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ABSTRACT: Owing to their disordered open network structure, oxide glasses are a promising class 

of anode materials for Lithium-Ion Batteries (LIBs). However, the relatively low capacities of glass 

anodes severely limit their practical application for large energy storage devices. Here we show an 

unconventional novel approach, which significantly enhances the electrochemical performances of 

glass anodes for LIBs. Specifically, we incorporated water into an electrochemically active glass 

system, i.e., TeO2-V2O5-P2O5 (TVP) glass powder via humidity treatment, and then mix the hydrated 

powder with additives to fabricate anode. The optimized humidity treatment led to the structural 

modification of the TVP glass powder, which boosted the capacity of the TVP anode by more than 

200%, and maintained the reversible capacity for extra-long cycles. The boosted performances are 

associated both with the depolymerized structural network for Li+ diffusion and with the hydration-

induced nanocrystals. These findings help develop superior glass electrodes in an economically 

effective way.  
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1. Introduction 

Recently, oxide glasses with polyvalent ions as rising-star electrode materials for lithium-ion 

batteries (LIBs) have aroused considerable research interest [1-7]. Particularly, the successful attempt 

of Idota’s group [8] to apply SnO2-based glass as anode material for LIBs signified both the 

fascination and importance of the oxide glass anodes and resulted in advances in energy storage 

technology. In terms of microstructure, oxide glass possesses various advantages for serving as 

electrode material[1-3] and these unique features render it a bright future for diverse applications in 

energy storage devices. Driven by these aspects, numerous studies have been done to investigate 

oxide glass anodes from different aspects, such as compositions [1,3,7], fabrication methods [9,10], 

as well as microstructures [11-13]. Recently, our group found that the lithiation/delithiation induced 

the formation of nanocrystals in the glass matrix of anode material. These nanocrystals greatly 

contribute to the reduction of Li-ion diffusion path length, improvement of the ionic conductivity and 

maintaining the structural stability of the anode materials over multiple charge-discharge cycles 

[1,14,15]. However, the reversible capacity of oxide glass anode, especially its volumetric lithium 

storage, is still far from the requirement for miniaturization of energy storage devices [16,17]. In 

particular, the limited capacity of glass anode is related to their poor ionic conductivity at the ultrahigh 

current density, which results in slow transfer kinetics of Li+ ions. These problems severely limit the 

practical applications of LIBs with competent rate capability and ultrahigh cycling stability. 

Phosphate glasses is an important branch of functional material and have been widely used in many 

different fields, including biomedicine [18-20], sealing materials [21,22], optical materials [23], 

solidification of nuclear waste [24], solid electrolyte and electrode material [25,26], by virtue of their 
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excellent chemical and physical properties. Most of phosphate glasses feature linear chain-like 

structure of covalently linked P-tetrahedra through bridging oxygens [27]. The cross-link structure is 

realized by the connection of various modifier ions rather than P-O-P backbone, resulting in a weak 

chemical stability. This is the main reason why the phosphate glasses are easily corroded by aqueous 

solution [28-30]. That is, they are easily eroded by the hydration process, and hence, their applications 

are hindered in various areas [31,32].  

On the other hand, we are also curious about whether water could pose some positive impact on 

the electrochemical properties of phosphate glasses as anode materials in LIBs. After a careful 

literature survey, we found some reports on the role of water incorporation in enhancing both the 

electrochemical properties and the ionic conductivity of oxide materials [33-37]. Specifically, the 

structural water can increase proton conductivity in phosphate glasses since the weaker O-H bonding 

contributes to the higher mobility of proton carriers [35-38]. Moreover, the structural water can 

enhance the kinetics of energy storage in transition metal oxides by converting the battery-like 

behavior into ideally pseudocapacitive behavior [34]. These results have broad implications for 

understanding the relationship between the structure and property for a variety of hydrous oxide 

systems.  

All the above-mentioned aspects motivated us to conduct a systematic study with respect to the 

impact of water on the electrochemical performances of the TeO2-V2O5-P2O5 (TVP) glass-based 

anode for LIBs. We subjected the TVP glass powders to different degree of humidity treatment at 

constant temperature. The water-reacted glass powders were mixed with additives to fabricate the 

anodes for LIBs. We characterized the electrochemical properties of the water-reacted TVP glass 
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anodes and evaluated their dependence on humidity. An optimum humidity was found, which caused 

an enhancement of the Li ion storage capacity by 133%, i.e., from 180 mA h g-1 for the ‘dry’ glass 

anode to 420 mA h g-1 for the anode based on the 65% humidity treated glass. The origin of this 

significant enhancement is thoroughly investigated in this work. 

2. Experimental Section 

2.1 Sample preparation 

The starting material used in this study was the vanadium-tellurite-phosphate glass, which was 

applied as the anode material for LIBs in a previous report [26]. The glass with the nominal molar 

composition of 20TeO2-60V2O5-20P2O5 (TVP) was prepared via the melt quenching method from 

the reagent grade TeO2, V2O5 and NH4H2PO4 powders following the procedure described elsewhere 

[26]. The humidity experiment was carried out by keeping the ‘dry’ TVP glass powders (i.e., the as-

received glass powders that was not hydrated.) in an environmental chamber (HWS-508). To 

investigate exclusively the effect of relative humidity (RH) on the performance of TVP glasses, the 

glass powders were treated under three different RH conditions, i.e., 45, 65 and 85 RH%, for 120 h 

at 333 K, respectively (Fig. S3). After the treatment, the samples were taken out from the chamber 

immediately. The corresponding samples were named as 45RH, 65RH and 85RH, respectively. 

2.2 Cell assembly and Electrochemical measurements 

The electrochemical tests of the ‘dry’ TVP, 45RH, 65RH and 85RH glass anodes were performed 

using two-electrode coin cell with Li foils serving as both the counter electrode and the reference one 

[17]. The procedure of the cell assembly was described elsewhere [1, 18, 26]. Cyclic voltammetry 
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(CV) measurements were performed on an electrochemical workstation (PARSTAT 3000A DX) at a 

scan rate of 0.1 mV s-1 in the voltage range of 0.01-3.0 V (vs Li/Li+). Electrochemical impedance 

spectroscopy (EIS) measurements were carried out using the impedance-measuring unit (PARSTAT 

3000A DX electrochemical workstation) with AC signal amplitude of 5 mV in the frequency range 

of 100 kHz to 0.02 Hz. 

2.3 Material Characterization 

The phase analysis of all the samples were performed on an X-ray diffractometer (XRD, Shimadzu 

LabX XRD-6100, CuKα radiation). The isobaric heat capacity (Cp) of all the samples was measured 

using differential scanning calorimetry (DSC) (Netszch Jupiter STA 449F3, Selb, Germany) at the 

heating rate of 10 K/min in the purged N2 atmosphere. X-ray photoelectron spectroscopy (XPS) 

measurements were carried out with an ESCALAB 250Xi spectrometer. Fourier transform infrared 

(FTIR) spectra were collected by a Thermo Fisher IS10 spectrophotometer (America) with KBr pellet 

method. 

3. Results and Discussion 

3.1 Analyzing the incorporated water in TVP glass and phase identification  

Fig. 1a shows the XRD patterns of the ‘dry’ TVP glass and the ones treated under different RH 

conditions, e.g., 45RH, 65RH and 85RH samples, respectively. The broad hump verifies the 

amorphous nature of the starting TVP glass sample. However, the Bragg peak starts to appear and 

becomes more pronounced when the ‘dry’ TVP glass was exposed to the increasing RH from 45% to 

85%, indicating that the humidity treatment could induce crystallization in TVP glass with “water” 
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(e.g., hydroxyl groups) in the structure. Such “water” could reside in the form of -H, -OH as well as 

loosely bounded water molecules. The phase identification indicates the formation of H4V3P3O16.5⋅

xH2O (JCPDS 47-0967) crystals in the three hydrated samples. It should be noted that not all peaks 

could be identified, especially, those in 85RH sample. 

 

Fig. 1. (a) XRD patterns, (b) TGA curves, (c) FTIR spectra and (d) DSC curves of the ‘dry’ TVP glass and the 

ones treated at different RH, e.g., 45RH, 65RH and 85RH, respectively for 120 h at 333 K. (e) the HRTEM 

images of 65RH sample illustrating the randomly distributed nano-crystals induced by hydration in the glass 

matrix. 

To confirm the presence of a significant fraction of water in the structure of the three treated 

samples and to investigate the kinetics of dehydration, thermogravimetric analysis (TGA) of the TVP, 
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45RH, 65 RH and 85RH samples were conducted by heating to 1073 K at 10 K min-1. As shown in 

Fig. 1b, the mass percentage of the ‘dry’ TVP glass remains nearly constant during heating. However, 

the TGA curves of 45RH, 65RH and 85RH samples exhibited mass loss upon heating. The mass loss 

becomes more pronounced with increasing RH, implying that a larger amount of water resides in TVP 

glass when treated at higher RH condition [20,39] ((Fig. S1)). In the three hydrated samples, the mass 

loss occurs at the onset temperature of about 400 K, which corresponds to the removal of physically 

absorbed water, and then approaches the plateaus of 94 and 86% for 65RH and 85RH, respectively, 

up to about 700 K, indicating the release of structurally bonded -OH groups and/or crystal water. The 

mass loss trend suggests the presence of the versatile bonded H2O and -OH species in the samples, 

which can be utilized to fine-tune the microstructure and further to improve the electrochemical 

properties of the studied samples.  

Since the -OH species in the oxide materials have great influence on the electrochemical 

performances [32,33], it is necessary to further explore the existence of -OH species in the three 

hydrated samples. FT-IR spectra shown in Fig. 1c display the clear evolution of the multiple board 

peaks in the TVP glass samples upon the humidity treatment. The peak located at ~3450 cm-1 

originated from the stretching vibration modes of the fundamental -OH in both OH- and H2O 

molecules [40] while that located at ~1630 cm-1 is ascribed to the molecular H2O bending mode 

[41,42]. The intensity of both peaks gradually increases with increasing the relative humidity, 

suggesting that more active -OH groups were generated in the samples.  

Fig. 1d shows the DSC curves of the studied four samples. The endothermic peak at around 400 K 

become more intense from 65RH to 85RH samples. Combining with the TGA results in Fig. 1b, this 
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endothermic peak could be associated with the release of water absorbed during hydration. In addition, 

DSC curves of TVP, 45RH and 65RH demonstrate pronounced glass transition peaks while no glass 

transition peak could be observed in the DSC upscan of 85RH. The glass transition temperature (Tg) 

decreases from 543 K (for ‘dry’ TVP) to 512 K (for 65RH) with the increasing humidity as clearly 

displayed in the inset of Fig. 1d. It is important to mention that no glass transition peak appears in 

85RH sample, instead, an endothermic peak occurs at about 485 K. This peak might arise from the 

loss of covalently bounded H2O in the H4V3P3O16.5·xH2O crystals, which originate from the 

crystallization of almost all the glass matrix as confirmed by the XRD pattern (Fig. 1a). This is also 

why no glass transition peak appears in the DSC curve of 85RH sample. With the further increased 

scanning temperature, no obvious thermal events occur in TVP glass sample, but a very tiny 

endothermic peak appears at 787 K for 45RH sample, which might be due to the melting of 

H4V3P3O16.5·xH2O crystals generated during the hydration treatment, as confirmed in Fig. 1a. As a 

universal rule, the broad exothermic peak at around 700 K in each DSC curve of 65RH and 85RH 

samples, respectively, is caused by crystallization, while the subsequent endothermic peak is due to 

the melting of crystals. However, the real origin of the two peaks is contrary to the conventional 

wisdom, which is discussed in the following section. 

In order to directly observe and understand the microstructure of the hydrous samples, the HRTEM 

images of 65RH sample as a representative are displayed in Fig. 1e. Obviously, many ordered 

domains with regular lattice fringes denoted by the ellipse are spatially dispersed in the glass matrix. 

The mean size of the ordered domains is about 5 nm. This implies that the formed crystals in TVP 

glass, which are induced by hydration under different RH conditions, have a nano-size. These 
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nanocrystals lead to the Bragg peaks in the XRD patterns (Fig. 1a).  
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Fig. 2. The first DSC upscan curves (the black line) of both (a) 65RH and (b) 85RH samples, along with the XRD 

patterns of the two samples (the red line) and the ones heat-treated at the temperature denoted by the arrows in the 

respective DSC curves (the blue line), i.e., 718 and 683 K, respectively. 

To explore the origin of the exothermic peaks at 718 K and 683 K in DSC upscans (the black lines 

in Fig. 2) of both 65RH and 85RH samples, respectively, as well as to verify the stability of the 

crystals, i.e., H4V3P3O16.5·xH2O, formed during the hydration process, these two samples were heat-

treated at 718 and 683 K for 6 hours, respectively. The XRD patterns of 65RH, 85RH and the heat-

treated samples are shown in Fig. 2. Strikingly, the Bragg peaks which are assigned to H4V3P3O16.5⋅

xH2O, become weaker after the heat treatment. However, a different scenario occurs in 85RH sample. 

Although the Bragg peaks of H4V3P3O16.5⋅xH2O crystals become weaker after heat treatment, other 

sharp Bragg peaks emerge owing to the formation of VO(HPO4)⋅xH2O (JCPDS 44-0598) crystals. 

This implies that the exothermic peaks at about 700 K of both 65RH and 85RH samples could arise 

from the crystal transformation via an intermediate amorphous process. In addition, according to the 

XRD patterns of 85RH, some other types of crystals in addition to H4V3P3O16.5⋅xH2O might already 
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exist, but their identities are missing due to the smaller sizes at that moment (Fig. 1a). It is likely that 

these crystals are VO(HPO4)⋅xH2O, which grow to larger crystals during heat treatment. 

3.2 Electrochemical performances 

 

Fig. 3. Electrochemical performances. (a) Cycling performance of the ‘dry’ TVP, 45RH, 65RH and 85RH 

anodes at a current density of 1 A g-1, and the corresponding CE of 65RH. Inset: the specific capacity of the 

samples after 200 cycles as a function of the treated relative humidity. (b) Galvanostatic charge/discharge 

voltage profiles of 65RH. (c) Rate capability comparison between the ‘dry’ TVP and 65RH anodes. (d) Nyquist 

plot at the open-circuit potential of the ‘dry’ TVP, 45RH, 65RH and 85RH anodes. Inset: the internal ohmic 

resistance reflected by the diameter of the semicircle as a function of the treated relative humidity.  

To investigate the effect of the incorporated water on the electrochemical performances of TVP 

glass anode, a systematic study was carried out to compare the lithium-ion storage properties of the 

water-modified glass-based anodes with those of the “dry” sample. Fig. 3a shows the cycling 
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performances of the ‘dry’ TVP, 45RH, 65RH and 85RH anodes at a current density of 1 A g-1, 

respectively. Although the TVP anode is stable during the repeated lithiation/delithiation process, the 

active sites are not sufficient, and the ionic conductivity is low, leading to a relatively low specific 

capacity of 182 mA h g-1 after 200 cycles. In strong contrast, the capacities of the hydrated samples, 

i.e., 45RH, 65RH and 65RH, reach astonishing values of 425, 442 and 398 mA h g-1 after 200 cycles 

(the inset in Fig. 3a), which are two times higher than that of the ‘dry’ TVP anode. The dramatically 

boosted capacity must be due to the fact that the incorporated water alters the microstructure of the 

TVP sample, and thereby increases the structural stability and the ionic conductivity, as well as 

generates numerous active sites. These factors enable fast reaction, leading to the synergetic 

enhancement of capacity and cycling performance of the hydrated samples. Note that the discharge 

capacity of the 85RH decreased a bit compared to that of 65RH but still much larger than that of ‘dry’ 

TVP anode. Moreover, the Coulombic efficiency (CE) of 65RH sample increases rapidly from the 

second cycle to 99%. The high CE implies the enhancement of the effective availability of lithium 

species, thus the superior reversible capacity.  

To further evaluate the specific capacity of the hydrated samples, galvanostatic charge/discharge 

voltage profiles were collected on 65RH as displayed in Fig. 3b. 65RH anode exhibits the initial 

discharge/charge capacities of 1011/506 mA h g-1 at 1 A g-1, corresponding to an initial CE of 50.0%. 

The irreversible capacity mainly comes from the irreversible reactions of the inserted Li+ ions with 

the glass anodes [26] and the formation of solid electrolyte interface (SEI). In the following 50, 100 

and 200 cycles, the voltage profiles share almost the same shape and the specific capacities decreases 

only slightly, such as 505, 484 and 440 mA h g-1, respectively, confirming the reversibility of the 
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lithium storage reaction at a high current density. 

Rate capability is one of the most important parameters to evaluate the high-power delivery 

capability of LIBs. The rate capabilities of both ‘dry’ TVP and 65RH were determined by altering 

current densities (Fig. 3c). The 65RH delivers a reversible capacity of 442 mA h g-1 at 0.5 A g-1. When 

the current density is increased to 0.8, and 1 A g-1, the specific capacities slightly drop to 417 and 409 

mA h g-1, respectively. Even at a high current density of 2 A g-1, the anode still maintains a reversible 

capacity of 360 mA h g-1, corresponding to 81.5% of the initial one, which significantly exceeds the 

value (208 mA h g-1) of the ‘dry’ TVP based anode. As the current density is returned to 0.5 A g-1, the 

capacity of 65RH based anode swiftly restores to the value of 451 mA h g-1 as high as the initial 

capacity. Compared with the ‘dry’ TVP, 65RH exhibits a superior rate capability when the current 

density is increased from 0.5 to 2 A g-1 and then returns to 0.5 A g-1. The high-rate capability as well 

as the excellent recovery performance are crucial for the practical applications of LIB anodes. 

The electrochemical kinetics at the electrode/electrolyte interface can be revealed by the 

electrochemical impedance spectroscopy (EIS) analysis as seen in Fig. 3d. The EIS exhibits similar 

Nyquist plot, i.e., one depressed semicircle followed by an inclined line related to Li+ diffusion in the 

bulk electrode [43]. The semicircle is related to the charge-transfer resistance and the intercept of the 

semicircle represents the internal ohmic resistance of the electrode. For the ‘dry’ TVP sample, the 

resistance is relatively high because of the poor conductivity. After the humidity treatment, there is a 

remarkable decrease in the charge transfer resistance, and thus an apparent reduction in battery 

impedance, especially for 65RH (seen in the inset of Fig. 3d), indicating the overall smallest 

resistance of charge transfer and a more-facile transfer of Li+ ions at the 65RH anode/electrolyte 
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interface. The improvement is attributed to the unique effect of the incorporated water on altering the 

3D network structure of 65RH, which increases efficient channels for transportation of Li+ ions and 

electrons.  

To gain further insight into the reaction kinetics of both the dry and the hydrated glass-based anodes, 

we performed CV measurements on the ‘dry’ and the 65RH samples within the window of 0.01 ~ 3.0 

V at different scan rates from 0.1 to 2 mV s-1 (Figs. 4a and b). This is one of the effective approaches 

to investigate the electrochemical reaction kinetics of electrode materials for Li+ storage [44,45]. A 

recent study revealed that the capacity generation of a silicate glass-ceramic anode involves two 

lithium-ion storage mechanisms [46]. One is the lithium insertion reaction, while the other is related 

to both ion diffusion and surface induced capacitance. In the present work, we determine the degree 

of surface induced capacitive effect of the studied anodes using the relationship between the measured 

current (i) and sweep rate (v) of the CV curves, i.e., i = avb, where a and b are adjustable parameters. 

The b value is in the range between 0.5 and 1.0. The b value of 0.5 implies a diffusion-controlled 

process. The totally stored charge comes from lithium insertion process. In contrast, b=1 suggests an 

ideally capacitance-controlled process, which takes place mostly on the surface of electrode [47]. A 

value between 0.5 and 1 implies the mixed contribution from both the diffusion-controlled process 

and the capacitive effect. In Figs. 4a and b, the CV curves of the dry and 65RH samples show that 

both the potential difference of the redox peaks and the peak current increase with increasing the scan 

rate. As demonstrated in Fig. 4c, the currents of the five pairs of cathodic/anodic peaks for TVP anode 

show a linear dependence on square root of the scan rate. The b values for the cathodic and anodic 

scans are determined to be 0.69 and 0.71, respectively, revealing that the capacity of TVP anode arises 
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from both diffusion-controlled reactions and surface-controlled processes. However, as shown in Fig. 

4d, the b values for 65RH anode are 0.88 and 0.90 for the cathodic and anodic scans, respectively, 

indicating that the electrochemical lithium storage in 65RH is governed by both diffusion-controlled 

processes and the capacitive effect, especially a predominant contribution from surface-controlled 

redox reactions, i.e., the pseudocapacitive behavior.  

In addition, the CV curve (the current response i at specific potentials V) can be separated into two 

contributions including the surface induced capacitance (k1v) and diffusion-controlled processes 

(k2v1/2) as described in the following equation [48,49]: 

             𝑖𝑖 = 𝑘𝑘1𝑣𝑣 + 𝑘𝑘2𝑣𝑣1/2                           (1) 

where v is scan rate, both k1 and k2 are parameters. In Fig. 4e, the fraction of charge stored arising 

from capacitive processes of 65RH sample is determined to be 51 % at a scan rate of 0.1 mV s-1. As 

the scan rate increases to 0.2, 0.5, 1 and 2 mV s-1, the capacitive contributions are 59%, 68%, 64.8%, 

75%, and 83%, respectively (Fig. 4f), suggesting the capacitive-dominant characteristics at high-rate 

conditions. This phenomenon could be ascribed to the nanocrystals induced by the incorporated water 

with a large surface area, which provides extra active sites for lithiation/delithiation through the 

capacitive process. Such a prominent contribution by capacitive lithium storage not only gives 65RH 

a superior high-rate capability, but also improves its cycling stability and high rates capability. 
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Fig. 4. CV curves of (a) TVP and (b) 65RH anodes at various scan rates from 0.1 to 2 mV s-1. b values 

determined from cathodic and anodic peaks with scan rate from 0.1 to 2 mV s-1 for (c) TVP and (d) 65RH 

anode. (e) Separation of the capacitive and diffusion-controlled capacity contribution at 0.1 mV s-1. (f) 

Contribution ratio of capacitive- and diffusion-controlled capacities at various scan rates (0.1, 0.2, 0.5, 1, and 

2 mV s−1). 

To clarify the reasons for the booming capacities of the hydrous samples, XPS was employed to 

probe the chemical states of the components, especially the OH species, in the four sample before 

cycles. The O 1s high-resolution XPS spectra of the four samples are displayed in Fig. 5a, where the 

broad and asymmetric peak of each sample can be deconvoluted into three peaks, revealing the 
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presence of at least three distinct oxygen species. Notably, the peak at 533.1 eV is associated with the 

crystal water in the precipitated H4V3P3O16.5⋅xH2O, i.e., the molecularly adsorbed H2O [50-52]. The 

peak at 531.5 eV corresponds to the -OH groups [33]. It is evident that the areas of the two peaks in 

the hydrated samples expand dramatically with increasing relative humidity, suggesting that more 

H2O and -OH groups reside in the samples. This result is consistent with the observation on TGA, 

i.e., the structural H2O including the OH species could be incorporated into the network structure of 

glass matrix. Thus, it is reasonable to infer that the incorporated H2O might contribute greatly to the 

boosted capacity of TVP glass after the hydration treatment.  

 

Fig. 5. (a) O 1s core level XPS spectra of the TVP, 45RH, 65RH and 85RH samples. (b) XRD patterns of both 

65RH and 85RH samples before and after 200 cycles. 

Fig. 5b shows the XRD patterns of the 65RH and 85RH samples before and after 200 cycles at 1 

A g-1, respectively. It is seen that the Bragg peaks in the XRD pattern of the 65RH and 85RH 

disappeared, instead, a hump was observed in the patterns of the samples after cycles. This means 

that the nanocrystals induced by humidity treatment were transformed into amorphous domain, i.e., 



17 
 

experienced an order-disorder transition, during discharge/charge cycles. 

From the above analyses, it can be stated that the incorporated -OH species, which keep stable 

during cycling, in TVP glass is the decisive factor for the substantially boosted electrochemical 

performances of the glass anodes (Fig. S2). In a recent study, it was found the -OH groups were 

responsible for the improved cycle life and reversible capacity of electrodeposited films of bilayered 

vanadium oxide (EC-V2O5) relative to the sol-gel derived V2O5 phases [33]. In addition, it was also 

found that a moderate amount of lattice water in K0.77MnO2⋅0.23H2O electrode can act as pillars to 

stabilize the expanded interlayer region required for fast K+ ion diffusion, thus leading to high 

electrochemical performance of K-ion batteries [53]. This implies that the incorporated water, in 

particular the -OH species, along with the disordered domains and the ordered structures in the 

hydrated sample synergistically contributed to the boosted capacities.  

Considering above thermodynamic and structural analysis, the significantly enhanced reversible 

capacity and rate capabilities of hydrated TVP anode, especially 65RH, could be attributed to its 

unique and favorable reconstructed architecture by the incorporated water. As is known, the primary 

way for water incorporation into the network of phosphate glass is formation of P-OH groups, similar 

to alkali-metal oxide modifiers, resulting in depolymerization of structural network [54,55]. The 

structural -OH species in 45RH, 65RH and 85RH samples are stable and maintain a sufficient 

interlayer spacing to allow the diffusion of Li+ ions over multiple cycles [56]. This is the main reason 

for the improved electrochemical performances. Furthermore, the nanocrystals, which form through 

hydration, can greatly shorten the Li+ ions diffusion paths and the reconstructed surfaces of the 

nanocrystals provide more active sites for lithium storage. The remaining glass matrix can efficiently 
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accommodate the large volume changes during cycles. Thus, the humidity treatment is a powerful 

strategy to modify the network structure of the glass and thereby to promote the Li+ ions diffusion 

and to create more active sites for lithiation/delithiation.  

4. Conclusions 

In summary, we established the humidity treatment strategy to greatly improve the electrochemical 

performances of the TeO2-V2O5-P2O5 (TVP) glass anodes for LIBs. Remarkably, this strategy led to 

a significant enhancement of the reversible capacity in TVP glass anode, e.g., from 182 to 442 mA h 

g-1 at 1 A g-1 upon 200 cycles for TVP glass subjected to the 65% humidity treatment for 120 h at 333 

K. This strategy also gives rise to the capacity retention of nearly 100% after 200 cycles at high 

current density. The incorporated -OH in TVP glass may cause the following aspects such as 

broadening of the network channels for Li+ diffusion and increasing active sites for lithium storage. 

The hydration-induced nanocrystals feature specific surface area, thus providing more reaction sites. 

The optimum humidity for enhancing the anode performances was further verified by experimental 

results. This study brought a new, simple and economically effective approach for developing 

superior glass anodes for LIBs. 
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Fig.1. SEM images of (a) and (b) TVP and 65RH samples, demonstrating the eroded surface of 
the TVP glass powders by the incorporated water during humidity treatment. 

 



 
Fig. 2. O1s core level XPS spectra of the 65 RH sample before and after 200 cycles at current 
density of 1 A g-1, demonstrating conclusively that the structural hydroxyl groups are stable 
during cycling. 
 

 
Fig.3. Cycling performances of ‘dry’ TVP glass treated at 65% humidity (a) for different time 
at 333K and (b) at different temperature for 5D upon a current density of 1 A g-1, confirming 
the optimum condition for treating the ‘dry’ TVP glass is 65% humidity at 333 K for 5 days. 
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