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ABSTRACT

The following research assesses the capability of machine learning in predicting maximum emis-
sion wavelengths of organic compounds. The predictions are based on molecular descriptors and
fingerprints widely applied in cheminformatics. In an effort to further improve accuracy, developed
machine learning models were enriched with quantum mechanics derived features. Multi linear,
gradient boosting and random forest regressions were applied. Computers were trained and tested
with database of experimental data of optical properties.
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1 Introduction

Machine learning gains a lot of focus these days. The wide spectrum of tools[1, 2] and rushing growth of database
volumes cause machine learning to influence every aspect of life[3]. When searching for machine learning applications
in chemistry one may get an impression that the subject is dominated by drug discovery. Due to growing attention of
machine learning, novel applications and prospects emerge[4] along with literature covering the subject.[5, 6, 7]

Quantitative structure - activity/property relation (QSAR/QSPR) methods and algorithms are founded on an assumption
that molecular structure is correlated with molecule’s properties. In order to translate chemical structures to computer
representations a wide range of molecular descriptors were developed[8], alongside with molecular fingerprints like
Morgan fingerprint[9] and MACCS keys. Cherkasov et al [10], Varnek and Baskin [11] give a wide overview of the
core of QSAR/QSPR and cheminformatics, their history, advances and perspectives.

With the growing number of freely accessible databases and open source tools(eg. Python[12], RDKit[13], Scikit
Learn[14], Matplotlib[15] and Seaborn[16]) it is easy to learn and apply machine learning or at least conduct data driven
research. The cheminformatics gain also from openness of researchers that publish their code and data pipeline[17].
Such attitude is simplifying the knowledge acquiring process and making QSAR/QSPR and machine learning adaptable
to other problems.

2 Material and Methods

2.1 Workflow

Workflow diagram is presented in figure 1. After preprocessing and generating features the data was split into training
and test subsets. Machine learning algorithms were introduced with training sets and their performance was checked by
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making predictions of maximum emissions of compounds from test sets. The predictions were checked with real values
from test sets and the errors were studied. The process of splitting, training and testing was repeated tenfold in cross
validation. Best performing machine learning models were chosen based on mean absolute error, mean squared error,
maximum error and R2 parameter. Chosen models are to be validated with compounds from laboratory.
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Figure 1: Workflow diagram.

2.2 Datasets

The organic compounds optical properties database[18] contains over 20,000 rows which are combination of 7,016
chromophores in 365 solvents and 17 solid matrices or in solid states. Chromophores included in the database consist
of maximum 150 atoms (except H) of C, N, O, S, F, Cl, Br, I, Se, Te, Si, P, B, Sn, Ge. Out of these chromophores there
are 956 that have reported properties in solid states (column Solvent and Chromophore are equal). 897 of solid state
chromophores have non null value of maximum emission wavelength (nm)(dataset 1). Only solid state compounds were
taken into account to avoid bias caused by solvent effects on maximum emission. A subset of compounds containing
only C, O, N, F, H atoms was also examined in the study (dataset 2).

The QM9 database[19, 20] contains 133,885 small organic compounds of up to 9 atoms (except H) of C, O, N, F. These
compounds are a subset of GDB-17 chemical universe database[21] containing 166 billion of organic compounds.
The subset includes various density functional theory(DFT) calculated quantum properties (eg. HOMO and LUMO
eigenvalues). The QM9 database was downloaded from MoleculeNet[22] since it is packed into .csv format.

The extent of maximum emission of datasets is shown in figure 2.

2.3 Machine learning models

Random Forest Regression(RFR), Multi Linear Regression(MLR) and Gradient Boosted Regression(GBR) models
from Scikit-Learn[14] Python module were taken into the studies. At the beginning they were utilised with default
parameters. A chosen subset of parameters were later optimised. The process is described in “Algorithms optimisation”
section.

2.4 Feature engineering

All of available RDKit molecular descriptors(208), MACCS keys(167) and Morgan fingerprints(1024) were calculated
for every chromophore. Numbers of heteroatoms were also calculated(14 for dataset 1 and 3 for dataset 2). Values of
molecular descriptors were further scaled. Features that did not change across datasets were deleted.

Molecular descriptors, MACCS keys, Morgan fingerprints and numbers of heteroatoms were applied to all of tested
models and they will be further referenced as universal features. After all basic data processing procedures applied, the
dataset 1 contained 896 chromophores and 1312 features and dataset 2 contained 523 chromophores and 1127 features.

Compounds from chromophores database were examined if they contain substructures from QM9 database using
RDKit built-in function of substructure recognition. In order to provide machine learning models with more features, in
order to improve their prediction capabilities, various additional quantities were calculated from substructures quantum
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Figure 2: Emission distribution.

properties. Karelson et al [23] covered usage of quantum modelling calculations as descriptors in QSAR/QSPR research,
although the calculations were prosecuted with whole molecules not their fragments.

Finally 14 different models were trained and tested with following features.

2.4.1 Model 1

No QM9 based features were calculated. Only universal features were applied to ML models. This approach demands
the least computational time of all models covered in this paper as it does not need searching for QM9 database
substructures.

2.4.2 Model 2

The sum of all quantum features from QM9 database multiplied by number of pattern(substructure) occurrences was
calculated.

N∑
i

niεHOMOi
,
∑

niεLUMOi
, ... (1)

where i - index of recognised pattern, n - number of pattern occurences.

2.4.3 Model 3

Only QM9 based features from model 2 were input into ML algorithms. With this approach it is possible to assess if
non standard features are competitive to traditional ones.

2.4.4 Models 4 - 14

Features generated in these models are result of various mathematical operations of mostly eigenvalues εHOMO,
εLUMO, polarizability, α, dipole moment, µ, zero point vibrational energy, zpve and electronic spatial extent, 〈R2〉 .
They were developed in the beginning of the research, before applying molecular descriptors and fingerprints. The
equations allowing to calculate the values are gathered in the supplemental online material (please refer to avability of
data and materials section).
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It is worth noting that the RDKit built-in method to detect substructures may yield invalid results. In figure 3 is a
chromophore from the database and substructures from QM9 database that were detected in the molecule. The last of
detected substructures (circled) is not present in the molecule from database.
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Figure 3: Molecule with its detected substructures. The circled one is a mismatch.

In the study the faultily detected substructures were not reviewed and were taken into account when features were
generated.

3 Results and Discussion

All developed machine learning models were scored using mean absolute error(MAE) and mean squared error(MSE).
To further assess models’ performance, R2 and maximum errors were calculated. Scoring values are presented in tables
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1 and 2 regarding dataset 1 and dataset 2 accordingly. Since ensemble algorithms (random forest and gradient boosting)
outperformed linear regression they will be covered separately.

Table 1: Scoring values of dataset 1. ME - maximum error, MAE - mean absolute error, MSE - mean squared error.
algorithm Gradient Boosting Random Forest

scoring type ME MAE MSE R2 ME MAE MSE R2

model
1 156.5 31.0 1734 0.759 165.0 30.1 1815 0.749
2 153.3 31.1 1749 0.756 163.5 29.9 1790 0.753
3 251.8 58.2 5584 0.223 241.1 53.2 5047 0.296
4 153.4 31.0 1747 0.757 163.3 30.0 1805 0.751
5 156.0 31.1 1762 0.754 164.3 30.0 1796 0.752
6 153.0 31.6 1790 0.751 164.0 30.1 1805 0.750
7 152.9 31.3 1774 0.752 163.4 30.2 1815 0.749
8 154.7 30.9 1745 0.757 165.2 30.3 1831 0.747
9 153.2 30.9 1740 0.757 166.0 30.3 1833 0.747
10 153.1 31.2 1739 0.757 165.5 30.3 1817 0.749
11 158.6 31.3 1781 0.751 165.8 30.3 1829 0.747
12 153.1 31.1 1765 0.754 167.0 30.0 1813 0.750
13 155.1 31.1 1759 0.754 163.4 30.1 1811 0.750
14 159.5 31.1 1761 0.754 164.1 30.2 1821 0.748

algorithm LM1 LM2
model

1 >500 >100 >10000 <-1 - - - -
2 >500 47.2 >10000 <-1 275.0 59.0 6070 0.133
3 275.0 59.0 6070 0.133 275.0 59.0 6070 0.133
4 >500 48.7 >10000 <-1 250.0 67.2 6837 0.058
5 >500 48.6 >10000 <-1 363.5 69.2 9055 -0.307
6 >500 48.7 >10000 <-1 256.9 68.0 7042 0.027
7 >500 49.1 >10000 <-1 253.5 65.9 6724 0.071
8 >500 47.9 >10000 <-1 278.1 65.8 6775 0.062
9 >500 49.1 >10000 <-1 255.9 62.0 6211 0.133
10 >500 50.2 >10000 <-1 254.2 66.7 6835 0.052
11 >500 50.5 >10000 <-1 255.3 67.2 6910 0.042
12 >500 50.1 >10000 <-1 259.0 69.0 7196 0.007
13 408.8 49.3 7207 -0.080 451.5 69.6 >10000 -0.872
14 >500 49.8 >10000 <-1 238.4 62.3 6061 0.155

3.0.1 Gradient Boosting and Random Forest algorithms

When quantum derived features are applied there are minimum changes in prediction accuracy. The decreased
performance of model 3 is a result of exclusion of molecular descriptors in training and predicting process.

Mean absolute error indicates that RFR perform better than GBR (fig. 4), particularly when trained on dataset 1. There
is also improvement in performance when models are trained on dataset 2.

Models trained and tested on dataset 2 perform about 3nm better on average (MAE). Most probably this phenomenon is
caused by better homogenity in compounds classes in dataset 2. The dataset of compounds composed only of C, O, N,
F atoms also lacks maximum emission outliers which could affect the performance of prediction.

In the opposition to MAE, the values of mean squared error (fig. 5) imply that gradient boosting performs better than
random forest algorithm.

The further evidence of GBR’s more accurate predictions fall to maximum error (fig. 6). The trend is that GBR perform
better than RFR and the first’s worst predictions are about 9nm more accurate then the second’s. There is also about
35nm difference in maximum error between predictions with models trained on different datasets.

Figure 7 shows values of R2 scoring indicator. The difference between models is very slight but the advantage of
models trained on dataset 2 is further acknowledged.
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Table 2: Scoring values of dataset 2.
algorithm Gradient Boosting Random Forest

scoring type ME MAE MSE R2 ME MAE MSE R2

model
1 118.2 27.4 1373 0.782 127.7 27.3 1425 0.773
2 117.9 27.4 1370 0.783 129.2 27.6 1461 0.768
3 187.1 54.5 4741 0.255 179.0 52.3 4517 0.291
4 118.8 27.9 1402 0.778 127.0 27.7 1452 0.770
5 118.8 27.3 1383 0.780 127.2 27.3 1425 0.773
6 117.2 27.7 1391 0.779 126.5 27.6 1436 0.772
7 120.3 27.6 1397 0.778 126.9 27.6 1458 0.768
8 116.5 27.5 1358 0.784 127.6 27.9 1476 0.766
9 117.1 27.8 1389 0.779 126.4 27.5 1438 0.771
10 126.0 27.7 1437 0.772 127.3 27.2 1433 0.771
11 123.5 27.6 1409 0.776 128.2 27.3 1437 0.771
12 120.3 27.5 1392 0.779 126.3 27.3 1433 0.772
13 120.9 27.3 1376 0.782 128.7 27.5 1447 0.770
14 123.1 27.7 1400 0.777 127.1 27.5 1448 0.769

LM1 LM2
model

1 >500 >100 >10000 <-1 - - - -
2 >500 51.5 >10000 -0.937 187.8 57.6 5042 0.215
3 187.8 57.6 5042 0.215 187.8 57.6 5042 0.215
4 469.9 48.8 >10000 -0.681 223.5 64.1 6419 0.011
5 494.8 48.9 >10000 -0.908 298.4 67.8 9253 -0.373
6 460.7 48.9 9551 -0.536 197.9 63.5 5980 0.070
7 346.7 47.1 6727 -0.070 198.5 61.7 5748 0.107
8 396.6 47.5 7994 -0.293 191.2 61.0 5554 0.135
9 311.5 46.1 5893 0.075 206.0 57.0 5138 0.204
10 318.1 46.5 6151 0.027 201.3 63.2 5920 0.085
11 325.3 46.6 6292 0.002 201.1 63.8 6003 0.071
12 416.7 47.5 8574 -0.393 198.2 65.8 6232 0.036
13 >500 49.2 >10000 <-1 386.4 68.2 >10000 <-1
14 421.1 47.1 8979 -0.478 209.2 59.7 5426 0.159

3.1 Multi Linear Models

Since scoring values of multi linear regression in most cases were inapplicable when fed with the datasets with all
features, 2 alternative approaches were employed. Linear regression algorithm was provided with both features from
molecular descriptors and generated from pattern recognition from QM9 database (further referenced as LM1) or only
features generated from QM9 database(LM2). In this new approach LM1 model 3 is the same as LM2 models 2 and 3.
Except for model 3, LM1 scoring results disqualified this prediction method.

Most scoring indicators calculated in this research imply that in case of linear regression the best predicion accuracy is
achieved for model 3. It is also worth noting that to obtain somehow applicable results, linear regression models should
be provided with features excluding molecular descriptors.

3.2 Algorithms optimisation

Due to virtually no difference in scoring among all models, the process was conducted to cover models 1 and 2 of
GBR and RFR algorithms. Aforementioned scoring values were obtained by utilising default parameters of machine
learning algorithms. Thus it is relevant to determine whether and how varying those parameters impact prediction
results. Three parameters were chosen into the parameters tuning. The process was initially assessed by mean absolute
error to determine one of the parameters (max_depth in case of GBR and n_estimators for RFR). Mean squared error,
maximum error and R2 were further calculated. Fig. 8 and fig. 9 show selected part of optimisation results of GBR and
RFR algorithms accordingly. It is worth pointing that prediction capability of both algorithms benefit from altering
parameters but the significant parameters are different. Although the performance improved in both cases, the GBR
performed better than RFR.
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Figure 4: Mean absolute error across models and datasets.
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Figure 5: Mean squared error across models and datasets.

The rest of optimisation plots are available in additional materials - please check avability of data and materials section.
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Figure 6: Maximum error across models and datasets.
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Figure 8: Results of parameters tuning of gradient boosting regression model 1 (trained on dataset 2). Points size
and color saturation in plot a) are proportional to the value of mean absolute error. The red marker indicates default
parameters. b)-e) show MAE, MSE, ME and R2 results with max_depth set to 4.

4 Conclusions

Presented method of predicting maximum emissions of organic compounds has limited functionality and gives loose
insight into the property. There is possibility to polish the method to give better predictions. Some other applications of
machine learning in predictions of organic compounds emission wavelengths were published[24, 25].

The reduction of original database to only solid state organic compounds resulted in small size of the datasets
applied in the study. Due to such limitation of datasets it is most likely that some chemical compounds classes are

9



A PREPRINT - JUNE 24, 2021

Figure 9: Results of parameters tuning of random forest regression model 1 (trained on dataset 2). Points size and color
saturation in plot a) are proportional to the value of mean absolute error. The red marker indicates default parameters.
b)-e) show MAE, MSE, ME and R2 results with n_estimators set to 600.

underrepresented. This phenomenon is well known in cheminformatics as class imbalanced data[26, 27, 28]. Cheng-Wei
et al[25] calculated a curated number of molecular descriptors of solvents which appears to be the correct way to
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preserve database diversity. Since its vulnerability to database correspondence to compound being assessed, the method
should be provided with proper database. Alternatively machine could be trained on the go with a subset of bigger
database chosen on compound’s similarity(eg. by utilising extended similarity indices[29, 30]). With highly probable
emergence of new datasets, machine learning based approaches to QSPR will undoubtedly improve their performance.

Induction of quantum properties of compounds’ substructures did not improve the accuracy of prediction of emission
with RFR and GBR. Generation of quantum-derived features lead to unnecessary computational complexity, thus
models 2 - 14 appear to be redundant. Although outperformed, MLR was able to give sensible results when fed with
only quantum-derived descriptors. With development of new features or with alternative fragments based approach
these quantum-chemistry descriptors may play some role in prediction capabilities.

Other machine learning algorithms should be tested in the subsequent research. The appropriate course of improving
prediction capabilities would be to introduce predictions of one algorithm into another. The process of optimisation
of algorithms was conducted with focus on three parameters. The impact of varying other parameters should also be
scrutinised.

Only 2D molecular descriptors were utilised to train machine learning models. There are fields that 3D molecular
descriptors perform better then 2D ones[31]. In the study all available descriptors were calculated. Further investigations
should focus on analysis of the most principal ones.

The biggest advantage of proposed method is its ability to produce results rapidly. When introduced into web based
service, it offers quick assessment of emission property of projected compounds. Since the tool accepts SMILES as
input it is easy to use.

5 Data avability statements

Datasets are available at:

• QM9 dataset - moleculenet.ai/datasets-1
• database of chromophores - figshare.com/articles/dataset/DB_for_chromophore/12045567

The code of data processing, features generation, models development and scoring and scoring visualizations
is available at both and https://doi.org/10.6084/m9.figshare.14533929.v1 and https://github.com/
BartlomiejF/articles-molecular-quantum-descriptors.

Please be aware that different versions of RDKit may output results that vary from those presented in this paper.

Eventually at the aforementioned code resources there will also be available deployable web application utilizing
models developed in the research.
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