
A Quantum Chemical Topology Picture of

Intermolecular Electrostatic Interactions and

Charge Penetration Energy
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Abstract

Basing on the Interacting Quantum Atoms approach, we present herein a conceptual

and theoretical framework of short-range electrostatic interactions, whose accurate de-

scription is still a challenging problem in molecular modeling. For all the non-covalent

complexes in the S66 database, the fragment-based and atomic decomposition of the

electrostatic binding energies is performed using both the charge density of the dimers

and the unrelaxed densities of the monomers. This energy decomposition together

with dispersion corrections gives rise to a pairwise approximation to the total binding

energy. It also provides energetic descriptors at varying distance that directly ad-

dress the atomic and molecular electrostatic interactions as described by point-charge

or multipole-based potentials. Additionally, we propose a consistent definition of the

charge penetration energy within quantum chemical topology, which is mainly char-

acterized in terms of the intramolecular electrostatic energy. Finally, we discuss some

practical implications of our results for the design and validation of electrostatic po-

tentials.
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1 Introduction

Electrostatic interactions are central to molecular modeling because of their slow decay

and strength. Especially when polar atoms or charged species are involved, they largely

determine the stability and activity of biomolecules such as proteins, nucleic acids or lipids,

among others.1,2 As such, a reliable description in molecular mechanics (MM) potentials is

essential both in the short and in the long range.

Within the framework of MM methods, interactions comprising non-bonded atoms are

usually represented by pairwise potentials such as the Lennard-Jones and the Coulomb ones.

In the latter case, the use of point charges or higher order multipoles to avoid the integration

of interacting charge densities has resulted in accurate electrostatics at long range, with sig-

nificant improvements to speed up and facilitate convergence such as the Ewald summation

and its variants to perform, for example, molecular simulations in solution under periodic

boundary conditions.3–8 At short range, however, the approximations taken for long distances

become less accurate or invalid,9 and a correct electrostatic description in this regime stills

poses a challenge. Hence, there is a growing interest in improving short-range electrostatics

(e.g., for troublesome hydrogen-bonds), mainly focused on capturing the effects associated

with the non-negligible interpenetration of densities, leading to the so-called charge penetra-

tion (CP) energy, that is typically defined as the difference between the electrostatic energy

computed from continuous charge density distributions and that from multipolar approxi-

mations.10 Thus, several investigations have been devoted in the last years to incorporate

the charge penetration energy into the MM electrostatic potentials.10–14

The separation of various energy terms as implemented in the MM potentials is somehow

paralleled by the energy decomposition analysis (EDA) methods.15 A major goal of any

EDA approach is to ascertain the nature and type of the interactions among molecules as

well as to rationalize their stabilizing or destabilizing roles, what may have implications

for the design, parameterization and validation of MM potentials such as the electrostatic

ones. However, there is no unique recipe to decompose the energy and thus many EDAs

2



have been developed rooted in different approaches. Hence, symmetry-adapted perturbation

theory (SAPT) makes use of a perturbative approach to differentiate the distinct nature

of the intermolecular interactions,16,17 while orbital-based EDAs exploit a stepped scheme

to calculate the different energies according to some reference electronic states18–20 and the

interacting quantum atoms (IQA) method relies on a real space partition of the quantum

mechanical (QM) density matrices,21,22 being thus classified as a quantum chemical topology

(QCT) method.

According to recent studies, in spite of their crude approximations, it may be feasible to

improve the classical MM potentials by utilizing the information provided by EDAs.23 More

specifically, it has been shown that the SAPT energy components (electrostatics, induction,

exchange-repulsion and dispersion) can be modeled with relatively simple MM functions.24,25

In particular, it has been demonstrated that the combination of empirical damping functions

accounting for the CP energy with point multipoles results in electrostatic energies at short

range that are quite close to the SAPT ones. Actually, the SAPT electrostatic energy

provides the required reference to parameterize and validate the CP-augmented potentials.

However, different interpretations of short-range energetic effects involving the overlap of

the electron densities of two or more fragments may be possible depending on the particular

EDA of choice.15 As such, other schemes such as the absolutely localized molecular orbital

(ALMO) EDA, that relies on a different non-perturbative decomposition of energy terms,

have also been proposed.26 In this work, we reexamine the nature of electrostatic interactions

under the prism of an orbital-invariant, reference-free technique. The IQA approach fulfills

these requirements as it is a QCT, real-space energy decomposition resorting to the partition

of the reduced density matrices (RDMs). IQA not only distinguishes between electrostatic or

exchange-correlation components of the interaction energy, but also between intra- or inter-

atomic (or fragment) contributions. Moreover, since IQA splits the total energy of a system

and not only the interaction between selected fragments, it is capable of reconstructing (or

dissecting) the energy ascribed to both covalent and non-covalent binding, allowing thus to
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characterize covalent bond energies27 as well as to investigate the accuracy of the energy

components handled by QM fragment methods.28

Herein, we study in detail the electrostatic interactions involved in non-covalent com-

plexes with a twofold goal. On the one hand, we aim to compare in a consistent and system-

atic manner the atomic and fragment contributions to the electrostatic energy as evaluated

throughout a hierarchy of QM and MM approximations and at varying intermolecular dis-

tances. In this way, we seek to identify the best correspondence between the IQA and MM

electrostatic terms. On the other hand, we critically examine the CP concept and propose

a novel definition relying on a joint orbital and real-space decomposition scheme, which can

give new insight into the CP energy. To help fulfill these goals, the rest of the manuscript is

structured as follows. First, we present and describe the theoretical scaffold that holds our

work, paying particular attention to the IQA —and its IQF variant— energy decomposition,

followed by subsections concerning the zeroth-order approximation, the electrostatic MM

potentials and a final assessment of the CP energy and the alternative definition proposed in

this work. Subsequently, we describe some computational settings and the results of our test

calculations, which were carried out on the S66 and S66x8 datasets.29,30 The various levels

of description of the electrostatic interactions are then discussed basing on their statistical

correlation with benchmark data, their dependence with the intermolecular separation, etc.

The QM and IQA calculations yield further information, not only about the magnitude of

the CP energy, but more importantly, about its different role in the IQA descriptors. Finally,

we conclude that the aim of improving the electrostatic description is essentially fulfilled at

the expense of accounting for intramolecular effects.
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2 Theory and Methods

2.1 IQA decomposition of QM energies

The interacting quantum atoms method is a robust and physically sound approach to de-

compose the total QM energy of a system into chemically meaningful components.21,22 It

is based on partitioning the first- and second-order RDMs, as can be done with the real

space partition proposed by Bader and coworkers within their Quantum Theory of Atoms in

Molecules (QTAIM).31 Thus, the three dimensional space is decomposed into atomic regions

(ΩI) as the attraction basins of the gradient field of the electron density.

Given a global energy E of a system, IQA permits its decomposition into atomic compo-

nents and pair interaction energies according to

E =
∑
I

EI
net +

∑
I<J

EIJ
int, (1)

where EI
net is called the net atomic energy and, under the Born-Oppenheimer approxima-

tion, represents the energy due to the kinetic energy of electrons plus all the interactions

involved (i.e., electron-electron and electron-nucleus) inside the atomic basin of each atom

I. Similarly, each EIJ
int term comprises the interaction energy between the electrons (e) and

nucleus (n) located in atom I with those ascribed to other atoms J , which can be separated

into n-e, e-e and n-n contributions.

In order to compute the potential energy, the pair density ρ2(r1, r2) is required. This

object can be split according to ρ2(r1, r2) = ρ(r1)ρ(r2) + ρxc(r1, r2) in two contributions. On

the one hand, ρ(r1)ρ(r2) represents a non-correlated product of densities, whereas electron

correlation is accounted for by the exchange-correlation (xc) density ρxc(r1, r2). Accordingly,

the total interaction energy between two atoms can be decomposed into a Coulomb or
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electrostatic term EIJ
ele and a quantum mechanical exchange-correlation one EIJ

xc :

EIJ
int = EIJ

ele + EIJ
xc , (2)

the latter term comprising all the associated QM effects that other (e.g., perturbative) ap-

proaches identify separately as dispersion, charge-transfer, polarization, etc. However, such

a decomposition of EIJ
int into two terms is particularly relevant when assessing the nature of

a given bond or interaction, since the electrostatic term is associated with ionicity and the

exchange-correlation contribution with covalency.22

IQA admits the grouping of atomic terms into fragment contributions (e.g., functional

groups, molecules). Thus, a fragment decomposition similar to Eq. 1 of a molecular aggregate

constituted by two moieties A and B involves

EA
net =

∑
I∈A

EI
net +

∑
J>I
I,J∈A

EIJ
int (3)

EAB
int =

∑
I∈A
J∈B

EIJ
int (4)

where EB
net can be calculated analogously. For practical purposes, we use the IQA acronym

to refer to the atomic analysis, whereas for its fragment version the term interacting quantum

fragments (IQF) is preferred.

In previous work,32 it has been shown that IQF may be useful to dissect the forma-

tion energy of non-covalent complexes. Moreover, the IQA/IQF terms can be augmented

with Grimme’s D3 dispersion correction33 as combined with the Becke-Johnson damping

function34 to complement the DFT and HF descriptions. Using the IQF-D3 protocol, the

formation energy of a two-fragment system AB given by the process A + B −−→ A···B is

split as

∆Eform = ∆EA
net + ∆EB

net + EAB
ele + EAB

xc + EAB
D3−disp = EA

def + EB
def + EAB

int . (5)
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The deformation term EA
def (EB

def ) in the above equation corresponds to the net energy

variation ∆EA
net (∆EB

net) of fragment A (B), whereas the interfragment interaction en-

ergy EAB
int comprises the electrostatic (EAB

ele ), exchange-correlation (EAB
xc ) and dispersion

(EAB
D3−disp) energies between the two fragments, the latter being thus separated from the

whole exchange-correlation one. Overall, the contribution of electrostatics and exchange-

correlation to ∆Eform is split between the intrafragment deformation and the interfragment

interactions.

2.2 Electrostatic energy from continuous charge densities

The purely electrostatic energy for a given system with total charge density ρ(r) (ρ(r) ≡

ρtot(r) =
∑

I ZIδ(r−RI)− ρe(r), including both the electron density ρe(r) and the nuclear

charges ZI at positions RI) is readily computed using the Coulomb law,

Eele =
1

2

∫
R3

∫
R3

ρ(r1)ρ(r2)

r12

dr1dr2, (6)

where, for the sake of simplicity, the electrostatic potential in this and the rest of equations

is expressed in atomic units. Interestingly, the QTAIM real space partition derived from

ρe(r) allows us to decompose the electrostatic energy at the atomic level,

Eele =
1

2

[∑
I

∫
ΩI

dr1

∫
ΩI

dr2
ρ(r1)ρ(r2)

r12

+
∑
I<J

∫
ΩI

dr1

∫
ΩJ

dr2
ρ(r1)ρ(r2)

r12

]
(7)

=
∑
I

EI
ele +

∑
I<J

EIJ
ele.

Similarly, the fragment-based decomposition can be readily accomplished in an analogous

way, allowing thus the specific assessment of the electrostatic component of the formation

energy ∆Eele of a two-fragment system AB as

∆Eele = ∆EA
ele + ∆EB

ele + EAB
ele , (8)
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where ∆Eele is expressed in terms of two contributions, namely the intrafragment variations

of electrostatic energy in the formation process, ∆EA
ele and ∆EB

ele, and the interfragment

electrostatic interaction, EAB
ele . At this point, we note that, although ∆Eele is commonly-

termed as a classical electrostatic interaction energy, we will refer to it as the electrostatic

contribution to the formation energy of the A···B complex in order to help avoid confusions

with the IQA/IQF interaction energy terms. When the charge density is constructed from

the unrelaxed fragment densities as ρ0(r) = ρ0
A(r) + ρ0

B(r), the electrostatic contribution

to the formation energy, which is named here as the zeroth-order energy ∆E0
ele, equals the

Coulomb interaction between the unrelaxed densities:

∆E0
ele =

∫
R3

∫
R3

ρ0
A(r1)ρ0

B(r2)

r12

dr1dr2. (9)

This energetic term corresponds to the so-called first-order polarization energy (or simply

electrostatic energy) defined in SAPT,16 which has been adopted as a benchmark electrostatic

energy for the validation of recently developed short-range electrostatic potentials.

2.3 Electrostatic potentials in molecular mechanics

To avoid the usage of continuous charge distributions, the MM methods typically invoke the

multipolar expansion as detailed in the Supporting Information (SI), which approximates the

zeroth-order energy defined in Eq. 9. Formally, the multipolar electrostatic energy ∆E0
ele,mp

is affected by two different error sources. On the one hand, the underlying expansion must

be truncated at some order (lmax = 0, 1, 2, ...), resulting thus in a certain truncation error.

On the other, when ρ0
A(r) and ρ0

B(r) overlap to a significant extent, the rigorous applica-

tion of the multipole expansion is impeded so that its usage at short distances implies some

charge penetration error, which is normally assumed to be dominant. Nevertheless, the

multipole-based potentials are still largely useful in many cases and they enhance conver-

gence by distributing multipoles throughout the molecule at the atomic sites and/or bond
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centers.9,35,36

The MM electrostatic potentials can be classified into two groups. On one side, MM

methods such as AMBER,37 CHARMM,38 GROMOS,39 OPLS,40 adopt simple electrostatic

formulas with point charges (i.e., monopoles, with lmax = 0), that are ultimately the result of

a fitting procedure against the molecular electrostatic potential (ESP). On the other, more

sophisticated methods, such as NEMO,41 AMOEBA42 or the QTAIM-based FFLUX,43,44

include higher order multipoles (frequently up to the quadrupoles, lmax = 2) in order to cap-

ture the anisotropy of the distribution of electrons in space. These potentials are generally

built from the QM density matrix of the molecule of interest by means of the distributed mul-

tipole analysis (DMA)36 or similar procedures. In addition, some methods (e.g., AMOEBA

or NEMO) also refine the DMA multipoles to better reproduce the ESP values. In this

way, the resulting charges/multipoles may include in an effective way both high-order mul-

tipolar contributions and CP effects. Actually, the performance of the MM potentials is

examined statistically as a whole (i.e., using the full MM potential including all bonded and

non-bonded terms) by various energetic and structural validation tests. A quite different ap-

proach is followed by the FFLUX force field. It makes use of QTAIM multipoles in contrast

to the more widespread DMA methodologies, and estimates them by means of a machine

learning technique depending on each atom’s environment.

In comparison with the atomic/multipolar methods that are massively employed in cur-

rent simulation packages, the electrostatic MM potentials that go beyond the multipolar

approximation are much less consolidated. In this category, we find different methodologies

such as SIBFA,45 EFP46 and AMOEBA+24 that complement the multipolar formulas with

other (so-called damping) functions to capture very-short range electrostatics and to remove

the CP error. In this way, these potentials (whose general form is shown in the SI) seek to

reproduce ∆E0
ele as evaluated by SAPT or similar methodologies.24
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2.4 Charge Penetration Energy

The CP energy Epen between two molecules has been defined47 as the difference between the

exact zeroth-order electrostatic energy ∆E0
ele and its multipolar analogue ∆E0

ele,mp,

Epen = ∆E0
ele −∆E0

ele,mp. (10)

Conceptually, this straightforward definition of Epen is satisfactory. It also shows that

Epen is not only an interfragment quantity, but rather an energy that presents also in-

tramolecular contributions according to the real space partitioning of the whole ∆E0
ele. In

this respect, the energetic definition suggests that the CP energy is not limited to the change

in the electrostatic interaction between two atoms due to their electron cloud overlap and the

associated loss of nuclear screening.48

The rigorous evaluation of Epen for different systems at varying intermolecular separa-

tions would allow a deeper analysis of electrostatics and, eventually, the development of

more accurate potentials. However, as noticed by Bojarowski et al.,47 different methods

of obtaining multipole moments lead to different radii of (pseudo)convergence, different lev-

els of multipole expansions at which (pseudo)convergence is achieved and different values of

penetration energy. Therefore, the value of the CP energy as evaluated with Eq. 10 may

depend on the particular method used to derive the multipoles. Moreover, the usage of

truncated expansions introduces some additional truncation error so that both truncation

and penetration effects become somewhat mixed in the resulting Epen values.49

An alternative to evaluate Epen has been proposed by Kayris and Jensen.50 Having noticed

the relationship between the CP energy and the magnitude of the orbital overlap, they

attempt to recover such effect from scratch, with a derivation of Epen independently from

the multipolar model used to estimate electrostatics at first stage. However, the authors find

that the inherent dependence on the set of molecular orbitals used may lead to different CP

values.

10



2.4.1 A novel IQF definition of Charge Penetration Energy

By combining both the Bader partitioning scheme (R3 = ΩA + ΩB) with a total zeroth-order

density decomposition (ρ0 = ρ0
A + ρ0

B), the following energy terms are obtained:

i) the intramolecular interaction due to ρ0
A or ρ0

B inside a given molecular basin ΩA or

ΩB, leading to EA
ele(ρ

0
A, ρ

0
A), EB

ele(ρ
0
A, ρ

0
A), EA

ele(ρ
0
B, ρ

0
B) and EB

ele(ρ
0
B, ρ

0
B).

ii) the intramolecular interaction between the two monomeric densities inside a given

basin: EA
ele(ρ

0
A, ρ

0
B) and EB

ele(ρ
0
A, ρ

0
B).

iii) the intermolecular electrostatic energy between same density pieces: EAB
ele (ρ0

A, ρ
0
A) and

EAB
ele (ρ0

B, ρ
0
B).

iv) the intermolecular interaction between ρ0
A and ρ0

B in opposite molecular basins:

EAB
ele (ρ0

A, ρ
0
B) and EBA

ele (ρ0
A, ρ

0
B).

Hence, the total electrostatic energy of a complex AB can be written as

E0
ele = EA

ele(ρ
0
A, ρ

0
A) + EA

ele(ρ
0
B, ρ

0
B) + EA

ele(ρ
0
A, ρ

0
B) (11)

+ EB
ele(ρ

0
A, ρ

0
A) + EB

ele(ρ
0
B, ρ

0
B) + EB

ele(ρ
0
A, ρ

0
B)

+ EAB
ele (ρ0

A, ρ
0
A) + EAB

ele (ρ0
B, ρ

0
B) + EAB

ele (ρ0
A, ρ

0
B) + EBA

ele (ρ0
A, ρ

0
B).

In the notation used above the two interacting densities are encompassed by parentheses,

while the basins they are integrated in are identified by the corresponding superscripts in the

given order (only one if both are the same). Hence, for instance, the term EBA
ele (ρ0

A, ρ
0
B) stands

for
∫

ΩB
dr1

∫
ΩA
dr2ρ

0
A(r1)ρ0

B(r2)r−1
12 and EB

ele(ρ
0
A, ρ

0
A) corresponds to 1

2

∫
ΩB
dr1

∫
ΩB
dr2ρ

0
A(r1)ρ0

A(r2)r−1
12 .

When the above double decomposition is applied to the electrostatic energies of the

separate fragments, such as A, in the final complex, the electrostatic energy of the original

species becomes

Eele(ρ
0
A, ρ

0
A) = EA

ele(ρ
0
A, ρ

0
A) + EB

ele(ρ
0
A, ρ

0
A) + EAB

ele (ρ0
A, ρ

0
A). (12)
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Note that this partitioning is derived from the AB zeroth-order (i.e., Hartree product)

wave function and that geometry relaxation effects are not considered. By subtracting from

Eq. 11 the previous fragment energies, the corresponding electrostatic contribution to the

formation energy of the complex is obtained,

∆E0
ele = EA

ele(ρ
0
A, ρ

0
B) + EB

ele(ρ
0
A, ρ

0
B) + EAB

ele (ρ0
A, ρ

0
B) + EBA

ele (ρ0
A, ρ

0
B). (13)

Among the surviving terms in Eq. 13, EAB
ele (ρ0

A, ρ
0
B) reveals itself as the ordinary interac-

tion term between the two monomers A and B. It matches ∆E0
ele at long distances, while the

other three terms would present a similar behavior of increasing in magnitude when short-

ening the intermolecular distances RAB and cancelling out in the opposite situation. Thus,

those three terms can be directly related with the interpenetration of molecular densities

and grouped in the IQF-like electrostatic charge penetration energy

EIQF
ele,pen = EA

ele(ρ
0
A, ρ

0
B) + EB

ele(ρ
0
A, ρ

0
B) + EBA

ele (ρ0
A, ρ

0
B). (14)

This term fulfills limRAB→∞E
IQF
ele,pen = 0 (and so its three components), while limRAB→∞E

AB
ele (ρ0

A, ρ
0
B) =

∆E0
ele. Figure 1 represents the previous four terms between the partitioned ρ0

A and ρ0
B adding

up to ∆E0
ele, and compares them to the E0,AB

ele term between the total densities in each basin.

3 Computational details

3.1 Molecular geometries and reference interaction energies

All the QM and classical electrostatic calculations were performed on the molecular geome-

tries retrieved from the S66 database,29 which contains a set of 66 complexes featuring the

most common non-covalent interactions in biomolecules. These can be classified depending

on the atoms involved into polar, non-polar and mixed. Analogously, the different complexes

have been grouped into H-bond, dispersion and mixed according to the main interactions

12



Figure 1: Graphical scheme of the four contributions giving rise to ∆E0
ele, where three of

them (in dark blue) comprise the IQF electrostatic penetration energy and the remaining
one (dark green) accounts for the interaction of ρ0

A and ρ0
B lying in the molecular basins

ΩA and ΩB, respectively. The zeroth-order IQF pairwise term E0,AB
ele has been also included

to remark its difference with the previous EAB
ele (ρ0

A, ρ
0
B), as it accounts for an interaction

between total densities inside each basin (the original ρ0
A or ρ0

B and the tail from the other
that has penetrated into another domain).

they experience (see Table S1). For representing both the the atomic interactions and the

subsets of complexes a color code has been utilized: magenta for H-bond/polar, yellow for

mixed and blue for dispersion/non-polar. In addition to the S66 set, a selection of 12 rep-

resentative complexes from the S66x8 database,30 which is an extension of the former to

eight different fractions of the equilibrium intermolecular distances, were also considered.

The benchmark CCSD(T)/CBS interaction energies collected in S66 were employed as the

reference values for comparative purposes.

3.2 HF-D3 calculations

HF/cc-pVTZ calculations were carried out on the S66 and the S66x8 geometries using the

GAMESS-US package.51 Grimme’s D3 dispersion potential as implemented in the DFT-D3

code52 was employed to incorporate the dispersion energy. Additionally, in order to cor-

rectly reproduce the asymptotic behavior of the dispersion energy at small distances, the
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Becke-Johnson damping function was chosen.53

We selected HF because it lacks entirely of dispersion energy and thereby yields a straight

physical partitioning of energy in combination with the D3 potential. We also note in passing

that HF-D3 has been shown to describe correctly and efficiently the structure and energetics

of biomolecules54 and that a variant of DFT-SAPT has been also developed in which the

costly ab initio dispersion calculations are replaced by a reparameterized D3 potential.55 In

addition, the HF-D3/cc-pVTZ energies reproduce quite well the reference CCSD(T)/CBS

energies of the S66 structures (see Figure S1).

3.3 IQA energy decomposition analysis

The decomposition of the QM and the electrostatic energies derived from continuous charge

densities were performed with the PROMOLDEN code.56 The integration settings comprised β-

spheres with radii of a 60% of the distance between each nucleus and its closest critical point.

Within them, Lebedev angular grids with 974 points were used, along with Euler-McLaurin

radial quadratures with 382 radial points. A bipolar expansion of r−1
12 was selected with

an lmax of 6. On the other hand, the outer part of the basins (i.e., outside the β-spheres)

employed same angular and radial quadratures, albeit increasing their respective points up

to 5810 and 512, with a maximum radius of 15 au. In this case, r−1
12 was expanded by means

of a Laplace expansion with lmax = 10.

3.4 Point-charge and multipolar calculations

Atomic charges were computed for the separate monomers in the S66 structures by means

of the restrained electrostatic potential (RESP) method following the General Amber Force

Field (GAFF)57 prescriptions with a HF/6-31G* level of theory. In the case of the atomic

multipoles, two different sets were employed. On the one hand, AMOEBA multipoles were

derived up to the quadrupoles (lmax = 2) following its corresponding parameterization proto-

col.42,58 On the other, QTAIM multipoles were obtained by means of the PROMOLDEN program
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with an lmax = 2. Both the AMOEBA and the QTAIM multipolar energies were obtained

with the MPOLINT code.59

Additionally, a set of twelve S66x8 complexes was tested under the AMOEBA+ CP-

corrected potentials.24 For this, TINKER was used to calculate the respective CP energies as

the difference between the CP-corrected multipoles and the multipolar energies previously

derived. The parameters of the dumping functions were directly taken from the literature.24

3.5 Graphs and statistical analyses

Octave60 and GNUplot61 were, in turn, used to perform the statistical analyses and the

correlation plots, while Python’s Matplotlib62 was chosen for the rest of the representations.

4 Results and Discussion

4.1 IQF-D3 partitioning and pairwise approximation

The IQF-D3 decomposition of the HF/cc-pVTZ binding energies for the S66 complexes has

been discussed at length in previous work.32 Herein, we focus on the decomposition of the

electrostatic descriptors into intra- and interfragment components. Interestingly, we found

that the combination of the interfragment electrostatic interaction energy EAB
ele with the

D3 dispersion potential yields pairwise energies that are quite well correlated with the S66

benchmark values, the coefficient of determination being R2 = 0.990 with RMS errors of

5.7 kcal mol−1 (see Figure 2 and Table S2). Thus, the IQF EAB
ele descriptors in conjunction

with the D3 potential capture the essential electrostatic and dispersion interactions that

determine the relative stability of the non-covalent complexes. When addressing both terms

independently (Figure S2), we find that the pure electrostatic EAB
ele term exhibits a satisfac-

tory overall correlation (R2 = 0.943) due to the fundamental role of electrostatics in H-bond

complexes. On the other hand, the D3 descriptor has a null global correlation with the S66

reference energies although it is reasonable (R2 = 0.820) for the dispersion complexes as

15



expected. However, the mixed complexes are not well-described by either the electrostatic

or the dispersion energies separately, and their combination becomes critical.

In contrast to the ability of the EAB
ele + D3 descriptors to capture the main features

of non-covalent binding, the combination of ∆Eele, which includes both the intra- and in-

termolecular electrostatic effects, with the D3 potential deteriorates the global correlation

(R2 = 0.888) and results in larger RMS errors (17.3 kcal mol−1). The full IQF decompo-

sition (Eq. 8) explains this unbalanced description because the intrafragment electrostatic

energies, which contribute to the deformation energies, tend to cancel out with the QM en-

ergy terms (electronic kinetic energy and exchange-correlation) that are not required in the

simple electrostatic+dispersion picture (see Figure 2 right). Therefore, the pairwise EAB
ele

terms arises as the most relevant IQF electrostatic descriptors of non-covalent binding.

Figure 2: Left: correlation between the dispersion-augmented IQF intermolecular electro-
static energy EAB

ele + D3 and the reference binding energies ∆Eref
form. Right: anticorrelation

featured by the intrafragment electrostatic contribution to formation ∆EA
ele + ∆EB

ele and the
total kinetic plus exchange-correlation contributions ∆T + ∆Exc. The statistical analysis
comprises the coefficient of determination R2, Spearman’s rank correlation coefficient ρ and
the root mean square error RMS. Data corresponding to the whole set of complexes is de-
picted in black, that ascribed to the H-bond group in magenta, while mixed and dispersion
complexes are in yellow and blue, respectively. All the energies are in kcal mol−1.
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4.2 Validating and analyzing the zeroth-order approximation

The electrostatic IQF terms can be readily evaluated under the zeroth-order approximation

(i.e., ρ0(r) = ρ0
A(r) + ρ0

B(r) ). Thus, it turns out that the interaction energies EAB
ele can

be replaced effectively by their zeroth-order counterparts. Indeed, the pairwise E0,AB
ele + D3

energies have low RMS errors (3.1 kcal mol−1) and maintain a good correlation (R2 = 0.971)

with respect to the benchmark data (Table S3). This behavior is also satisfactory within

the S66 subsets: R2 = 0.989 and 0.988 for the polar H-bonded systems and the dispersion-

dominated complexes, respectively, albeit the correlation is somewhat reduced in the case

of the mixed complexes (R2 = 0.755). Further support for the use of the zeroth-order

energies comes from the atomic level, where a high degree of coincidence between the diatomic

zeroth-order E0,IJ
ele and fully-relaxed EIJ

ele energies is also found at the equilibrium geometries

(R2 = 0.995, see SI).

When addressing the distance dependence of the previous term (see Figure 3), both

EAB
ele and E0,AB

ele follow the same trends at varying intermolecular separations RAB (given

as relative to the equilibrium distances Req). As expected, they start diverging at short

distances due to the strengthening of charge polarization, charge-penetration and charge-

transfer effects that attenuate the pairwise electrostatic forces. The magnitude of these

effects is clearly system-dependent, as well as the shape and slope of the EAB
ele and E0,AB

ele

curves, revealing thus further details about the role of electrostatics in these complexes.

Thus, the electrostatic stabilization of the four H-bond complexes and others (e.g., the

π-complex of the uracil dimer) is continuously reinforced upon shortening the monomer-

monomer distance, reflecting the major electrostatic control of these systems. In contrast,

the T-shaped benzene complexes with methanol or N-methylacetamide reach an electrostatic

minimum at a distance longer than the equilibrium one while the small electrostatic energies

of the dispersion dimers (i.e. +1,-1 kcal/mol) change very little along the curves (some small

leaps are due to residual errors arising in the numerical integration over the atomic basins).

In Figure 3 the deviation between the global ∆E0
ele energies and the interfragment E0,AB

ele

17



Figure 3: Intermolecular electrostatic interactions for a subset of the S66x8 complexes as pro-
vided by IQF (either exactly EAB

ele or under the zeroth-order approximation E0,AB
ele ), zeroth-

order QTAIM multipoles E0,AB
ele,mp, AMOEBA multipolar energies EAB

ele,AMOEBA and RESP

atomic charges EAB
ele,RESP . Additionally, the zeroth-order electrostatic contribution to forma-

tion ∆E0
ele is also included. The complexes are colored and displayed in columns according

to the group they belong to, namely H-bond, mixed or dispersion, respectively. The ener-
gies (Y-axis) are given in kcal mol−1 and the abscissa represent the intermolecular distances
relative to the equilibrium ones (RAB/Req).
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anticipates the underlying CP effects associated to the density overlap. For the H-bond

and some of the mixed complexes, the two curves decrease with lowering separation, but

they split gradually for RAB/Req < 1.6. The global ∆E0
ele stabilization nearly doubles E0,AB

ele

at Req, showing thus the large impact of intramolecular electrostatics as defined in the

IQF framework. For the π-complexes (benzene-dimer, benzene-methanol...) or the weakly-

interacting neopentane dimer, the inter- vs. intramolecular balance is differently modulated

because the deviation between the global and interfragment electrostatics becomes significant

only at very close distances (e.g., RAB/Req < 1.1), which are indicative of mutual overlap.

In these systems, ∆E0
ele is thus reinforced by several kcal mol−1, which are ascribed to the

intrafragment electrostatic stabilization achieved by the fragment-overlap (i.e., CP) effects.

Such effects have a minor influence on the small E0,AB
ele energies (< 1− 2 kcal mol−1), which

tend to remain nearly constant or become slightly attenuated. As shown below (Section

4.5), the IQF analysis of the CP energy gives further insight about the behavior of E0,AB
ele

and ∆E0
ele with RAB/Req.

4.3 Comparison between E0,AB
ele and pairwise MM energies

The pairwise approximation that emerges from the IQF-D3 decomposition and the valid-

ity of the zeroth-order approximation for the electrostatic interactions provide an insightful

theoretical support for the construction of non-covalent MM potentials. In this scenario,

E0,AB
ele can be seen as the most suitable IQF descriptor to assess the approximate electro-

static potentials. Hence, we calculated the interfragment electrostatic energies using the

RESP atomic charges, the AMOEBA multipoles, as well as the QTAIM multipoles up to

the quadrupoles.

According to the statistical data in Table 1, either the RESP atomic charges or the

QTAIM/AMOEBA multipoles give interfragment electrostatic energies that correlate con-

siderably well with E0,AB
ele (R2 > 0.9 and RMS errors ∼ 1 kcal mol−1) for the full S66

set, and also for the H-bond/dispersion subsets. These point-charge/multipolar electrostatic
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Table 1: Statistical measurements comprising the coefficient of determination R2, Spear-
man’s rank correlation coefficient ρ and the root mean square error RMS for the correlation
between E0,AB

ele and either the QTAIM or AMOEBA multipoles (lmax = 2) or the RESP point
charges (lmax = 0).

Multipolar approximation Complex type R2 ρ RMS
Global 0.970 0.958 1.0
H-bond 0.956 0.904 1.4

QTAIM
Mixed 0.644 0.768 0.9

Dispersion 0.955 0.795 0.5
Global 0.953 0.972 1.3
H-bond 0.904 0.841 2.0

AMOEBA
Mixed 0.800 0.845 0.7

Dispersion 0.939 0.893 0.4
Global 0.974 0.962 0.8
H-bond 0.981 0.918 0.7

RESP
Mixed 0.456 0.687 1.1

Dispersion 0.948 0.831 0.3

energies are less satisfactory for the less abundant mixed complexes although the multipo-

lar potentials yield a more accurate description (R2 ' 0.6 − 0.8) than the RESP charges

(R2 ' 0.5). In addition to ∆E0
ele and the fully-relaxed and zeroth-order IQF pairwise terms,

Figure 3 also displays the distance dependence of the QTAIM/AMOEBA/RESP energies,

that results quite close to that of the interfragment E0,AB
ele energies. Nevertheless, a closer

inspection reveals that the QTAIM/AMOEBA/RESP energies tend to overestimate the sta-

bilizing/destabilizing character of E0,AB
ele for the H-bond/dispersion dimers, respectively.

The good agreement between the multipolar and the RESP energies in Table 1 and in

Figure 3 suggests that the RESP fitting procedure may incorporate in an effective way higher

order effects even at short distances. In addition, our results point out that the pure QTAIM

multipoles can be employed in the construction of accurate electrostatic potentials, free from

the inclusion of other effects that may be present when the DMA multipoles are fitted against

the molecular ESP. In fact, the QTAIM multipoles, which are already considered in the

FFLUX force field, readily reproduce the ESP without the need of any constraint.63
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4.4 Comparing diatomic electrostatic interactions

IQA permits an unambiguous decomposition of the continuous-density intermolecular inter-

action energy into a sum of atomic and diatomic terms that enables a thorough analysis of

the global molecular properties basing on their atomic origins, and a close comparison with

the various MM descriptions at this atomic level.

As expected, the IQA diatomic terms correlate almost perfectly with the QTAIM mul-

tipolar ones E0,IJ
ele,mp (see Figure 4). On the contrary, the AMOEBA and RESP energies are

significantly less correlated (R2 of 0.7 and 0.4, respectively) and have large RMS errors.

For example, the largest discrepancies between E0,IJ
ele and the QTAIM-multipolar E0,IJ

ele,mp in

the acetic acid dimer (about 6 kcal mol−1) arise from the atoms involved in the OH···O

H-bonds, the rest of pair interactions having much lower differences (< 0.5 kcal mol−1; see

Tables S7-S9). When comparing E0,IJ
ele and EIJ

ele,AMOEBA (or EIJ
ele,RESP ), the largest discrep-

ancies amount to hundreds of kcal mol−1 and involve not only short polar contacts, but

methyl C atoms too (see Tables S10-S15).

The dissimilarity between the E0,IJ
ele,mp energies and the EIJ

ele,AMOEBA/EIJ
ele,RESP values was

not entirely unexpected given that the RESP charges are derived from the molecular ESP

and the AMOEBA multipoles are obtained by the DMA protocol. In fact, a difference of

one order of magnitude between the atom-atom electrostatic interactions from IQA and MM

potentials has also been noticed previously.64 The present results show in further detail the

actual discrepancies between the various atomic representations and suggest that, although

the diverse atomic multipoles employed in classical potentials yield similar molecular electro-

static energies, the atomic decomposition is more questionable, what, in turn, can negatively

affect the interpretation of localized electrostatic interactions and/or result in artefacts while

dealing with QM and MM short-range electrostatics in hybrid QM/MM methodologies.
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Figure 4: Comparison of the E0,IJ
ele,mp, E

0,IJ
ele,AMOEBA and EIJ

ele,RESP energies with the E0,IJ
ele term

(kcal mol−1). On the left are the correlation plots and, on the right, each difference as a
function of the interatomic distance (Å).
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4.5 Charge penetration under the QTAIM scrutiny

Following the prescriptions introduced in Theory and Methods, the zeroth-order electrostatic

formation energy ∆E0
ele of each S66 complex was decomposed by combining its real space
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partition into non-overlapping atomic basins with the zeroth-order density approximation

(ρ0 = ρ0
A + ρ0

B). This strategy leads to the IQF-based charge penetration energies, EIQF
ele,pen,

resulting from the sum of the intramolecular terms EA
ele(ρ

0
A, ρ

0
B) and EB

ele(ρ
0
A, ρ

0
B), as those

accounting for the interaction of both densities inside the same basin, and the intermolecular

energy EBA
ele (ρ0

A, ρ
0
B) between the tails of each molecular density that penetrate into the

opposite basin, as described in Eq. 14. This constitutes an effective penetration energy in

the sense that the molecular identity between two overlapping fragments becomes necessarily

blurred so that fragment properties are dependent upon the scheme followed to dissect the

global charge density into its constituents. Nevertheless, the topological analysis of ρ0 yields

a consistent identification of molecular fragments so that we believe that the associated

charge-penetration analysis can give useful insight into the electrostatics of non-covalent

complexes.

The application of Eq. 14 to ∆E0
ele results in the energy contributions shown in Figure 5.

On the one hand, the interfragment energy EAB
ele (ρ0

A, ρ
0
B) is formally not affected by charge

penetration and plays a stabilizing role in all the H-bond complexes (slightly repulsive in

the dispersion complexes). On the other hand, the IQF penetration term EIQF
ele,pen turns out

to be of equal importance in the H-bond complexes or even more relevant in the dispersion

subset for which penetration energy describes the major part of ∆E0
ele.

The decomposition of the penetration energy shows that it arises mainly from the sta-

bilizing interactions between ρ0
A and ρ0

B inside the same basin. This is an intramolecular

effect as reflected by the magnitude of the EB
ele(ρ

0
A, ρ

0
B) and EA

ele(ρ
0
A, ρ

0
B) energies. As shown

by the integration of ρ0
A or ρ0

B in the corresponding basins, the mutual CP values range, for

instance, from 0.035 e in the neopentane dimer to 0.099 e in the case of the acetic acid dimer.

These fractional charges involve the e-e repulsion between the fragment electron densities

occupying the same space, such as ρ0
e,A(r), ρ0

e,B(r) | r ∈ ΩA (or equivalently in region ΩB),

and the attraction experienced by the nuclei of one fragment {ZI}I∈A (or {ZJ}J∈B) and

the fraction of electrons from the other that has penetrated into the former ρ0
e,B(r ∈ ΩA)
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Figure 5: Decomposition of ∆E0
ele into EAB

ele (ρ0
A, ρ

0
B) and the three IQF penetration terms

EA
ele(ρ

0
A, ρ

0
B), EB

ele(ρ
0
A, ρ

0
B) and EBA

ele (ρ0
A, ρ

0
B). Energies are given in kcal mol−1.
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Figure 6: Evolution of the energy terms from Eq. 13, along with the E0,AB
ele pair term as a

function of the distance for the set of S66x8 systems chosen. The complexes are grouped in
three columns as belonging to the H-bond, mixed or dispersion subsets, respectively.
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(or similarly ρ0
e,A(r ∈ ΩB)). In light of these results, e-n attraction greatly overcomes e-e

repulsion between different zeroth-order densities inside the same basin, and gives rise to the

significant stabilizing energies observed. There is also a minor repulsive contribution owing

to the purely electronic repulsion between the penetrating ρ0
A into ΩB and the ρ0

B tail in ΩA,

which is measured by EBA
ele (ρ0

A, ρ
0
B).

Further insight can be gained by analyzing the distance dependence of the various energy

terms as shown in Figure 6. The plots confirm that the three components of EIQF
pen tend

to zero when RAB/Req > 1.5 and further highlight the role of the intrafragment terms.

Interestingly, the EAB
ele (ρ0

A, ρ
0
B) energy, formally lacking penetration effects, is modulated

by the degree of the interfragment overlap so that the decreasing trend in EAB
ele (ρ0

A, ρ
0
B) is

damped out or inverted at the shortest distances. This is not entirely unexpected given that,

as two initially-separated atomic basins (e.g, ΩI∈A and ΩJ∈B) approach one another, their

volume, shape and electron population evolve along the RAB/Req curve in response to the

density overlap. We note, however, that the deviation of EAB
ele (ρ0

A, ρ
0
B) with respect to the

interfragment electrostatic energy E0,AB
ele may constitute a useful index about the specific

impact of penetration effects on the pairwise electrostatics. At this point, an important

caveat should be noted. Within the QTAIM framework, the E0,AB
ele energy includes a fraction

of stabilizing penetration energy for RAB/Req < 1.2 given that the loss of some electronic

ρ0
A density from the basins of the monomer A is partially compensated by the penetration

of ρ0
B into the same basin. The fixed multipoles/charges in the classical potentials somehow

mimic this behavior so that they remain closer to the E0,AB
ele descriptors than to EAB

ele (ρ0
A, ρ

0
B)

around the equilibrium distance.

Finally, Figure 7 compares the IQF penetration term and other relevant energetic quan-

tities with the analogue term derived from the AMOEBA+ model as a function of the

intermolecular distance. Thus, the combination of the multipolar EAB
ele,AMOEBA energies with

the CP correction24 EAMOEBA+
pen results in the ∆EAMOEBA+

ele energies that approach to the

reference ∆E0
ele, which is equivalent to the SAPT electrostatic energy. In effect, Figure 7
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Figure 7: Comparison between the AMOEBA+ model and the zeroth-order IQF energies
for our model S66x8 complexes. The complexes have been displayed according to the group
they belong to (either H-bond, mixed or dispersion). Distances (X-axis) are relative to the
equilibrium ones (RAB/Req) and energies (Y-axis) are in kcal mol−1.
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shows that ∆EAMOEBA+
ele nearly matches ∆E0

ele. Concerning the CP energies, it is impor-

tant to note again that the AMOEBA+ reference for measuring the CP energy is different

to that provided by the IQF-QTAIM approach. Nevertheless, the two penetration energies

exhibit a similar behavior with RAB, particularly for the more stable H-bond complexes,

which resemble also the variations experienced by the intramolecular CP terms, EA
ele(ρ

0
A, ρ

0
B)

and EB
ele(ρ

0
A, ρ

0
B). Therefore, we conclude that the AMOEBA+ CP and similar corrections

account mainly for intramolecular electrostatics.

5 Concluding remarks

In this work we have analyzed the short-range electrostatic interactions in the S66 and S66x8

datasets through a hierarchy of approximations at both the molecular and the atomic levels.

We have shown first that the IQA/IQF decomposition augmented with the D3 dispersion

terms gives support to the pairwise approach adopted by many MM potentials. In this

respect, the interfragment energies EAB
ele derived from the IQF partitioning suffice to capture

the essential electrostatic effects explaining the binding of the weakly-interacting complexes.

Moreover, the same role can be played by the equivalent E0,AB
ele values, which are obtained

from the unrelaxed densities of the isolated monomers (i.e., the zeroth-order approximation).

According to our results, the intermolecular E0,AB
ele energy turns out to be the most

appropriate IQF descriptor to analyze and/or compare with electrostatic MM potentials.

In particular, we have considered two widely used potentials relying on the RESP atomic

charges or the AMOEBA distributed atomic multipoles, respectively, as well as the multipo-

lar potential up to the quadrupoles derived directly from the QTAIM basins. The three MM

pairwise approximations correlate satisfactorily with the zeroth-order IQF term at varying

intermolecular distances and exhibit small RMS errors. However, when the E0,AB
ele values

are further decomposed into diatomic contributions, large discrepancies between the RESP

or AMOEBA atom-atom interactions and their zeroth-order IQA counterparts are unveiled.
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Although this is understandable in terms of the specific details of the RESP/AMOEBA

charge/multipole derivations, it contrasts sharply with the nearly perfect match between the

QTAIM atomic multipolar energies and the IQA reference values. Hence, MM potentials

based on the QTAIM multipoles —such as the QCT-based FFLUX— may provide a more

consistent description of electrostatic interactions at both the molecular and the atomic

levels.

Besides forging links between the IQF/IQA quantities and the MM electrostatic poten-

tials, we have studied the charge penetration effects that arise from the mutual interpene-

tration of the zeroth-order molecular densities in their opposite QTAIM basins as built from

the final ρ0 of the complex. This QTAIM perspective allows us to dissect the CP energy

into different contributions that emphasize its intramolecular character, which, in turn, is

dominated by the attraction between the nuclei of fragment A (B) and the penetrating tail

of density B (A). In this way we may clarify some practical issues related with the CP

corrections for MM potentials. For example, adding CP corrections to MM potentials like

RESP/AMOEBA, which target the zeroth-order interfragment electrostatic energy, results,

necessarily, in an unbalanced description. This aspect, which has been overlooked in previ-

ous works,10,48,65 implies also that the electrostatic energy employed in popular MM force

fields (AMBER, CHARMM...) cannot be compared with the global ∆E0
ele energy derived

from continuous charge distributions, but with its interfragment component. On the other

hand, CP corrections have been derived to improve the description of the QM-MM electro-

static interactions in hybrid QM/MM methodologies.12 In this case, such corrections should

mitigate short-range electrostatic artefacts, particularly those associated to the QM-MM co-

valent linkages. However, considering the highly-dissimilar interatomic electrostatic energies

produced by the QM densities and the RESP/AMOEBA potentials, the usage of electrostatic

parameters more akin to the QM densities at the atomic level may have a larger impact in

improving the QM-MM electrostatics.

Finally, concerning the novel MM potentials inspired by the QM SAPT methodology, it is
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clear that the multipolar electrostatics (interfragment) must be augmented by the CP poten-

tials (intrafragment) if one seeks to reproduce the global electrostatics ∆E0
ele. Nevertheless,

the IQF/IQA approach (and other EDAs) points out that the intramolecular electrostatic

energy is closely related with other energy changes induced by fragment overlap (e.g., defor-

mation and interfragment exchange-correlation energy), suggesting thus that the separate

treatment of these effects by means of independent potential terms might be inefficient and

hamper parameter development and transferability.
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