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Abstract

While state-of-art models can predict reactions through the transfer learning of

thousands of samples with the same reaction types as those of the reactions to predict,

how to prepare such models to predict "unseen" reactions remain an unanswered

question. We aim to study the Transformer model's ability to predict "unseen"

reactions following "zero-shot reaction prediction (ZSRP)", a concept derived from

zero-shot learning and zero-shot translation. We reproduce the human invention of the

Chan-Lam coupling reaction where the inventor was inspired by the Suzuki reaction
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when improving Barton's bismuth arylation reaction. After being fine-tuned with the

samples from these two "existing" reactions, the USPTO-trained Transformer can

predict "unseen" Chan-Lam coupling reactions with 55.7% top-1 accuracy. Our model

also mimics the later stage of the history of this reaction, where the initial case of this

reaction was generalized to more reactants and reagents via the "one-shot/few-shot

reaction prediction (OSRP/FSRP)" approaches.

Introduction

The history of organic synthesis began in 1828 when Friedrich Wöhler smashed

the theory of vitalism by preparing urea, a naturally occurring organic compound,

from an inorganic compound, ammonium cyanate1,2. In the past two centuries, a long

list has been formed with more than 1,000 organic reactions named for their inventors.

In the meantime, the large amount of accumulated chemical knowledge has become a

suitable resource for deep learning. In the past decade, data-driven deep learning

models based on the statistical learning of a vast number of existing reactions have

been applied to retrosynthesis, reaction condition recommendation, generation of

novel reactions, and forward-reaction prediction3,4. For forward-reaction predictions,

there exist graphical convolutional neural networks5,6 and simplified molecular-input

line-entry system (SMILES)-based sequence-to-sequence (seq2seq) models7,8 that

take the SMILES of reactants and reagents as the input language and output the

products as the translated language. Transformer-based models such as the Molecular

Transformer9,10, adapted from Vaswani et al.'s original Transformer8, are the state-of-

art SMILES-based seq2seq model for forward reaction prediction. In addition,
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transfer learning has been equipped with the Transformer in the form of an additional

fine-tuning step, and this combination is beneficial for the forward prediction of

complex reactions that involve regioselectivity and stereoselectivity, such as

carbohydrate reactions11, the Heck reaction12, and the Baeyer-Villiger reaction13. For

example, in regio- and stereoselective carbohydrate reactions, a fine-tuning step with

2,000 carbohydrate reaction data yields a 30.0% increase in the prediction accuracy11.

The performance of Transformer can be further improved by SMILES augmentation

and beam search algorithms, and a recent state-of-art model gives top-5 accuracy

higher than 96.0% in the direct reaction prediction of two USPTO-MIT datasets14.

While the Transformer equipped with transfer learning has exciting prediction

performance in chemical reaction predictions, clarification and improvement are still

urgently needed on two sides. First, the current transfer-learning coupled

Transformers still require thousands of samples in the fine-tuning step to have the

model specialized in predicting reactions in certain specific chemical space, while

many chemical reactions do not have samples of this magnitude. Furthermore, the

overlap of the reaction types in the training set (including fine-tuning set) and the test

set in the state-of-art Transformer models, such as Schwaller et al.'s Molecular

Transformer, has not been discussed in their works10,11. In other words, the capability

of Transformer to predict truly "unseen" reaction is yet unclear---it might be possible

that the Transformer can predict only the reaction types that it has seen in the training

set.

Can we equip Transformer with the ability to predict unseen reactions through a
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"zero-shot reaction prediction (ZSRP)" approach (Fig. 1c)? In the field of machine

learning, there are mainly two "zero-shot" approaches including the "zero-shot

learning (ZSL)" in the field of object recognition and image classification and "zero-

shot translation (ZST)" in neural machine translation. ZSL means that, given training

samples in seen classes S, one aims to learn a classifier for classifying test samples

from "unseen" classes U15-17 (Fig. 1a). One important element of ZSL is the

construction of "auxiliary information" for the "unseen" classes using the instances in

the feature space of the seen classes, and the use of auxiliary information is inspired

by the way human beings identify new objects. A classic example is that humans can

usually identify a zebra when they see it for the first time, as long as they have seen

horses and stripes before and have the semantic knowledge that "a zebra is like a

horse with stripes on the body" as auxiliary information16,18. On the other hand, ZST

is brought up by Google's multilingual neural machine translation study in which the

model learns to translate between language pairs not seen in the training set by

modeling a few language pairs in a single model and setting up an "implicitly-learned

bridging"19 (Fig. 1b). The study gives an example that with training samples in

Portuguese->English and English->Spanish provided, although this multilingual

translation model has never seen a Portuguese->Spanish example in the training set,

the model can translate Portuguese directly to Spanish without explicitly translating to

English first19.

Unfortunately, we cannot solely follow the methodology of ZSL or ZST to

implement ZSRP for Transformer---the SMILES-based reaction prediction through
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Transformer does not bridge multiple languages as in ZST or do classification tasks as

in ZSL. However, we can still borrow the philosophies from ZSL and ZST, that is, to

get inspired by the way humans connect existing knowledge and identify unseen

objects. In this work, we start by seeking inspiration from human behavior during the

invention of a named reaction, a new chemical reaction named after its inventor(s).

The invention of a named reaction usually requires two fields of knowledge: the

general chemistry knowledge that qualifies the inventor as a chemical scientist and the

inspiration from a few existing reactions. Let us take the history of the invention of

the Chan-Lam coupling reaction as an example20. When improving Barton's bismuth

arylation reaction (referred to as the Barton reaction) in which N-H or O-H bonds are

arylated by trivalent organobismuth compounds in the presence of copper salts21-24

(Fig. 2a), Chan was inspired by the Suzuki reaction which uses arylboronic acids to

cross-couple aryl bromides, iodides and triflates25 (Fig. 2b). Chan used boronic acids

from the Suzuki reaction to replace the bismuth compounds in the Barton reaction and

successfully demonstrated a new methodology of C-O and C-N cross-coupling26 (Fig.

2c), and this was the first appearance of the Chan-Lam coupling reaction. After that,

Lam's group further explored the reaction through the use of alkenylboronic acids and

the application of N-arylation to heterocyclic systems27, while Evans' group optimized

the reaction with regard to the synthesis of biaryl ether28. After that, the scope of the

reaction was further expanded by additional research groups20. To reproduce the first

invention of the Chan-Lam coupling reaction using a machine learning model with the

concept of ZSRP, a training set is needed to familiarize the machine learning model
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with general knowledge about chemical reactions, while a fine-tuning set can teach

the model the concepts of boronic acid coupling reagents, as well as the arylation of

N-H and C-H bonds.

As is discussed above, besides predicting unseen reactions, the other capability

that Transformer needs further development is to require fewer samples for transfer

learning. With the history of the invention of the Chan-Lam coupling reaction in mind,

a follow-up question is that with just one or a handful of instances of a reaction that

was just invented, can machine learning models generalize the knowledge to a wide

range of reactants and reagents, just like Lam, Evans, and other researchers did after

seeing the first case of the Chan-Lam coupling reaction published by Chan? In this

case, we again borrow the philosophy from the concept of "one-shot learning (OSL)".

In 2003, Li Fei-fei et al. first proposed the idea of OSL in the area of computer vision,

by which a model can learn sufficient information from one or just a handful of

samples (also called "few-shot learning (FSL)") about a category.29 More works

regarding the concept of OSL/FSL through the use of a variety of statistical or

machine learning models have been published since then30. Although being less

exciting than ZSRP as samples from the seen reactions are still needed, proper one-

shot/few-shot reaction prediction (OSRP/FSRP) approaches can mimic the later

stages of the invention of a chemical reaction where the first case of a new reaction

has been invented but has not been generalized to a wide range of reactants and

reagents, and provide enlightenment for lowering the number of samples in the

transfer learning of chemical reaction predictions.
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In this work, we reproduce the earlier stages of the invention of the Chan-Lam

coupling reaction using the concept of ZSRP. We construct a training set with USPTO,

a dataset that has been used for the training of many state-of-art reaction-prediction

models6,10,11. Additionally, a fine-tuning dataset that consists of 200 samples of the

Suzuki reaction and 148 samples of Barton's bismuth arylation reaction is constructed.

We build our model upon the Transformer based on its success in the cases that have

been introduced above. The prediction performance of the model for Chan-Lam

coupling reactions is evaluated using a dataset that contains 472 Chan-Lam coupling

reactions (Fig. 3). After that, we reproduce the later generalization stage of the Chan-

Lam coupling reaction following the concept of OSRP/FSRP by picking one or a

handful of samples of Chan-Lam coupling reactions to further fine-tune the

Transformer. We hope that by reproducing the whole process of the invention of the

Chan-Lam coupling reaction using our adapted Transformer models, we can gain

inspiration from the human discovery of new chemical knowledge to train machine

learning models for predicting unseen chemical reactions as well as conducting

transfer learning with fewer samples.

Results

Zero-shot reaction prediction (ZSRP): first invention of Chan-Lam coupling

reaction. To reproduce the first invention of the Chan-Lam coupling reaction, the

Transformer model is trained on a training set (the USPTO dataset) as well as a fine-

tuning dataset that includes the Suzuki reaction and Barton's bismuth arylation

reaction, as described above. The USPTO dataset contains various samples of
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chemical reactions, providing the model with basic knowledge of molecular

representations and chemical reactions31. In our study, all Suzuki, Barton, and Chan-

Lam coupling reactions are removed from the USPTO training set to ensure that there

are no overlaps between the seen reactions and the "unseen" reactions (Chan-Lam

coupling reactions). The performance of the model is evaluated using the top-1

accuracy metric on the test set that contains 472 Chan-Lam coupling reactions. A

detailed description of the construction of the datasets can be found in the "Methods"

section.

The model trained on both the USPTO training set and the fine-tuning dataset

reaches a 55.7% top-1 accuracy (Table 1). Meanwhile, two other models are trained

without the fine-tuning step for comparison: the model trained on the training set only

yields a 4.4% top-1 accuracy, while the model trained on an alternative training set,

the original USPTO dataset with only Chan-Lam reactions removed, gives a 24.8%

top-1 accuracy (Table 1). The results show that the fine-tuning step using the Barton

reaction and Suzuki reaction plays a significant role in improving the model's

performance in predicting the Chan-Lam coupling reaction. Let us review the first

part of the story of the Chan-Lam coupling reaction: Chan, a scientist in the Chemical

Discovery of DuPont at the time, replaced the bismuth compounds in Barton's

bismuth arylation with boric acid reagents from the Suzuki reaction without changing

the main catalyst, demonstrating the first Chan-Lam coupling reaction, as described

above (Fig. 2)26. Similarly, along with the basic knowledge of molecular

representations and chemical reactions from the training set (like the chemical
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knowledge that prepared Chan as a chemical scientist), the model needs the specific

knowledge from the fine-tuning space, including the reactants for arylation, the

organoboronic coupling reagents, and the chemical mechanisms of coupling reactions,

to provide the first prediction of the Chan-Lam coupling reaction. As the model

trained with USPTO training set and fine-tuned with Suzuki reaction and Barton

reaction reproduces the first invention of Chan-Lam coupling reaction and performs

significantly better than the other two models (Table 1), we refer this model as the

ZSRP model in the following context.

The reactions correctly predicted by the ZSRP model are not limited to a specific

type of coupling. Table 2 shows the results with respect to the different coupling types

in detail. The top-1 accuracies of the two groups of C-N and C-O coupling reactions

with a relatively large number of test samples are 47.4% and 65.0%, respectively. The

accuracies of the C-S and C-C coupling reactions in the two groups with fewer test

examples are 84.6% and 100.0%, respectively. The predictive ability of the ZSRP

model for a variety of coupling types matches the fact that the Chan-Lam coupling

reaction has a convenient methodology to arylate N-H-, O-H-, S-H-, and C-H-

containing compounds32. Furthermore, the samples of the Barton reaction in the fine-

tuning dataset have only C-N couplings and C-O couplings, which means that our

model can generalize the coupling types to C-S and C-C couplings with the

fundamental knowledge learned from the training set.

The Chan-Lam coupling reactions correctly predicted by the ZSRP model are not

limited to a single substrate type. Table 3 shows the performance for the C-N Chan-
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Lam coupling categorized by five classes of N-containing substrates. The reactions

containing aliphatic amines yield the highest accuracy (65.3%), while the accuracy for

the reactions involving N-aromatic heterocyclic compounds is the lowest (35.5%).

The model recognizes different N-containing reactants, including amide, amine, and

N-aromatic heterocyclic compounds, and this matches the fact that the Chan-Lam

coupling reaction is known to accommodate a variety of substrates29.

A few correctly predicted C-N Chan-Lam coupling examples from the Table 3 are

shown in Supplementary Table 1. The fourth example is the most interesting since the

chlorine group competes with the amino group in the reactant to generate a Suzuki

product. However, our model recognizes the difference between these two reactive

groups and predicts the correct Chan-Lam coupling product under the interference of

the Suzuki reaction from the fine-tuning dataset.

The ZSRP model also finds different O-H- and S-H-containing substrates that can

produce Chan-Lam coupling reactions (more information can be found in

Supplementary Tables 2-3), and some correctly predicted examples are shown in

Supplementary Table 4. For the C-O couplings, the knowledge learned by the model

during the training process determines that the substrates include aromatic alcohol,

aliphatic alcohol, and amide alcohol. Again, in the first case shown in Supplementary

Table 4, the model correctly identifies a Chan-Lam coupling reaction with the

corresponding O-H group when competition with O-H, Cl, and Br exists. Furthermore,

the model discovers that thiophenol and thiol can be used as substrates for C-S

coupling, while C-C coupling can only occur when the reactant has an active
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methylene structure.

One-shot/few-shot reaction prediction (OSRP/FSRP): generalization of the first

Chan-Lam coupling reaction. To reproduce the later stage of the invention of the

Chan-Lam coupling reaction, where researchers expanded the ranges of the reactants

and reagents, the ZSRP model is further fine-tuned via the one-shot reaction

prediction (OSRP) of Chan-Lam coupling reaction samples that are outside the scope

of the test set. To avoid the bias brought by the OSRP sample, the model is fine-tuned

with 12 Chan-Lam coupling reaction samples, respectively (Table 4). These 12

samples are selected through stratified random sampling so that the proportions of

different coupling types in the 12 reactions are close to the proportions in the test set.

The testing accuracies of the 12 fine-tuned models as functions of the training steps

are shown in Supplementary Tables 5-16, and the final testing accuracies range from

61.6% to 87.1% with an average of 72.3% (Table 4). We also compare OSRP with

few-shot reaction prediction (FSRP), where more than one sample is used in the fine-

tuning step. With the 12 selected samples applied at one time in the fine-tuning step,

the testing accuracy increases to 92.2%, while fine-tuning with all 101 samples yields

an additional 2.0% increase (Supplementary Table 17).

To further evaluate the effect of OSRP, the model fine-tuned with the first

reaction in Table 4 (which gives the highest testing accuracy) is analyzed. The fine-

tuned model correctly predicts 153 of the 209 reaction samples that are incorrectly

predicted by the model without fine-tuning, and a few examples are shown in Table 5.

On the other hand, the fine-tuned model correctly predicts 258 of the 263 Chan-Lam
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reactions that are predicted correctly by the model without fine-tuning. Additionally,

the improvement in prediction performance is not limited to reactions that have the

same coupling style or the same reactant type as that of the OSRP sample. While the

OSRP sample discussed above is a C-N coupling reaction that occurs for an N-

heterocyclic compound, a 28.1% improvement in accuracy is found for C-O coupling

reactions compared to the model without fine-tuning. Furthermore, in the C-N

coupling reactions with reactants other than N-heterocyclic reactants (e.g., amides,

amines), increases in accuracy ranging from 8.2% to 48.7% are found. Detailed data

can be found in Supplementary Tables 18-22.

Discussion

While the definition of "unseen classes" in ZSL and "unseen language pairs" in

ZST have been clarified, the concept of "unseen reactions" in chemical reaction

prediction seems difficult to define in a narrow sense. For Transformer-based models,

a chemical reaction contains two main components: the SMILES of reactions and

products and the rearrangement of atoms, while many chemical reactions, including

different named reactions, have overlaps in SMILES or the mechanisms of atom

rearrangement. Hence, we would like to define the "unseen reactions" from a different

perspective, the "space" of chemical reactions. In other words, if certain reactions are

clustered separately from the clusters of the reactions from the training set, they can

be considered as "unseen" as they locate in the chemical reaction space that the model

has never explored. A recent study by Schwaller et al. uses rxnfp, a BERT

(Bidirectional Encoder Representations from Transformers) classifier33, to convert
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SMILES-based reactions to reaction fingerprints and mapped the reaction fingerprints

into TMAP34,35, a tree-like graph for the clustering of chemical reactions according to

their classifications36. The rxnfp has been pretrained on the Pistachio database which

contains 132k reactions from 792 different classes

(https://www.nextmovesoftware.com/pistachio) and can be fine-tuned with a specific

reaction classification database to follow its classification ontology36. Using rxnfp and

TMAP, Schneider 50K, the reaction database from the work by Schneider et al.37 that

follows the RXNO ontology (http://www.rsc.org/ontologies/RXNO/index.asp), has

been mapped into a chemical reaction space where reactions are well-clustered based

on their reaction fingerprints and classifications36.

In this study, we use rxnfp and TMAP to demonstrate the clustering and the

distribution of our Suzuki reactions, Barton's bismuth arylations, and Chan-Lam

coupling reactions in the chemical reaction space. We use Schneider 50K instead of

USPTO to form the backbone of this chemical reaction space as the Schneider 50K

has been classified37 and visualized36 nicely as is discussed above. To achieve the best

visualization effect, only the "heteroatom alkylation and arylation" and "C-C bond

formation" super-classes from Schneider 50K that are closely related to our reactions

are included in our TMAP along with our three reactions. Fig. 4 delivers two

important messages. First, the Chan-Lam coupling reactions are clustered

independently from Suzuki reactions and Barton's bismuth arylations, meaning that

our fine-tuning training set and test set fall into different regions of the chemical

reaction space. Meanwhile, Chan-Lam coupling reactions form their own clusters
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instead of being mixed into the cluster of heteroatom alkylation and arylation. This

infers that, even if there are reactions in our USPTO training set that look like Chan-

Lam coupling reactions, they still fall into regions different from the Chan-Lam

coupling reactions in the chemical reaction space. To confirm these two messages,

two additional advanced machine learning-based visualization techniques, t-SNE38,

and UMAP39, have been used to visualize the rxnfp fingerprints of these reactions,

and similar observation to the TMAP is achieved (Supplementary Figs. 1-2). Hence,

we can conclude that the Chan-Lam coupling reactions in our study are "unseen

reactions" from the perspective of the space of chemical reactions.

Unlike the previous studies that focused on optimizing training processes to

achieve improved prediction performances with regard to certain types of chemical

reactions, our study focuses on the proof-of-concept of the fact that one can increase

the possibility of correctly predicting unseen reactions via a ZSRP approach inspired

by reproducing the human invention of a named reaction. In other words, we do not

aim to compare the ZSRP version of Transformer prediction for "unseen" reactions to

the state-of-art Transformer models that predict "seen" reactions. Instead, the 55.7%

testing accuracy achieved via ZSRP approach compared to the 24.8% accuracy of the

model trained with USPTO without fine-tuning shows a transition from 0 to 1---the

understanding of Transformer changes from "undetermined capability for predicting

unseen reactions" to "can predict unseen reactions with a proper ZSRP approach".

Additionally, with additional OSRP/FSRP approaches, the model can further bring a

transition from 1 to 100 by expanding one or a handful of cases of the newly
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recognized reaction to various coupling types and reactant types. The results of this

study show that having existing reactions as a fine-tuning training set can help the

Transformer predict "unseen" reactions and that additionally providing just one or few

samples of the "unseen" reaction can boost the corresponding model's generalization

ability. We achieved both the transitions by reproducing the history of the invention of

the Chan-Lam coupling reaction, so we infer that the training of artificial intelligence

models can seek inspiration from the human history of knowledge accumulation and

industrial evolution.

Methods

USPTO dataset. The dataset used in our study is originally from the work of Lowe,

which contains reactions extracted from the United States Patent and Trademark

Office (USPTO)31. In Lowe's USPTO dataset, reagents have been eliminated so that

only reactants and products are kept in the reactions. Also, the reactions with multiple

products have been split into multiple reactions so that each of them has a single

product. In this work, the reactions that are duplicated, incomplete, erroneous, or

containing products that are the same as reactants are removed. We remove Suzuki

and Chan-Lam reactions from the USPTO training set by removing all the reactions

that contain boron (B) in the SMILES of the reactants. Similarly, we remove Barton's

bismuth arylation reactions by removing all reactions that have bismuth (Bi) in the

SMILES of the reactants. 367726 reactions are kept after data cleaning

(Supplementary Table 23). All reactants and products of USPTO, Suzuki reactions,
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Barton's bismuth arylations, and Chan-Lam coupling reactions are canonicalized

using RDKit prior to training and testing and have had their atom mapping removed.

Suzuki reaction. The Suzuki reaction, the palladium-catalyzed reaction of

organoboron compounds and organic halides or triflates, was first reported by Suzuki

and Miyaura.25 We extract the samples of the Suzuki reaction from the Reaxys

database based on the name of the reaction (all entries where the "Suzuki coupling"

phrase are used). The Suzuki reaction samples downloaded from Reaxys are further

processed with Python scripts and RDKit. And duplicate and incorrect reactions are

moved. Finally, we have 200 Suzuki reaction samples kept as the first part of the fine-

tuning dataset (Supplementary Table 23).

Barton's bismuth arylation. Barton's bismuth arylation was first published by

Barton in 1986, and the work demonstrated that arylbismuth reagents can arylate

aliphatic and aromatic amines in the presence of metallic copper or a copper (II) salt21.

The Barton's bismuth arylation dataset used in this work is originally derived from

Barton's papers23,24,40 and USPTO reactions31. We manually extract 62 Barton's

bismuth arylations from the Reaxys database and 87 from the USPTO reactions. After

removing the duplicates, 148 Barton's bismuth arylations are kept as the second part

of the fine-tuning dataset (Supplementary Table 23).

Chan-Lam coupling reaction. The target reaction to predict is the Chan-Lam

coupling reaction which is a class of coupling reaction between arylboronic acids and

the nucleophiles that have different heteroatoms under the promotion of copper salts26-
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28. We extract the Chan-Lam coupling reaction based on the name of the reaction from

the Reaxys database (all entries where the "Chan-Lam coupling reaction" phrase are

used). The reaction samples downloaded from Reaxys is then processed with Python

scripts and RDKit. After removing the duplicates and the reactions containing

multiple products, the final Chan-Lam coupling reaction dataset contains 1031

reaction samples (Supplementary Table 23).

Model. The model in this work is based upon the Transformer architecture, a neural

machine translation model (Supplementary Fig. 3)9. The Transformer consists of two

main stacks of layers: the encoder and the decoder. The encoder contains several

identical layers, and each of the layers contains one multi-head self-attention sub-

layer and one feed-forward sub-layer. Each layer of the decoder is composed of a

multi-head self-attention sub-layer, a feed-forward sub-layer, and a masked multi-

head attention corresponding to the encoder's output. The residual connection and

layer normalization play a crucial role in the integration of both the encoder sublayers

and decoder sublayers.

The multi-head attention consists of several scaled dot-product attention running

in parallel, which is an innovative part of the Transformer architecture. With multi-

head attention, the model can process different versions of queries, keys, and values

simultaneously, which outperforms the models with a single-head attention. The

Transformer model abandons any kind of convolutional or recurrent neural network

components and is based on attention mechanism solely. Therefore, a positional

encoding matrix is needed to make use of the order of the input SMILES sequence9.
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Zero-shot reaction prediction (ZSRP). We formulate the reaction prediction as a

sequence-to-sequence translation in which the reactants SMILES are translated to the

products SMILES. We make a few changes to the original hyperparameters of the

Transformer model: We select a batch size value of 6144 and a hidden size value of

256. We also change the vocabulary size to 64 and drop-out to 0.3. For ZSRP, the

Transformer model is trained on the training set (USPTO dataset) and the fine-tuning

set (Suzuki reaction and Barton's bismuth arylation). The model is then tested with the

testing set that contains 472 Chan-Lam coupling reactions. Models trained on only the

training set (USPTO dataset and USPTO without Chan-Lam reactions) are also tested.

One-shot/Few-shot reaction prediction (OSRP/FSRP). In this work, all the

OSRP/FSRP is performed on the Transformer model. The hyperparameters used here

are the same as in the ZSRP. 101 Chan-Lam coupling reactions outside the testing set

are set aside as the Chan-Lam training set. In OSRP, the Transformer model trained on

the training set (USPTO dataset) and fine-tuning dataset (Suzuki reaction and Barton's

bismuth arylation) is further fine-tuned with one sample of Chan-Lam coupling

reaction. 12 Chan-Lam coupling reactions are selected from the Chan-Lam training

set, and each of the 12 reactions is applied to the fine-tuning process, respectively. In

FSRP, the 12 selected Chan-Lam reactions and the 101 Chan-Lam coupling reactions

from the Chan-Lam training set are applied to the fine-tuning step, respectively. All

the models trained with OSRP/FSRP are tested with the testing set.

Data availability

The training, fine-tuning, validation and testing datasets used in our study are
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available from https://github.com/hongliangduan/Reproducing-the-invention-of-a-

named-reaction-Zero-shot-prediction-of-unseen-chemical-reactions. Source data are

provided with this paper.

Code availability

The code and the trained model are available from

https://github.com/hongliangduan/Reproducing-the-invention-of-a-named-reaction-

Zero-shot-prediction-of-unseen-chemical-reactions.

References

1. Wöhler, F. Ueber künstliche bildung des harnstoffs. Annalen der Physik 88, 253-256 (1828).

2. Cello, J., Paul, A. V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of

infectious virus in the absence of natural template. Science 297, 1016-1018 (2002).

3. Struble, T. J. et al. Current and future roles of artificial intelligence in medicinal chemistry

synthesis. J. Med. Chem. 63, 8667-8682 (2020).

4. Bort, W. et al. Discovery of novel chemical reactions by deep generative recurrent neural network.

Sci. Rep. 11, 3178 (2021).

5. Jin, W., Coley, C. W., Barzilay, R. & Jaakkola, T. Predicting organic reaction outcomes with

weisfeiler-lehman network. In Advances in Neural Information Processing Systems, 2607-2616

(2017).

6. Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical

reactivity. Chem. Sci. 10, 370-377 (2019).

7. Nam, J. & Kim, J. Linking the neural machine translation and the prediction of organic chemistry

reactions. Preprint at https://arxiv.org/abs/1612.09529 (2016).



20

8. Schwaller, P., Gaudin, T., Lányi, D., Bekas, C. & Laino, T. "Found in translation": predicting

outcomes of complex organic chemistry reactions using neural sequence-to-sequence models.

Chem. Sci. 9, 6091-6098 (2018).

9. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing

Systems, 5998-6008 (2017).

10. Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction

prediction. ACS Cent. Sci. 5, 1572-1583 (2019).

11. Pesciullesi, G., Schwaller, P., Laino, T. & Reymond, J.-L. Transfer learning enables the molecular

transformer to predict regio- and stereoselective reactions on carbohydrates. Nat. Commun. 11,

4874 (2020).

12. Wang, L., Zhang, C., Bai, R., Li, J. & Duan, H. Heck reaction prediction using a transformer

model based on a transfer learning strategy. Chem. Commun. 56, 9368-9371 (2020).

13. Zhang, Y. et al. Data augmentation and transfer learning strategies for reaction prediction in low

chemical data regimes. Org. Chem. Front. 8, 1415-1423 (2021).

14. Tetko, I. V., Karpov, P., Van Deursen, R. & Godin, G. State-of-the-art augmented NLP transformer

models for direct and single-step retrosynthesis. Nat. Commun. 11, 5575 (2020).

15. Xian, Y., Lampert, C. H., Schiele, B. & Akata, Z. Zero-shot learning-a comprehensive evaluation

of the good, the bad and the ugly. In IEEE Transactions on Pattern Analysis and Machine

Intelligence 41, 2251-2265 (2019).

16. Wang, W., Zheng, V. W., Yu, H. & Miao, C. A survey of zero-shot learning: settings, methods, and

applications. ACM Trans. Intell. Syst. Technol. 10, 1-37 (2019).

17. Fu, Y. et al. Recent advances in zero-shot recognition: toward data-efficient understanding of



21

visual content. In IEEE Signal Processing Magazine 35, 112-125 (2018).

18. Fu, Z., Xiang, T., Kodirov, E. & Gong, S. In Proceedings of the IEEE conference on computer

vision and pattern recognition, 2635-2644 (2015).

19. Johnson, M. et al. Google's multilingual neural machine translation system: enabling zero-shot

translation. Transactions of the Association for Computational Linguistics 5, 339-351 (2017).

20. Chan, D. M. & Lam, P. Y. Boronic Acids (John Wiley & Sons, Inc, New Jersey, 2005).

21. Barton, D. H., Finet, J.-P. & Khamsi, J. Metallic copper catalysis of N-arylation of amines by

triarylbismuth diacylates. Tetrahedron Lett. 27, 3615-3618 (1986).

22. Barton, D. H., Finet, J.-P. & Khamsi, J. Copper salts catalysis of N-phenylation of amines by

trivalent organobismuth compounds. Tetrahedron Lett. 28, 887-890 (1987).

23. Barton, D. H., Ozbalik, N. & Ramesh, M. Alkylation of amines using trivalent bismuth

derivatives. Tetrahedron Lett. 29, 857-860 (1988).

24. Barton, D. H., Finet, J.-P. & Khamsi, J. N-phenylation of amino acid derivatives. Tetrahedron Lett.

30, 937-940 (1989).

25. Miyaura, N. & Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-

1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc., Chem.

Commun. 19, 866-867 (1979).

26. Chan, D. M., Monaco, K. L., Wang, R.-P. & Winters, M. P. New N-and O-arylations with

phenylboronic acids and cupric acetate. Tetrahedron Lett. 39, 2933-2936 (1998).

27. Lam, P. Y. et al. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic

acid/cupric acetate arylation. Tetrahedron Lett. 39, 2941-2944 (1998).

28. Evans, D. A., Katz, J. L. & West, T. R. Synthesis of diaryl ethers through the copper-promoted



22

arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett.

39, 2937-2940 (1998).

29. Li, F.-F., Fergus & Perona. A bayesian approach to unsupervised one-shot learning of object

categories. In Proceedings Ninth IEEE International Conference on Computer Vision, 1134-1141

(2003).

30. O'Mahony, N. et al. One-shot learning for custom identification tasks; a review. Procedia

Manufacturing 38, 186-193 (2019).

31. Lowe, D. M. Extraction of chemical structures and reactions from the literature. Ph.D. thesis,

University of Cambridge (2012).

32. Qiao, J. X. & Lam, P. Y. Copper-promoted carbon-heteroatom bond cross-coupling with boronic

acids and derivatives. Synthesis 6, 829-856 (2011).

33. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, 4171-

4186 (2019).

34. Probst, D. & Reymond, J.-L. Visualization of very large high-dimensional data sets as minimum

spanning trees. J. Cheminform. 12, 1-13 (2020).

35. Probst, D. & Reymond, J.-L. FUn: a framework for interactive visualizations of large, high-

dimensional datasets on the web. Bioinformatics 34, 1433-1435 (2017).

36. Schwaller, P. et al. Mapping the space of chemical reactions using attention-based neural

networks. Nat. Mach. Intell. 3, 144-152 (2021).

37. Schneider, N., Lowe, D. M., Sayle, R. A. & Landrum, G. A. Development of a novel fingerprint



23

for chemical reactions and its application to large-scale reaction classification and similarity. J.

Chem. Inf. Model. 55, 39-53 (2015).

38. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579-

2605 (2008).

39. McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for

dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

40. Barton, D. H., Yadav-Bhatnagar, N., Finet, J.-P. & Khamsi, J. Phenylation of aromatic and

aliphatic amines by phenyllead triacetate using copper catalysis. Tetrahedron Lett. 28, 3111-3114

(1987).

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No.

81903438).

Author contributions

These authors contributed equally: A.S. and L.W., A.S., L.W., Q.Z. and H.D. designed

the research project. X.W., C.Z. and Y.W. trained models. A.S. and L.W. analyzed data

and wrote the manuscript. All authors discussed the results and approved the

manuscript.

Competing interests

The authors declare no competing interests.



24

Fig. 1 The illustration of three "zero-shot" situations. a Zero-shot learning (ZSL). b Zero-shot
translation (ZST). c Zero-shot reaction prediction (ZSRP).
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Fig. 2 Schema of Barton's bismuth arylation, Suzuki reaction, and Chan-Lam coupling reaction.
a Barton's bismuth arylation. b Suzuki reaction. c Chan-Lam coupling reaction.
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Fig. 3 Models reproducing different stages at the invention of Chan-Lam coupling reactions.
Before invention (stage 1), invention of first Chan-Lam coupling reaction (Stage 2), and generalization

of more Chan-Lam coupling reactions (Stage 3).
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Fig. 4 Classification of the reactions in the fine-tuning datasets and test sets along with the two
related classes of reactions from the Schneider 50K set37. The Schneider 50K set is NOT used in the

training of our model but only for the visualization purpose. The fingerprints are generated using
rxnfp36, and the reactions are visualized using TMAP34 algorithm and the Faerun35 visualization library.
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Table 1 Performance of Transformer trained with different approaches.
Training Set(s) Top-1 Accuracy (%)

USPTOa 4.4
USPTO w/o Chan-Lamb 24.8

USPTOa + Suzuki & Barton fine-tuning
(the ZSRP model) 55.7

aThe "USPTO" training set is the original USPTO dataset that have all Suzuki reactions, Barton's
bismuth arylations, and Chan-Lam coupling reactions removed. bThe "USPTO w/o Chan-Lam"
training set is the original USPTO dataset that have only Chan-Lam coupling reactions removed.

Table 2 Performance of ZSRPmodel categorized by coupling types.
Coupling type Test samples Top-1 accuracy (%)

C-N 283 47.4
C-O 160 65.0
C-S 26 84.6
C-C 3 100.0
Total 472 55.7

Table 3 Performance of ZSRPmodel for C-N Chan-Lam coupling categorized by reactant type.
Reactant type Test samples Top-1 accuracy (%)
Amide (linear) 19 47.4
Amide (cyclic) 62 40.3
Aliphatic amine 49 65.3
Aromatic amine 77 53.2

N-aromatic heterocyclic 76 35.5
Total 283 47.4

Table 4 12 Chan-Lam coupling reaction samples selected for OSRP and corresponding
performance.

Coupling
Type

Reactant
type

Reaction sample
Top-1

accuracy
(%)

C-N
N-aromatic
heterocyclic

87.1

C-N
N-aromatic
heterocyclic

83.5
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C-N
Aromatic
amine

81.3

C-N
Aliphatic
amine

62.3

C-N
Amide
(cyclic)

69.1

C-N
Amide
(linear)

79.6

C-O
Aromatic
alcohol

69.5

C-O
Aliphatic
alcohol

74.4

C-O
Amide
alcohol

61.6

C-O
Aromatic
alcohol

64.6

C-S Thiophenol 71.0
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C-C Methylene 63.8

Table 5 Examples of reactions correctly predicted by OSRP but not ZSRP.
Coupling type Reactants ZSRP's wrong prediction OSRP's correct prediction

C-N

C-N

C-N

C-N

C-O

C-O
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