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Abstract 
Despite docking to the isolated α-helix residues 960-1010 (“spring-loaded switch-folding”, SLSF) of wild-type S spike trimers of Severe Acute 
Respiratory Syndrome coronavirus (SARS)-CoV2, the star-shaped hydrophobic Tinosorb failed to dock to SLSF inside the S (S-SLSF) and to 
inhibit viral-host cell membrane fusion1.  This work discovered computational star-shaped-similar molecules exhibiting lower binding-scores 
(higher-affinities) to S-SLSF with probable cross-binding properties of their targeted α-helices but with lower hydrophobicities and smaller 
molecular sizes. Most star-shaped-similar leads contained Trihydroxyl-Triphenyls arms branching from each of the three carbons of a central 
Triazine core (TTT). Deconstruction of TTTs by core-replacement (X), fragment extension (F), and 2D deep-screening among millions of 
molecular possibilities, found additional leads that by combining structural features (F+TTX) reduced their binding-scores to S-SLSF. Such 
leads maximize their possibilities to stabilize wild-type S-SLSF α-helices, with the aim to reduce host-coronavirus membrane fusion using 
drug-like ligands rather than mutations.   
 

Keywords: S spike; star-shaped molecules; triazine core; prefusion; coronavirus; deep-learning; SARS CoV2; spring-loaded switch-folding 
----------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------

Introduction 
 Tinosorb was previously identified as the computational lead for 

binding to the spring-loaded switch-folding (SLSF) of  wild-type S spikes of SARS-

CoV21. SLSF was previously defined as the S spike sequence that expands from 

the 960 to the 1010  amino acid residues forming 3x3 α-helices in the trimer wild-

type prefusion states (Figure 1, Bottom). Computational screening of ~130000 

natural compounds predicted lower leads to wild-type SLSF trimers rather than to 

monomers and to other PP mutated conformers. Preferential binding to the SLSF 

trimers in the low nM range, its star-shaped 3-fold symmetric molecular structure2 

and its fitting to the inner part of the 3x3 SLSF α-helices, together with the 

existence of side and top-bottom surface-accessible cavities in the prefusion S 

wild-type trimer, suggested that Tinosorb may show binding and binding-

dependent  biological activity. Hypothetically, Tinosorb's cross-binding of the inner 

space of the S-SLSF 3x3 α-helices could stabilize its prefusion states to inhibit 

fusion, similarly to PP mutations 3-5. However, Tinosorb's binding to S-SLSF (SLSF 

inside the whole S trimer) could not be demonstrated and in vitro assays using S 

pseudotyped VSV-infectivity, did not inhibit fusion1. Tinosorb's relatively large size 

compared to the narrow surface-accessibility to S-SLSF together with its low 

solubility in aqueous media, respectively, may have contributed to such failures. 

This work computationally explores, Tinosorb-like star-shaped molecules among 

less hydrophobic molecular alternatives for improved binding to S-SLSF. Because 

whole S trimers may be the best target to stabilize prefusion virions or to interact 

with the earliest steps of viral infection, the S-SLSF wild-type trimer model (6xr8 ID 

in the RCSB protein data bank) was selected for this work. 

The previously defined amino acid sequence of SLSF (residues 960-

1010) contained part of the HR1 heptad-repeat  (910 to 988) and part of the CH 

central helix (986-1033) of the S2 subunit of the S spike of SARS-CoV2. In the S 

wild-type prefusion conformation, the S-SLSF α-helices are central to the inner 

space of the S trimers but could be surface-accessible to small molecules through 

cavities of ~ 7-20 Å of diameter at the side and top-bottom axis1.  

The SLSF amino acid sequence monomer contains two amino-

terminal, small and aligned α-helices separated by an small loop, and a larger α-

helix separated by a 975-987 loop in an elbow-like folded spring-loaded 3x3 α-

helices conformation (Figure 1, Bottom). Before viral-cellular membrane fusion, 

the folded spring-loaded mechanism unfolds and the 3x3 α-helixes elongate to 

3x1 α-helices in the trimers. After elongation, one coiled-coil bundle involving the 

newly formed 3 HR1-CH and other 3 HR2 helices, originates the linearly rigid 

trimer conformation typical of active fusion and postfusion states. Similar spring-

loaded mechanisms are common to many other enveloped viruses 6, 7. In 

coronaviruses and other viruses, mutations to prolines in the SLSF folded loop 

stabilize the S trimers at their prefusion states resulting in inactivation of viral-host 

membrane fusion and inhibition of infectivity 3-5. 

 Most previous and abundant  experimental and computational search 
for prediction of anti-coronavirus activity has been focused on approved drugs 
(drug repurposing)8, 9 to protein targets on either cell hosts or coronavirus. For 

instance, most recent experimental screening for intracellular inhibitors of 
coronavirus-infected drug-treated cells identified 90 compounds with EC50 < 96000 
nM 10 among ~ 12000 drugs from the Repurposing, Focused Rescue and 
Accelerated MedChem (ReFRAME) bank (https://reframedb.org). Additive 
interactions enhancing  the inhibition of viral RNA-dependent RNA polymerase 
(RdRp) by the nucleoside analogues remdesivir (EC50  of 123 nM) or amilimod (11 
nM) were experimentally demonstrated for several drugs. On the other hand, 
computational work on coronavirus targets have been mainly focused on the  
HR1-HR2 helices bundle on the S spike 12, 13, 14,15, 16 , the S1 spike surface 
interphase with the ACE2 human receptor 11 , and/or  the active sites of RdRp and 
of viral proteases 9, 17, 18. Although targeting the HR1-HR2 helices bundle with 
synthetic peptides, only reported modest  inhibition of infectivity12, 13, 14,15, 16, 
searching for more potent small ligands among star-shaped molecules targeting a 
possible stabilization of their S-SLSF 3x3 α-helices rather than by mutations may 
be justified by both experimental and computational screens.  

  Here, several highly imaginative strategies previously developed by 
others19 have been used for computational screens, such as similar searches, de 
novo generation of compounds with drug-like properties 20-23, available fragment-
libraries to chemically fine-tune identified leads 24-27, machine learning involving 
convolutional neural networks (CNN) using molecular 2D images as inputs28, and 
filtering for synthetic feasibility or for presence in catalog/approved 
(purchasable/repositioning) drugs 25, 29, 30. To explore star-shaped molecule 
alternatives for the possible opportunities raised by Tinosorb, a variety of such 
methods  have been combined by following an step-by-step strategy.  

In the work to be described here, Tinosorb-similars binding to SLSF, 

identified a common Triazine core branched in its carbons by hydroxyl-phenyls 

(Trihydroxyl-Triphenyl-Triazine, TTT). Deconstruction of TTT unrevealed a few 

core alternatives (TTX) with similar and sometimes lower binding-scores to S-

SLSF. Further explorations by phenyl fragment extension (F+TTX), discover more 

hydrophilic leads that combined small fragments, additional cores and different 

phenyl positions to maintain and/or  to improve binding to S-SLSF at the low nM 

range. All the above mentioned methods together with our own previous data 

involving 3D docking1 allowed the training of high-accuracy deep-learning models 

using 2D images of molecules as inputs 28. The derived convolutional neural 

networks (CNN) were then optimized to screen a few larger libraries of 

compounds such as those recently designed for maximal chemotype diversity 

among the purchasable chemical space23, and the last release available of the 

CHEMBL large chemical data collection. The 3D-docking screening for the deep-

learning proposed candidates, added a few more leads to the list.   

Taken together the results predicted ~ 50 leads with greater drug-like 

characteristics and possibilities to stabilize S-SLSF than the initial Tinosorb 

molecule.  Although more computational candidates may still be found by 

exploring more, larger chemical spaces or newly designed libraries focused in 

star-shaped molecules, whether the leads already identified would experimentally 

bind to S-SLSFs and inhibit viral fusion remains yet to be demonstrated.  

 

https://reframedb.org/
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Materials and Methods 

Molecular characteristics of Tinosorb 
Tinosorb (PubMed ID 135487856, CHEMBL 2104956, CAS 187393-

00-6), also called bemotrizinol (2,2'-[6-(4-methoxyphenyl)-1,3,5-Triazine-2,4-
diyl]bis{5-[(2-ethylhexyl)oxy]phenol}) or bis-ethylhexythexyloxyphenol-
methoxyphenyl-Triazine, has a molecular weight of 627.8 Dalton (see Figure S1). 
Tinosorb adsorbs ultraviolet UV-A and B from 280 to 400 nm preventing the 
formation of free radicals induced in the skin by sun exposure reducing tissue 
oxidation. Due to its low water solubility (0.33 µg/ml, logP of 10.4), Tinosorb is 
used in topical creams in oiled mixtures. Tinosorb  has no estrogenic, nor 
androgenic effects. Its oral/dermal toxicities are estimated to LD50 >2g/Kg.  

 
Libraries of possible ligands used in this work 

 Tinosorb-similar 1746 molecules were downloaded from PubChem 
https://pubchem.ncbi.nlm.nih.gov/#query =smiles=similarity). Trihydroxyl-
Triphenyl-Triazine (135616181 ID), and Triazine (9262 ID)-similars downloaded 
from PubChem resulted in 599 and 279689 molecules, respectively. The number 
of Triazine-similars were downsized to 4346 molecules <700 Dalton and < 6 logP.  

Core-replacement screening was performed on each of the seeSAR's 
1 Gb zipped fragment libraries (pdb and zinc data bases containing ~20 million of 
fragments each). Fragment extension screened the seeSAR's library of 100 small 
fragments enriched with home-designed 10 fragments of 5-7 non-hydrogen atoms. 
 The SuperNatural II SNII library (http://bioinf-applied.charite.de 
/supernatural_new/index.php) was splitted in nineteen *.sdf files each containing 
different molecular weight ranges from 16 to 380 Daltons as described before 1. 
The splitted sdf files were randomly sampled to supply 10 high-binding-score 
inactive or negative ligands per file to contribute to the design of one training-set to 
train 2D deep-learning models. A 0.5 million library of maximized chemotype 
diversity among the purchasable space23 and the ~ 2 million Chembl28 latest 
release library, filtered between 250-500 Daltons to ~1.5 million compound 
(http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/ releases/chembl_28/), 
were screened by the DEEPscreen28 T13 developed model.  
 BioSolveIt infiniSee extremely large libraries (CHEMriya_11bn_2021-
05  1.1x1010 compounds , GalaXi_2.1bn_2020-11 2.1x109, 
KnpwledgeSpace_290tr_2019-05  2.9x1014, and REALSpace_19bn_2021-04  
1.9x1010) were screened by the infiniSee program for 1000 or 10000 compounds 
with 0.9-1.0 target similarity and 80-90% minimum similarity thresholds to TTT. 

Compounds available in commercial catalogs were searched through 
the ZINC data base by supplying their smiles (http://zinc15.docking.org/) and/or 
searched in building-block catalogs (Sigma, BLDpharm). Duplicates of drugs 
retrieved from several sources were eliminated by OpenBabel 
(https://sourceforge.net/projects/openbabel/postdownload)1. 

 
3D trimeric wild-type 6xr8 S spike model 

To explore virtual binding of ligands to the prefusion state of wild-type 
SARS-COV-2,  the S spring-loaded switch-folding (SLSF) expanding S amino acid 
residues from 960 to 1100 in each monomer, was extracted from the trimer model 
and used as previously defined1. The whole trimeric S 6xr8 molecule model 
(Research Collaboratory for Structural Bioinformatics, RCSB, Protein Data Bank 
PDB ID) of the wild-type closed, all-down S conformer was used to target S-SLSF 
with the aid of an i9 computer with 48 CPUs1.  

 

3D-docking screening by two algorithms 
Two different and complementary algorithms (AutoDockVina and 

seeSAR), were employed for 3D-docking. The programs differed on both,  i) 
generation of ligand conformations (also known as poses) with high probability of 
binding to the target binding-pocket (set at 10 per ligand) and ii) quantification by 
binding-score estimations of each conformation or pose. The two programs set the 
target protein binding-pocket as rigid (maintaining constant covalent lengths and 
angles) and the ligands as flexible (using their rotatable bonds to generate 
different conformations) 1, 31. 

The AutoDockVina included in the PyRx 0.9.8. package 
32(https://pyrx.sourceforge.io/) uses multithreading on multi-core e7 / i9 computers 
33  to speed up docking. To generate possible bound conformations (poses), 
AutoDockVina uses Lamarckian genetic algorithms 34. The corresponding 
conformation-dependent Gibbs free-energies (ΔG) are calculated using semi-
empirical data 35. To perform the docking, the  *.sdf files were first ffu energy 
minimized and charges added to obtain *.pdbqt files (PyRx-Bable program). Grids 
including only the SLSF inner 3x3 α-helices were used. Only the pose with the 
lowest binding-score ( *.out.pdbqt) was retained for analysis. To compare with 
seeSAR values, the output ΔG energies in kcal/mol were converted to constant 
inhibition (Ki) in nM concentrations, as described before 1, 31.  

To predict possible seeSAR poses, the vs.10 package 
(https://www.biosolveit.de/SeeSAR/) uses the FLEXx  incremental fragment 
construction method based on software developed for computer vision and pattern 
recognition 36.The corresponding conformation-dependent Gibbs free-energies 
(ΔG) are calculated by the HYDE scoring function computing HYdration and 

DEsolvation values (as calibrated with octanol/water partition data, logP) 37, 38. 
To reduce false positives, the HYDE calculations include not only favorable but 
also unfavorable interactions 39.  To perform dockings, the unique binding-pocket 
internal to the SLSF α-helices or all the 36 binding-pockets (average of 17 amino 
acids per pocket) predicted by the seeSAR in the whole S trimer (Figure 3,C) were 
selected. Only the pose with the lowest binding-score was selected for analysis.  
The corresponding binding-scores were expressed in the mean predicted value 
calculated from the HYDE lower-higher nM estimates (100-fold range) delivered 
by the program. 

To facilitate interpretation, the order by binding-score profiles were first 

analysed graphically using the Origin program (OriginPro 2015, 64 bit Sr1 b9.2.257, 

Northampton, MA, USA). Binding-score estimations differed <10 % when repeated 

in different tests (n=3-5). The predicted ligand-protein complexes were visualized 

in PyRx, seeSAR and/or PyMOL (https://www.pymol.org/). 

   

Core-replacement 
The Triazine core or each of the Trihydroxyl-Triphenyl groups of TTTs 

were selected (Figure S2, AB) to carry out  replacements using the seeSAR 
inspirator module to screen tenths of million (~1 Gb zipped) each of the provided 
pdb and zinc fragment libraries. Each iteration of the core-replacement feature 
selects for the best-similar 10 cores that maintain the rest of the molecule intact 
while docking to SLSF. Up to 90 best-fitting new cores were retrieved from each 
library and their corresponding 3D-binding-scores to SLSF estimated by seeSAR 
docking. The resulting SLSF leads were finally docked to S-SLSF. 

 
Fragment extension 

The seeSAR fragment extension feature (Figure S2, C) was applied 
using the sdf file provided by seeSAR containing 100 small molecular weight 
fragments. Additionally, 10 home-made fragments between 1 to 7 non-hydrogen 
atoms designed in MarvinSketch 17.1.30.0 (Chemaxon, Oracle Co) were also 
included.  To explore each of the carbons at the hydroxyl-phenyl groups, cores 
were fixed while F+TTT compounds having fragment extensions (Figure S2) at 
each of the hydroxyl-phenyl C1s (RED, GREEN, BLUE) were generated by the 
program by docking to SLSF. To explore C1 bound fragments, additional F+TTT 
compounds containing one, two or three SLSF best-binding fragments in different 
non-symmetric C1 positions for each fragment were manually generated in 
MolSoft (Molbrowser vs3.9-1bWin64bit). No fragment combinations with different 
fragments at each C1 position were generated for docking because of their high 
number of possibilities. All the resulting SLSF leads were 3D-docked to S-SLSF. 

 
Preparation of training sets for machine learning  

Our previous library of thousands of 3D-docked compounds separated 
in 19 different molecular weight files1, 31  were randomly sampled for 10 binding-
score inactives or negatives >100 nM for each molecular weight file (under 
sampling the majoritarian class)40. Other 30 TTT-similars > 100  nM  were added. 
The 48 F+TTX of < 0.2 nM binding-score were used as actives. To balance the 
final training-set (1 for actives and 0 for inactives), the randomized inactives were 
pooled in a 4:1 ratio with the 48 actives. To provide a common identifier to best 
compare previous and present docking results with large target libraries, inchikeys 
were calculated and added to the training-set as molecular_names using the 
DataWarrior program (Osiris, vs 5.5.0. Idorsia Pharmaceuticals Ltd). Possible 
duplicates were eliminated by OpenBabel. For training the model, the final sdf file 
was randomly splitted in 60 % for training, 20 % for validation and 20 % for test. 

 
Learning models using chemical fingerprints as inputs 

All chemical  fingerprint types were obtained from the PADEL 

descriptor tool (http://padel.nus.edu.sg/software/ padeldescriptor). The resulting 
PADEL files were splitted into molecular descriptors and algorithm-specific 
fingerprint bins for comparative tests. Regression prediction models such as 
AdaBoost, Tree, NeuralNetwork, and others provided by the Orange vs3.27.1 
package (http://www.ailab.si/orange)  resulted in accuracies ~ 85 %. However, their 
predictions on ligands which were never-seen-before were < 20 % (not shown).  

 
 Convolutional neural networks (CNN) deep-learning models using 2D-

molecular images as inputs 
 The recently released DEEPScreen software 28, using input molecular 

2D-images rather than chemical fingerprints for higher prediction success, was 
adapted to the present purpose. The final strategy was applied in three steps: i) 
3D-docking to obtain enough negative and positive binding-scores to train a CNN 
T13 model, ii) 2D-deep-learning applying the CNN T13 model to downsize large 
libraries to a lower number of docking-candidates, and iii) final 3D-docking of 
identified candidates for validation. The final CNN T13 model optimizing the 
parameters provided by DEEPScreen and their predictions of never-see-before 
ligands were performed using python and pytorch home-made scripts. The 
accuracy of the T13 CNN model was 97.4 % as estimated using the whole 
training-set as input. 

  

https://www.ncbi.nlm.nih.gov/pcsubstance/?term=%222%2C2%27-%5B6-(4-methoxyphenyl)-1%2C3%2C5-triazine-2%2C4-diyl%5Dbis%7B5-%5B(2-ethylhexyl)oxy%5Dphenol%7D%22%5bCompleteSynonym%5d%20AND%20135487856%5bStandardizedCID%5d
https://www.ncbi.nlm.nih.gov/pcsubstance/?term=%222%2C2%27-%5B6-(4-methoxyphenyl)-1%2C3%2C5-triazine-2%2C4-diyl%5Dbis%7B5-%5B(2-ethylhexyl)oxy%5Dphenol%7D%22%5bCompleteSynonym%5d%20AND%20135487856%5bStandardizedCID%5d
https://pubchem.ncbi.nlm.nih.gov/#query =smiles=similarity
http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/%20releases/chembl_28/
http://zinc15.docking.org/
https://sourceforge.net/projects/openbabel/postdownload
https://pyrx.sourceforge.io/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.pymol.org/
http://padel.nus.edu.sg/software/%20padeldescriptor
http://www.ailab.si/orange
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Results 
Docking of Tinosorb-similars to SLSF   

Thousands of Tinosorb-similars were downloaded from PubMed and 
docked by seeSAR or AutoDockVina to isolated SLSF sequences (S residues 960 
to 1010 extracted from the 6xr8 wild-type trimer conformer). Results predicted 102-
105-fold lower binding-scores when using seeSAR compared to AutoDockVina 
(Figure 1 top, red hexagons versus blue hexagons).  

Visual comparative observations of the best-conformational poses 
suggested that those obtained by seeSAR were interdigitated within the 3x3 α-
helices (Figure 1 Down C,D). In contrast, preferential interactions with the sides of 
two adjacent α-helices rather than with three, were obtained by AutoDockVina 
(Figure 1 Down A,B). These observations may offer some explanation for the 
differences in binding-scores between the 2 programs. Together, these data 
suggested that to find out new candidates targeting the inner space or binding-site 
of the SLSF 3x3 α-helices, seeSAR was the best option. Therefore, seeSAR was 
chosen for the rest of the work.  

The majority of the Tinosorb-similar leads contained chemotypes 
having a central Triazine core (N at 1,3 and 5 positions), with 3 hydroxyl-phenyl 
groups linked to the core carbons (such structures have been called star-shaped 
molecules) 2. Additional structural variations in the leads consisted in different 
fragments linked to the C1 of each phenyl group forming star-shaped molecules > 
620 Daltons (F+TTT, Fragment-Trihydroxyl-Triphenyl-Triazine). However, most of 
these newly identified leads were of higher hydrophobicities and/or molecular 
weights than Tinosorb (see some selected examples in Table 1). Thus, although a 
total of 57 F+TTT Tinosorb-similars (~ 3 % of the initial Tinosorb-similars) 
predicted lower binding-scores than Tinosorb (Figure 1 up, red large hexagon), 
only one had low, drug-like logP solubility (Table1).   

To further understand the binding requirements of the identified star-
shaped molecules, several deconstructions of the F+TTT were then explored 
targeting wild-type S-SLSF whole S trimers rather than isolated SLSF trimers. 

 
Figure 1 

TOP) Binding-scores of Tinosorb-similars versus their logP estimations. BOTTOM) best conformational poses 
of Tinosorb-bound to SLSF by AutoDockVina (A,B) and seeSAR (C,D) 

TOP 
Binding-scores and logP of 1746 PubMed-downloaded Tinosorb-similars docked to isolated SLSF 6xr8.  
Blue hexagons, AutoDockVina. Red hexagons, seeSAR.  
Black-edged blue hexagon, Tinosorb by AutoDockVina.  
Black-edged red hexagon, Tinosorb by seeSAR.  

BOTTOM 
Green, Tinosorb.  
Gray, SLSF 960-1010 amino acid sequence ribbons 
A, Top-view of trimeric SLSF 3x3 α-helices complexed to Tinosorb by AutoDockVina.  
B, Side-view of one SLSF complexed to Tinosorb by AutoDockVina. Two monomers were removed for clarity.  
C, Top-view of trimeric SLSF 3x3 α-helices complexed to Tinosorb by seeSAR.  
D, Side-view of one SLSF complexed to Tinosorb by seeSAR. Two  monomers were removed for clarity. 
. 

 
 

Table 1  
Leads from Tinosorb-similars docked to SLSF showing different fragments linked to C1 phenyls 

PubChem, 
 ID 

Binding- 
score,nM 

 
logP 

 
MW 

  
Smiles   

Trihydroxyl-Triphenyl –
Triazine (TTT) 

136025237 0.00005 4.4 621.7 CCC(CO-C1  
 
                    
 
 
                   C1 
 
 
 

                   
 
C1                                 C1 

155024065 0.00005 6.2 621.7 CCCOCOC1=CC(=C(C=C1) 

135783913 0.00005 7.9 609.7 C1CCC(-C1) 

135611720 0.00005 8.2 615.8 CCC(C)CO-C1 

136417298 0.00005 8.2 615.8 CC(C)CCO-C1 

136044044 0.00005 8.3 623.7 C1CCC(C-C1) 

135740105 0.00005 8.7 747.9 CCCCOCCCO-C1 

136383973 0.00005 8.7 773.9 CC(C)CCCCCOC(=O)C(C)O-C1 

136058049 0.00005 9.0 773.9 CCCCCCCCOC(=O)C(C)O-C1 

149408938 0.00005 9.1 643.8 CCCCC(CC)CO-C1 

148346816 0.00005 9.5 755.9 CCCCC(CC)C(=O)O-C1 

136030929 0.00005 9.6 627.8 CCC-C1 

136467720 0.00005 11.0 699.9 CCCCCCCO-C1 

137127598 0.00005 11.6 712.0 CCCCC(C)CO-C1 

142723568 0.00005 12.0 .790.0 CCCCCCCCOO-C1 

................. .............. .......... ........ ................................. 

 135487856  0.00100 10.4 627.8 *CCCCC(CC)CO-C1 

Examples from the 57 leads from Tinosorb-similars docked to SLSF ordered by their logP. 135487856, Tinosorb  
(58th of the leads).  The same fragments were attached to the C1 carbons at each of the Trihydroxyl-Triphenyls 
bound to the Triazine core (F+TTT, star-shaped molecules with 3-fold symmetries). *,  Tinosorb's one of the 
fragments is chemically different (Figure S1).  
Binding-score, mean of the seeSAR's estimations in nM.  
LogP, PubChem estimation of hydrophobicity (molecular partition ratio between water and octanol).  
MW, molecular weight in Daltons.  
Smiles, fragment formula expressed in Smiles (Simplified Molecular Input Line Entry Systems). 

   
Docking of TTT-similars to SLSF and S-SLSF  

 The binding-scores of the PubMed similars to the TTT chemotype 
(without any fragments) were compared using both SLSF and S-SLSF targets. 
The docking results confirmed some lead requirements for the TTT chemotype 
and revealed the existence of a relative high number of F+TTT leads with lower 
binding-scores to S-SLSF than to SLSF (Figure 2), suggesting that additional 
interactions with other residues within the S trimer may contribute to reduce their 
binding-scores. Most of the TTT leads showed fragments attached to the C1 
carbons symmetrically located in front of the C4-C bond between phenyls and 
their Triazine-cores. Other were asymmetrical.  

Although there were not many new ligands identified by applying this 
search method, in this case these experiments discover that the lowest binding-
score was predicted to the TTT chemotype without any fragments. Although TTT 
predicted a higher binding-score than Tinosorb-SLSF, it showed lower molecular 
size, lower hydrophobicity and symmetry, improving its drug-like properties (Figure 
2). There were two other leads which suggested there may exist more variations 
such as having only 2 hydroxyls in the Triphenyl groups and/or two N in the core. 

Visual inspection of the TTT leads bound to S-SLSF confirmed that 
most of them docked inside the SLSF 3x3 α-helices (Figure 3), in contrast  to 
Tinosorb 1. Further exploration of the TTT+S-SLSF complex showed that their 
interactions implicated the T998 and Q1002 residues from the 3x3 α-helices by 
forming hydrogen bridges with the Trihydroxyls. Most of the rest of the TTT atoms 
including those of the Triphenyls and their attached fragments contributed to the 
final binding-score only by favoring desolvation (according to seeSAR structural 
analysis confirmed in CCP4) (not shown).  

 
Figure 2 

Binding-scores of TTT-similars to SLSF and S-SLSF 
Downloaded PubMed 599 TTT-similars were docked to SLSF and S-SLSF trimers.  
Black circles, asymmetrical molecules.  
Red circles, 3-fold symmetrical molecules.  
Black numbers, PubChem IDs.  
Blue hatched line, equal SLSF and S-SLSF binding-scores. The binding-score of Tinosorb was included here for 
comparison but its binding to S-SLSF was outside the 3x3 α-helices1  
Down, 2D structures of some leads. 
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Figure 3  
Mapping of the S-SLSF sequences at the S 
trimer (A,B), S binding-pockets of the whole 

trimers predicted by seeSAR (C) and 
mapping of S-SLSF+ TTT complexes (D) 

 
A, side view of wild-type S 6xr8 trimer and 
location of the 3x3 α-helices of the S-SLSF 
sequences (red).  
Gray lines, rest of amino acid residues of the S 
trimer 
 
 
 
B, top view of  wild-type S 6xr8 trimer and 
central location of its 3x3 α-helices of the S-
SLSF sequences showing the central cavity of 
7-20 Å wide (red).  
Gray lines, rest of the amino acid residues of 
the S trimer 
 
 
 
 
C, top view of the binding-pockets predicted by 
seeSAR in the exposed surface of the wild-type 
S 6xr8 trimer in several background colors. 
RED, GREEN , BLUE lines, rest of amino acid 
residues. Each S monomer was colored by 
seeSAR in a different color.  
 
 
 
 
D, Mapping of the TTT docked to S-SLSF. 
Green, TTT docked  to the wild-type S 6xr8 
trimer in competition with the 36 binding-
pockets schematized in C.  
Gray lines, amino acids residues of the S 
trimer 
  

Triazine-core replacement 
Since the Triazine core with Nitrogen at positions 1,3,5, was one of 

the features of most leads, attempts were made to explore binding to SLSF and/or 
S-SLSF trimers of any similars. Searching PubMed for Triazine-similars yielded an 
excessive number of 279689 molecules. Therefore, those were downsized to 4346 
molecules applying drug-like criteria. However, when docked to SLSF, none of 
them predicted any binding-scores lower or similar to those of TTT (not shown). 

 An alternative way to search for Triazine-core alternatives, was the 
seeSAR core-replacement feature which maintains the rest of the Trihydroxyl-
Triphenyl groups while substituting cores for binding to SLSF (Figure S2). Docking 
results from millions of possibilities identified 4 new cores (TTX chemotypes) with 
similar binding-scores to SLSF than TTT. Binding-scores were reduced ~50 fold 
when docked to S-SLSF (~10-2 to 10-4 nM ranges, respectively), suggesting again 
the participation of other residues outside the SLSF sequences. These new X 
cores have only one or two N rather than the 3 N present in TTT. Two of them (N1 
and N35) were identified in both libraries used for the core-replacement (Figure 4). 

These results suggested new molecules containing other than 
Triazine-cores (TTX) and new fragments attached to them which may result in 
lower binding-scores to S-SLSF.  

N1 N14 N35 N34 N135
10-6

10-5

10-4

10-3

10-2

10-1

OH

N OH

OH

OH

N+

N

OH

OH OH

NN OH

OH

OH

N+
N OH

OH

OH

NN

N

OH

OH

b
in

d
in

g
-s

c
o

re
, 

n
M

 
Figure 4 

Triazine-core replacement (TTX) binding-scores to SLSF and S-SLSF 
The N135 was replaced by X-cores using the core-replacement feature of seeSAR which screens the pdb / 
zinc fragment-libraries of tenths of millions each (Figure S2). Y-axis, binding-scores of best pose of the newly 
generated TTX core-replaced molecules. X-axis, leads with cores labeled by N followed by their position in 
the 6 atom cores. The numbers correspond to the pbd and zinc fragment IDs were as follows N1 
(3qx502P1H5I, zinc263631 fragments), N14 (zinc1593398 fragments), N35 (3bhh5CP1B600F, zinc8300484 
fragments), N34 (zinc1564326 fragment) and N135 (PubChem 135616181, Figure 2).   
Open red circles, TTX binding-scores to SLSF.  
Solid red circles, TTX binding-scores to S-SLSF.  
 

Fragment search by similars and extension  
Because the use of the "build evolutionary library" option of 

DataWarrior could not generate any lower binding-score alternatives for the 5 new 
cores, alternative methods were explored.  

Trihydroxyl-Triphenyl groups of Tinosorb and of TTTs were tilted to 
each other around their rotable C4-C Triazine bonds when docked to SLSF 
(Figure S1). Therefore there were 5 C positions for each phenyl group to which 
fragments could be added. To study whether or not there were any differences 
among the Triphenyls, fragment-extension to each of them (labeled as RED, 
GREEN and BLUE, according to their default colors in seeSAR), were 
independently studied (Figure S2). Only the C4-C Triazine bonds were maintained 
intact while the rest of the C1-C6 positions including the C3 hydroxyl position, 
were targeted for possible fragment extension. Binding of the resulting F+TTT 
molecules were then evaluated by docking to SLSF. Docking results showed that 
the fragments attached to C1 yielded the lowest binding-scores (Figure 5), 
confirming previous observations made on Tinosorb, Tinosorb-similars and TTT-
similars. Therefore, to further explore binding of F+TTXs to S-SLSF, only their C1 
positions were targeted. 

A first search for any possible C1-fragments among PubMed only 
found similars for N1, N35 and N135 cores but none of those displayed drug-like 
characteristics (i.e., high hydrophobicities). 

As an alternative, the fragment extension feature of seeSAR was then 
applied to the 5 new cores testing each of their Trihydroxyl-Triphenyls for 110 
fragment extensions (a library of fragments provided by seeSAR and enriched by 
10 home-made designs). One-by-one fragment extensions were made at each of 
the C1s (RED, GREEN, BLUE) of the TTX Trihydroxyl-Triphenyl bonds. The 
resulting F+TTX molecules were then docked to SLSF (Table S2). Docking results 
showed that most, but not all, lead fragments bound to the three RGB C1 positions 
with similar binding-scores (Figure S3, red bars), and that 1, 2 or 3 fragments 
resulting in any symmetric or asymmetric structures were among the possible 
leads. Those fragments/positions which showed binding-scores to SLSF < 0.2 nM 
(Table S1) were selected to construct the corresponding F+TTX complete 
molecules for docking to S-SLSF. In this case, the S-SLSF dockings together with 
the previous results, identified dozens of leads (see Figure 5). Since in contrast to 
Tinosorb, those new lead logP solubilities were between 3-6, steric inhibition 
rather than hydrophobicity could partially explain extreme differences in binding-
scores when changing targets from SLSF to S-SLSF. For instance, some of the 
the larger or charged fragments that generated leads to SLSF, resulted in too high 
binding-scores when docked to S-SLSF (>106 nM), similarly to what occurred with 
Tinosorb1.  

Together, the new F+TTXs leads obtained from fragment extension 
showed a group which docked to S-SLSF on the ~ 0.001 nM range while a second 
group gathered around the ~0.1 nM range (Figure 6). Up to 43.7 % of the 
identified leads were molecules found in PubMed while the rest corresponded to 
newly described molecules, mainly identified by fragment extension. One of the 
lowest binding-scores,  consisted in a new chemotype substituting the Trihydroxyls 
by Trimethoxyl groups, resulting in a Trimethoxyl-Triphenyl-Pyrimidine molecule. 
However, further search did not identified any lower binding-score among its 510 
PubMed similars, nor fragment extension attempts corresponding to its N35 core 
identified any lower or similar binding-scores to S-SLSF (not shown).  
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Figure 5 
Leads to S-SLSF 

The leads were grouped by the core (Figure 4)+ the ID number of the fragments (Table S3).  
Red circles, same fragments in the 3 C1s.  
Green circles, same fragments in 2 C1s.  
Gray circles,  fragment in 1 C1.  
Blue-edged yellow circles, original N1, N14, N35, N34, N135 cores (Figure 4).  
Open diamonds, heterogeneous fragment combinations (PubMed IDs-similars).  
Purple stars, heterogeneous fragment combinations (CHEMBL IDs  predicted by the CNN T13 model). 
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Screening large libraries by a CNN T13 deep-learning classifying model  

To select for the corresponding leads with higher probabilities to bind 
to S-SLSF, a newly developed deep-learning CNN model called T13 was trained 
using 2D molecular images (learning rate followed in Figure S5).The T13 
predicted candidates were then 3D-docked to S-SLSF. 

A library of  computationally synthetic 500000 compounds designed to 
cover a maximum of purchasable chemotypes was screened by T13. Results of 
the model predicted 105 possible candidates. However, their lowest binding-
scores when 3D-docked to S-SLSF were in the high nM ranges. Therefore no new 
leads were obtained from this library. 

A library of ~ 2 million compounds downloaded from the last 
Chembl28 release and downsized to ~1.5 million drug-like ligands, was screened 
by the CNN T13 deep-learning model using 2D molecular images. Results of the 
model predicted 8751 possible candidates. To downsize that large number, 3D-
docking was first made to SLSF. The resulting 34 candidates predicting < 1 nM 
binding-scores to SLSF were finally 3D-docked to S-SLSF and 4 new leads 
identified. Since one of the leads was previously identified, the other 3 leads were 
added to the final proposed lead list (Figure 5, purple stars). 

 
Screening larger libraries by infiniSee 

To explore wider chemical spaces, the BioSolveIt's infiniSee program 
was used to screen 4 libraries containing 109-104 compounds each for TTT-
similars.  However such screening attempts, did not identified any TTT-similars 
with 3D binding-scores to S-SLSF <0.2 nM among the best 1000 similar 
compounds in any of the target similarities or thresholds studied (binding-scores 
>3-3.8 nM). Additional attempts targeting 10000 compounds were also not 
successful to identify any lower S-SLSF leads (not shown). 

 
Drug-like properties of the leads to S-SLSF 

 The corresponding  in silico pharmacokinetic parameters, 
physicochemical and toxicity ADME predicted to leads (Figure 5),  showed that 
many of them were moderately soluble, complied with Lipinski rules and have 
gastrointestinal good permeability predictions (Table S2).   
 

Binding leads to computationally PP-mutated S trimers 
 Preliminary results indicated that some of the leads predicted large 
differences when docked to other SLSF or S-SLSF representative conformers 
selected from our previous study1 (data not shown).  
 Because any amino acid sequence differences among those 
conformers and wild-type 6xr8 were only due to their PP mutations, the same 
mutations were computationally introduced into the amino acid sequence of wild-
type 6xr8 S-SLSF. The corresponding 3D trimer model derived from the 6xr8 PP 
mutated sequence was then docked to the leads. Restricting the analysis to lead 
poses predicting binding-scores < 0.2 nM, the results showed that an estimated 
30.9 % of the 6xr8 lead poses altered their binding-scores by the introduction of 
the PP mutations into its sequence (Figure 6). In some leads those differences 
were of several orders of magnitude corresponding to poses that did not cross-
bind the 3x3 α-helices of S-SLSF (not shown).  
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Figure 6 

Comparison of binding-scores between leads from wild-type and PP mutated 6xr8 S-SLSF trimers 
The wild-type sequence of 6xr8 S was computationally mutated to the previously reported P986P987  amino acid positions 
stabilizing the trimer at the prefusion states and inhibiting the coronavirus infection3-5. The corresponding 3D models 
were build with the Swiss model server and wild-type and PP mutant 6xr8 S-SLSF docked to the F+TTX leads of Figure 
5. Ten poses per lead were obtained and those with binding-scores < 0.2 nM represented.   
X-axis, F+TTX leads labeled as in Figure 5.  
Red circles, binding-scores of wild type 6xr8 S-SLSF.  
Yellow circles, binding-scores of PP mutant 6xr8 S-SLSF.  

 

Discussion 
  Binding-scores of natural compounds to isolated S residues 960-1010 
(SLSF) were lower to trimers than to monomers and to wild-type rather than to PP-
mutated conformers1. The predicted lead was Tinosorb with binding-scores at the 
very low nM range (0.003 nM)1. Tinosorb is a highly hydrophobic molecule with a 
3-fold star-shaped architecture containing two phenyls and one methoxyl groups 
linked to the carbons of one Triazine central core. Docked Tinosorb fitted the inner 
empty space inside the SLSF 3x3 α-helices. However, Tinosorb failed to bind to S-
SLSF and to inhibit S-pseudotyped VSV-infection, raising the question of whether 
or not other star-shaped molecules could be found for those purposes. A first 
computationally exploration to such question was attempted here. 
 Docking of thousands of Tinosorb-similars to SLSF resulted in the 
identification of  ~ 50 leads with lower binding-scores. However, all those leads 
except one, had higher hydrophobicity and larger sizes than Tinosorb and 
therefore they may have reduced possibilities to bind to S-SLSF. Nevertheless, 
many of them showed common architectures including identical fragments linked 
to the all C1 carbons at their Trihydroxyl-Triphenyl groups (F+TTT). The unique 
SLSF lead identified with the lowest hydrophobicity, contained a fragment of only 4 
carbons and one oxygen. The above commented results suggested further  
searches for more leads to SLSF and S-SLSF among TTT-similars (without any 
fragments). The new docking results confirmed that the simplest TTT architecture 
also predicted lower hydrophobicities, size and binding-scores to both SLSF and 
S-SLSF, prompting us for additional explorations searching for new leads using 
core-replacement and/or fragment extension. The application of both 
computational techniques resulted in the identification of dozens of star-shaped  
alternatives that including short fragments (F+TTX) predicted leads with more 
hydrophilic lower binding-scores to SLSF and reducing 2-8-fold those to S-SLSF. 
Most probably, the lower binding-scores to S-SLSF could be explained by their 
fragment interactions with other residues outside the S-SLSF sequences, such as 
Y756 and F759 , in addition to those between the Trihydroxyls and S-SLSF T998 and 
Q1002 (identified by visual seeSAR inspection of the bound complexes). Among all 
the identified leads there were structures with a few new cores cotaining N and 1 
to 3 small fragments bound to the C1s of their Trihydroxyl-Triphenyl groups. 

In the previously reported docking of hundred of thousands of natural 
compounds of <380 Daltons to the trimer or monomer SLSFs from 9 conformers, 
nor Tinosorb, nor  TTT-similar leads were detected1. Because most SLSF or S-
SLSF leads described here had higher molecular weights, it is probable that their 
lower size could explain such failures. Perhaps, further docking screenings 
including higher molecular size candidates may have found other star-shaped 
molecules among the natural compounds. However, that exploration would require 
much more intensive computation since their relative abundances in several 
chemical banks was very low. Nevertheless, the leads or active (positives) and 
not-binding or inactive (negatives) ligands identified in this and previous work1, 
respectively, were successfully used to design training-sets to optimize predictive 
deep-learning CNN models. The optimal T13 deep-learning model feeding on 2D 
molecular images and trained by the compounds identified as above, 
successfully identified new leads in a short time, been capable of detecting one 
of our previously identified leads among millions of never-seen-before 
compounds. However, only 4 star-shaped new structures could be detected by 
T13 among  ~ 2.5 million compounds. Also, the screening with infiniSee of much 
larger libraries (109-1014 compounds) although detected many TTT-similars, did 
not contributed any other leads to S-SLSF. Further explorations of wider chemical 
spaces using the above mentioned T13 model may be tried in the future. 
However, although more leads may be reasonably expected, perhaps with some 
new chemotypes and higher hydrophilicity, it is possible that the abundance of 
star-shaped compounds in actual chemical banks may be limited. Perhaps to fully 
explore all possibilities, new computationally libraries of "synthetic" compounds 
potentially targeting S-SLSF may be required. On the other hand, the star-shaped 
molecules which virtually bound to S-SLSF were best detected when using work-
intensive core-replacement or fragment-extension methods. Most probably, further 
automatizing those search methods by new algorithm designs to target new 
chemical data bases, would contribute to discover new star-shaped molecules 
targeting the 3x3 α-helices of S-SLSF. Since α-helices are present in many coiled-
coils that participate in important biological interactions, such methods may be of 
interest to other fields. 

Identifying the star-shaped lead molecules would have been more 
difficult using AutoDockVina or similar algorithms. In this particular case, only the 
seeSAR algorithm detected the star-shaped structures fitting the inner part of the 
3x3 SLSF α-helices. Opposite examples in which AutoDockVina performed better 
than seeSAR were also found, such as to detect anti-VKORC1 molecules to 
identify possible rodenticides 41 or to predict graphene interactions with detoxifying 
enzymes 42. It seems likely that the best fitting algorithms may depend not only of 
using the most adequate data bases but also of each particular docking problem.  

One of the challenges for successful experimental prediction of leads 
targeting  S-SLSF is how accessible is the SLSF 3x3 α-helices in the wild-type 
coronavirus particle. The partial accessibility to S-SLSF predicted by modeling the 
wild-type closed all-down S trimer, suggests that fixed S-SLSF may be reached 
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A
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even at that highly-compacted conformation. Theoretically, experimental 
accession should be possible for any leads with the lowest binding-scores and 
smaller molecular sizes, provided they could be efficiently water-solubilized. At this 
respect, the conformer-dependent  binding-score lead variations despite differing 
only in their PP mutations but with similar 3D structures (low RMSDs), was again 
remarkable. Apparently, most of the observed differences were highly dependent  
on small 3D variations on their inner 3x3 α-helices. Thus superposition of 6xr8 and 
6xr8+PP SLSF trimers predicted that an small total widening ( ~ 1 Å) of the 
internal space between one or several of the 3x3 α-helices in the PP mutant 
compared to the wild-type conformer. That could be enough to explain the 
increasing binding-scores of 3-4 orders of magnitude. Seldom addressed, 
because of the wide acceptance of the PP mutations to stabilize the S protein to 
develop vaccines, these observations agreed with those made in crystal structures 
in other coronaviruses, which predicted small but significant changes in the inner 
trimer 3x3 α-helix S-SLSF in their PP mutants 7. However,  there have been few 
studies comparing wild-type and PP-mutated spike conformations taking into 
account the dinamic nature of the corresponding conformations3.  

Although the more relaxed open (RBD-up) S structures together with  
the  flexible nature of the protein conformations, suggested an experimental 
increase of accessibility to S-SLSF, preliminary docking results to PP-mutated but 
fixed conformers, suggested that the inner empty space between their S-SLSF 
3x3 α-helices were widened enough in the PP-mutants, which will result in an 
apparent increase of the binding-scores of some wild-type leads. To our 
knowledge, the absence of 3D structures of wild-type S open conformations, do 
not allow yet to make any accurate docking predictions with fixed target 3D protein 
targets. A possible alternative will be to introduce molecular dynamic procedures, 
which will best mimic possible conformational variations on the S-SLSF during the 
docking proccesses, however computational costs for studying the whole S-SLSF 
trimer would be very high. Another possible alternative to explore, would be to 
computationally revert the PP mutations to the 986KV wild-type sequence. Before 
interpreting those possible results, experimental binding and fusion inhibition, 
would need to be investigated. 

Visualization of the docked complexes to S-SLSF predicted that 
interactions with each of the 3x3 α-helices may slightly differ among leads. Thus, 
for most leads, the main contributions to the final  binding-scores, implicated 
hydrogen bridges between the Trihydroxyls of the Triphenyl groups and the three 
T998 and Q1002  residues of the S trimer. The total binding-score estimations by 
seeSAR implicated lead-dependent  combinations of the above mentioned binding 
residues of the S-SLSF α-helices and of others located inside or outside of S-
SLSF. There were none or few alternative fragments detected which could replace 
the contribution of the Trihydroxyl groups attached to the C5 carbon of the phenyl 
groups, confirming their importance in lead binding. The small distance-
requirement for such hydrogen bridges may also explain why any small 
displacement of the α-helixes, like those previously described for crystalized 
structures of PP mutants 3-5, could increase binding-scores. On the other hand, the 
other atoms which either belong to the Triphenyls or to different fragment 
structures, only slightly contributed to the final binding-score calculations. Their 
small per atom contributions were due to favor desolvation (displacement of water 
molecules). Although weak, these individual-atom interactions, taken together 
made important contributions to the final computation of each lead-dependent  
binding-score.  Most fragment alternatives containing either positive or negative 
charges generated unfavorable interactions, increasing their corresponding 
estimations of binding-scores, and suggesting that charges were not involved in 
start-shaped lead bindings to S-SLSF. Taken all the above ideas together, we may 
conclude that these star-shaped F+TTX leads may be highly specific and unique 
for the wild-type 6xr8 conformers. It is probable that any of the 1, 2 or 3 receptor-
binding domains (RBD)-up conformations of the prefusion S trimers would require 
other leads to virtually cross-bind their 3x3 S-SLSF α-helixes. 
 The identified leads were more hydrophilic, of smaller size and 
maintained their binding-scores low compared to Tinosorb. However, some of 
these leads may still be difficult to dissolve in water to be tested in vitro and there 
are some that may be inhibitors of important detoxifying cytochromes, which it is 
usually interpreted as physiologically problematic for in vivo drug-like purposes.  
Therefore, these practical aspects should be also considered when evaluating any 
possible validation of these compounds. Assays such as testing by experimental 
binding of leads to isolated recombinant S, inhibition of S pseudotyped VSV 
fusion (as described before1) and/or possible blocking of coronavirus cellular 
infection, could be employed to validate in vitro some of the proposed lead 
predictions. Considering that those new F+TTX leads with 3-fold symmetry will be 
most favorable for chemical synthesis, those may be preferred for initial 
experimental tests. Additionally, both from a physiological point of view and 
because computational data indicated that the smaller the size, the lower the 
binding-score to S-SLSF, the lead candidates or other still to be found with  
simpler chemical structures may be preferable for in vitro and in vivo testing.  

 
 

Supporting information 
 

Figure S1 
Molecular 2D and 3D molecular structures of Tinosorb 

A. 2D representation of Tinosorb (bis-ethylhexythexyloxyphenol-methoxyphenyl-Triazine) 
B. 3D representation of Tinosorb best conformational pose when docked to SLSF 

 

 
Figure S2 

TTT core- / phenyl-replacements and hydroxyl-phenyl C1 fragment extensions 
Core- and phenyl-replacements (A,B) were screened among ~40 millions of fragments of seeSAR’s supplied libraries.  
Hydroxyl-phenyl C1 fragment extensions (C) were screened among the 100 low molecular weight fragment library provided by 
seeSAR and enriched with 10 home-made fragments. Each of the resulting new F-TTT molecules were then docked to SLSF.  
A, core-replacements in gray and the rest of the maintained structures in black, separated by the pink insertion locations.  
B, phenyl-replacements in gray and the rest of the maintained structures in black, separated by the pink insertion locations.  
C, hydroxyl-phenyl C1 extension  separated by the pink insertion location.  
D, example of merged fragments extended in position C1 at the RED hydroxyl-phenyl.  
 

 
Figure S3 

SLSF-docking of fragments extended to different C positions of TTT  
One hundred fragments provided by seeSAR's  were linked to each of the C phenyl positions 1-6  (except 4) of TTT.  
RED, GREEN and BLUE hydroxyl-phenyls were independently extended. Binding of the resulting new F+TTTs were then 
estimated by docking to SLSF.  
A, scheme of the  TTT molecular structure, with only the RED hydroxyl-phenyl drawn (GREEN and BLUE hydroxyl-phenyls  
were omitted in the TTT structure for clarity).  
B, Binding-score profiles to SLSF of the resulting F+TTT complexes. 
Red hexagons, C1.  
Blue hexagons, C2.  
Purple hexagons, C3.  
Gray hexagons, C5.  
Green hexagons, C6.  
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Figure S4 

Mean RGB binding-scores to SLSF of the C1 fragment extension leads at F+TTTs 
The fragments represented in their smiles formula were those selected among the seeSAR’s fragment extension leads 
having binding-scores < 0.2 nM. Mean ± sd were calculated from the binding-scores of the 3 RGB hydroxyl-phenyl 
groups at each of the F+TTT complexes.  
Y-axis, fragment smiles formula where [R] indicates the covalent bond to C1.  
Gray bars, bound only to one of the RGB. Red bars, fragments with > 7 non-hydrogen atoms.  
Green bars, fragments with < 7 non-hydrogen atoms. 
 

Table S1 
SLSF binding-scores of cores + fragment extensions 

      phenyl     
      RED GREEN BLUE 

core   C1-fragment nM nM nM 

N1 N1+ [R]       

 
N1+1 C[R]       

  N1+2 CC[R] 0.14 0.11 0.11 
  N1+3 CCC[R] 0.05 0.03 0.05 
  N1+4 CCCC[R] 0.07 0.03 0.05 
  N1+5 CC(C)SC[R] 0.02 0.01 0.01 
  N1+6 CC(C)C[R] 0.02 0.03 0.01 
  N1+7 CC(C)OCCC[R] 0.01 0.02 0.07 
  N1+8 (C)OCCC[R] 0.00 0.23 0.01 
  N1+9 CS[R] 0.09 0.12 0.08 
  N1+10 CC(O)[R] 0.13 1.30 0.09 
  N1+11 COCN[R] 0.03 0.09 7.63 
  N1+12 CCC[C]([R])CC 0.11 0.01 0.01 

N14 N14+ [R]       
  N14+1 C[R] 

     N14+2 CC[R] 0.11 0.07 0.10 
  N14+3 CCC[R] 0.06 0.03 0.02 
  N14+4 CCCC[R] 0.09 0.02 0.02 
  N14+5 CC(C)SC[R] 0.05 0.01 0.04 
  N14+6 CC(C)C[R] 0.14 0.01 0.03 
  N14+9 CS[R] 0.12 0.07 0.10 
  N14+13 CC(C)[R] 260.74 0.04 0.07 
  N14+14 COC([R])=O 0.12 0.08 0.08 
  N14+15 C1COCCC1[R] 0.91 0.03 0.09 

N35 N35+0 [R] 
     N35+1 C[R] 
     N35+3 CCC[R] 0.41 0.07 0.08 

  N35+4 CCCC[R] 0.12 0.06 0.03 
  N35+5 CC(C)SC[R] 0.01 0.01 0.01 
  N35+6 CC(C)C[R] 0.05 0.05 0.05 
  N35+7 CC(C)OCCC[R] 0.00 0.00 0.01 
  N35+8 (C)OCCC[R] 0.01 0.01 0.05 
  N35+12 CCC[C]([R])CC 0.01 0.01 0.01 

N34 N34+ [R]       
  N34+1 C[R] 

     N34+13 CC(C)[R] 33.70 0.12 0.06 
  N34+16 CO[R] 1.34 1.34 0.17 

N135 N135+ [R] 
     N135+1 C[R] 0.38 0.40 0.45 

  N135+3 CCC[R] 0.12 0.14 0.10 
  N135+4 CCCC[R] 0.16 0.09 0.05 
  N135+5 CC(C)SC[R] 0.06 0.02 0.04 
  N135+6 CC(C)C[R] 0.04 0.05 0.07 
  N135+7 CC(C)OCCC[R] 0.01 0.01 0.01 
  N135+8 (C)OCCC[R] 0.01 0.22 0.02 
  N135+12 CCC[C]([R])CC 0.02 0.02 0.02 

      F+TTX structures were generated by the seeSAR fragment extension of hydroxyl-phenyls 
C1s in 5 different cores. The resulting structures were  labeled by an N followed by their N 
positions in the core as in Figure 4. The selected fragments were arbitrarily numbered from 
+1 to +16 (i.e., N34+13). Those fragments represented by individual [R] corresponded to the 
initial core-replacement molecules of Figure 4. The represented fragment binding leads to 
SLSF were defined as those F+TTX structures with predicting binding-scores < 0.2 nM. The 
tabulated fragments were then computationally drawn as been bound to their corresponding 
C1 positions on the final F+TTX molecules to be tested by docking to S-SLSF (final results in 
Figure 5). Some of the minimal fragments C[R] were rejected by the fragment extension 
program, but included in the final F+TTX reconstructed molecules for docking to S-SLSF.  
Numbers in red,  fragments with a high nM binding-score having low probability of fitting the 
SLSF and/or the S-SLSF inner 3x3 α-helices.   
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Figure S5 

Learning curve of the DEEPScreen CNN T13 model developed for high-throughput screening of 

binding candidates among large libraries 

The training-set contained 48 F+TTX as positives (1) (Figure 5) and randomized/size-selected 30 TTT-

similars + 162 SNII as negatives (0). To train the T13 model, the resulting training-set of 240 classified 

compounds was randomized and splitted in 60 % for training, 20 %  for validation and 20 %  for test. The 

DEEPScreen convolutional neural network (CNN) T13 model prediction performance were true for 80.0 % 

of the 48 positives and for 97.4 % of all the 240 classified compounds of the training-set.  

Loss, mean differences between the T13 model predictions and their classifications.  

Epochs, number of forward/backward iterations through all training-set in our DEEPScreen CNN T13. 

 
Table S2 

Lead drug-like characteristics predicted by the SwissADME web server 
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141325665 0.0001 398.5 4.6 M  H Yes Yes Yes Yes Yes 0 0 3.1 

135843076 0.0002 399.4 4.2 M  H No No No Yes No 0 0 2.7 

N14+1x2 0.0002 385.4 3.0 M  H Yes Yes No Yes Yes 0 0 3.2 

N135+1x3 0.0002 399.4 4.2 M  H No No No Yes No 0 0 2.7 

N1+1x2 0.0002 383.4 4.6 P  H Yes Yes No Yes No 0 0 3.0 

N14+1x1 0.0003 371.4 2.6 M  H Yes Yes No Yes Yes 0 0 3.1 

N35+1x2 0.0003 384.4 4.2 M  H Yes Yes No Yes No 0 0 3.0 

N135+1x2 0.0003 385.4 3.9 M  H Yes No No Yes No 0 0 2.6 

N35+1x1 0.0003 370.4 3.9 M  H Yes Yes No Yes No 0 0 2.9 

N135+1x1 0.0004 371.4 3.5 M  H Yes No No Yes Yes 0 0 2.5 

137100803 0.0004 355.4 4.0 M  H Yes Yes No Yes  No 0 0 2.8 

N14 0.0004 357.4 2.3 M  H Yes Yes No Yes Yes 0 0 3.0 

N1 0.0004 355.4 4.0 M  H Yes Yes No Yes No 0 0 2.8 

N1+1x1 0.0004 369.4 4.4 M  H Yes Yes No Yes No 0 0 2.9 

N135 0.0007 357.4 3.2 M  H Yes Yes No Yes Yes 0 0 2.4 

N35+1x1 0.0007 370.4 3.9 M  H Yes Yes No Yes  No 0 0 2.9 

141325666 0.0008 356.4 3.7 M  H Yes Yes No Yes Yes 0 0 2.8 

N35 0.0008 356.4 3.7 M  H Yes Yes No Yes Yes 0 0 2.8 

136653883 0.0009 357.4 3.2 M  H Yes Yes No Yes Yes 0 0 2.4 

N34 0.0009 357.4 2.7 M  H Yes Yes No Yes No 0 0 3.0 

136423729 0.0011 415.4 3.5 M  H Yes No No Yes No 0 0 2.9 

135960896 0.0013 413.5 4.6 P  H No No No Yes No 0 0 2.9 

chembl2205860 0.0018 444.4 5.5 P  H Yes Yes Yes Yes Yes 1  0 2.9 

N1+2x1 0.0058 383.4 4.7 P  H Yes Yes No Yes No 0 0 3.0 

N34+1x1 0.0098 371.4 3.1 M  H Yes Yes No Yes No 0 0 3.2 

N35+4x1 0.0117 412.5 4.9 P  H  No Yes No Yes No 0 0 3.2 

136006876 0.0120 383.4 4.6 M  H Yes Yes Yes Yes Yes 0 0 2.7 

chembl4098217 0.0205 373.8 5.0 P  H Yes Yes No Yes Yes 0 0 2.8 

135839733 0.0227 355.4 4.0 M  H Yes Yes No Yes Yes 0 0 2.5 

N14+3x1 0.0271 399.5 3.3 M  H Yes Yes No Yes Yes 0 0 3.3 

153499063 0.0294 323.4 4.8 M  H Yes Yes No Yes Yes 0 0 2.6 

N34+16x1 0.0295 387.4 2.8 M  H Yes Yes No Yes No 0 0 3.2 

N35+1x3 0.0325 398.5 4.6 M  H No Yes No Yes No 0 0 3.1 

136627870 0.0327 427.5 4.9 P  H No Yes No Yes No 0 0 3.1 

135800943 0.0335 340.4 3.9 M  H Yes Yes No Yes Yes 0 0 2.7 

136159616 0.0344 339.4 4.4 M  H Yes Yes No Yes Yes 0 0 2.8 

N34+16x1 0.0354 387.4 2.7 M  H Yes Yes No Yes No 0 0 3.2 

136085071 0.0400 355.4 4.0 M  H Yes Yes No Yes Yes 0 0 2.5 

135981233 0.0474 339.4 4.4 M  H Yes Yes No Yes Yes 0 0 2.7 

N1+4x1 0.0476 411.5 5.4 P  H Yes Yes No Yes No 0 0 3.2 

630964 0.0505 340.4 4.0 M  H Yes Yes No Yes Yes 0 0 2.7 

136052741 0.0535 401.5 4.4 M  H No No Yes No No 0 0 3.9 

137662037 0.0678 373.8 5.0 P  H Yes Yes No Yes Yes 0 0 2.8 

chembl1096434 0.0681 339.4 4.4 M  H Yes Yes No Yes Yes 0 0 2.7 

135458191 0.0706 353.4 4.7 M  H Yes Yes No Yes Yes 0 0 2.8 

136052737 0.0710 401.5 4.1 M  H No No Yes No No 0 0 3.9 

N34+16x2 0.0820 417.4 2.7 M  H Yes Yes No Yes No 0 0 3.4 

N14+1x2 0.0855 385.4 3.0 M  H Yes Yes No Yes Yes 0 0 3.2 

N14+2x1 0.0926 385.4 3.0 M  H Yes Yes No Yes Yes 0 0 3.1 

N1+1x2 0.0965 383.4 4.7 P  H Yes Yes No Yes No 0 0 3.0 

N135+4x1 0.1250 413.5 4.6 P  H  No Yes No Yes No 0 0 2.9 

N1+8x1 0.1343 427.5 4.7 M  H Yes Yes No Yes No 0 0 3.2 

N34+1x2 0.1437 385.4 3.4 M  H Yes Yes No Yes No 0 0 3.3 

N14+1x1 0.1491 371.4 2.7 M  H Yes Yes No Yes Yes 0 0 3.1 

136432921 0.1641 423.4 5.0 P  Low Yes Yes No Yes No 0 0 2.8 

N35+8x1 0.1948 428.5 4.2 M  H Yes Yes No Yes No 0 0 3.2 

N1+8x1 0.1969 427.5 4.7 M  H Yes Yes No Yes No 0  3.2 

Lead numbers, PubMed IDs 
Lead chembl number, CHEMBL IDs 
Lead N numbers, core (Figure 4) + fragment number (Table S1) x 1,2 or 3 fragments . 
LIPK, number of  violations of Lipinski rules that would make the ligand less likely to be an orally administrable drug if >5.  
LogP, consensus value of multiple predictions of lipophilicity.   
1A2, 2C19, 2C9, 2D6, 3A4, in green the leads predicted to inhibit the main detoxyfying cytochromes P450.   
GIA, in green predictions of high gastro-intestinal adsorption.   
PAIN, Pan Assay Interference Structures (PAINS), alerting of the number of chemical fragments that return false positives in virtual binding.  
Green, favorable  
Light green,  moderately favorable.  
Empty in white backgrounds, unfavorable. 
SynAcc, synthetic difficulties calculated by fragmentation of the leads and ranged from 1-10 (the highest the most difficult to synthesize) 
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