, oxygens, and nitrogens, total number of 

atoms, number of bonds, and TPSA) were used to train four different SVM classifiers in a 5-

fold cross-validation. For all classifiers, the class weights were inversely proportional to the 

class frequency, and the hyperparameters were optimized using 10% of the available data 

(Table 4). For the properties SVM, the 11 values were scaled to zero mean and unit variance. 

Table 4. Non-default and optimized hyperparameters used in the 5-fold cross-validation MAP4, 

ECFP4, RDKit AP, and properties SVMs comparison.  

Classifier Kernel a) C a) γ a) 

MAP4 SVM MAP4 b) 0.01, 0.1, 1, 10, 100 - 

ECFP4 SVM Tanimoto c), Dice c) 0.01, 0.1, 1, 10, 100 - 

RDKit AP SVM Tanimoto c), Dice c) 0.01, 0.1, 1, 10, 100 - 

Properties SVM RBF d) 0.01, 0.1, 1, 10, 100 0.01, 0.1, 1, 10, 100 

a) Used hyperparameters are reported in bold. b) Calculates the similarity matrix between two MAP4 

fingerprints, where the similarity of fingerprint a and fingerprint b is calculated (1) counting of 

elements with the same value and the same index across a and b, and (2) dividing the obtained value 

by the number of elements of fingerprint a. c) Ralaivola et al. [62] d) Radial basis function (RBF) 

kernel.[63] 

 

Classifiers evaluation metrics 

The F1 score is defined as the harmonic mean of precision and recall: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
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Where TP stands for true positives, TN for true negatives, FP for false positives, and FN for 

false negatives predicted by the classifier. 

The balanced accuracy is defined as: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 +

𝑇𝑁
𝑇𝑁 + 𝐹𝑁

2
 

The Matthews correlation coefficient (MCC) is a correlation between the observed and the 

predicted class and it is defined as: 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Online MAP4 SVM 

The MA4 SVM classifier trained with the whole 60 thousand COCONUT subset is found at 

https://np-svm-map4.gdb.tools/. The query molecule can be provided as a drawn structure or 

pasted SMILES in the JSME editor[64]. The given query is canonicalized, chirality 

information is removed with RDKit, and the MAP4 fingerprint is calculated. To obtain 

probabilistic prediction values for each class, we use Platt scaling.[61]  

List of abbreviations 

AP – Atom pair 

COCONUT – Collection of Open Natural Products  

HBA – Hydrogen bond acceptor)  

HBD – Hydrogen bond donor  

LSH – Locality sensitive hashing 

MAP4 – MinHashed atom pair fingerprint 

https://np-svm-map4.gdb.tools/
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MCC – Matthews correlation coefficient 

ML – machine learning 

MW – Molecular weight  

NN – Nearest neighbor  

NP – Natural product 

SMARTS – SMILES arbitrary target specification 

SMILES – Simplified molecular-input line-entry system 

SVM – Supported vector machine 

TMAP – Tree-map   

TPSA – Topological polar surface area 

 

Data Availability. The code used for the presented work is publicly available at 

https://github.com/reymond-group/Coconut-TMAP-SVM. 
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