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Abstract

We introduce multiconfiguration data-driven functional theory (MC-DDFT) as a

new approach to multiconfiguration nonclassical functional theory (MC-NCFT), in

which the classical energy of a multiconfigurational wave function is combined with

a machine-learned functional for the nonclassical exchange-correlation energy. We also

present results obtained by a related approach, multiconfiguration energy-correcting

functional theory (MC-ECFT), in which the total energy of a wave function method

(e.g. CASSCF or NEVPT2) is corrected with a machine-learned functional. On a

dataset of carbene singlet-triplet energy splittings, we demonstrate that these new

multiconfiguration data-driven functional methods (MC-DDFMs) are able to achieve

near-benchmark performance on systems not used for training while being less active-

space dependent than multiconfiguration pair-density functional theory using currently

available translated functionals. This data-driven approach appears to hold particular

promise for MC-NCFT, as corrections to the CASSCF classical energy appear to be
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more generalizable than corrections to total energies yielded by wave function methods

such as CASSCF or NEVPT2.

Introduction

Although current Kohn-Sham density functional theory (KS-DFT) is highly accurate for

many interesting chemical systems, it is well-known to be less accurate for strongly corre-

lated systems than for systems well-described by a single Slater determinant.1–7 This has

motivated interest in combining density functionals with multiconfigurational wave function

methods8–11 (e.g. CASSCF) that explicitly express the wave function as a superposition of

Slater determinants. Because multiconfigurational self-consistent-field (MCSCF) wave func-

tion methods are generally limited to an active space of orbitals and electrons that is too

small to yield quantitatively accurate correlation energies, one must augment them by a post-

MCSCF procedure to obtain quantitative accuracy. The most widely used of these methods

include multireference perturbation theory (MRPT)11–14 (e.g. CASPT2 and NEVPT2) and

multireference configuration interaction (MRCI),15,16 which are both very expensive.

As an alternative to MRPT and MRCI, we have proposed multiconfiguration pair-density

functional theory (MC-PDFT)17 and multiconfiguration density-coherence functional theory

(MC-DCFT).18 These methods share the feature that they compute an energy combining

wave function theory for the classical components (kinetic energy, electron-nuclear attraction,

and classical electron-electron interactions) with a functional for the nonclassical components

of the energy (exchange and correlation), and together they may be grouped as examples

of multiconfigurational nonclassical functional theory (MC-NCFT). Here we propose a new

way to obtain nonclassical energy functionals, which may be called multiconfigurational

data-driven functional theory (MC-DDFT).

The general MC-NCFT energy expression is given by:
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EMC−NCFT[ψMC] = EMC
class + Enc[f [ψMC]] (1)

where the classical energy EMC
class accounts for classical nucleus-nucleus repulsion, nucleus-

electron attraction, electron-electron repulsion, and electron kinetic energy, and EMC
nc is

a "non-classical functional" (NCF) dependent on a featurization f of the reference wave

function ψMC, which may be the density, pair density, density coherence, gradients of these

quantities, or even projections of the density onto atom-centered basis functions, which is

the approach pursued here.

Despite the encouragingly simple form of eq 1, all NCFs we have developed to date have

been based on functional forms originally developed for KS-DFT via a process of translation19

or conversion.18 For example, we obtained the tPBE functional by translating the KS-DFT

functional PBE;20 the MC-PDFT method that utilizes this translation is also referred to

as tPBE. Recently, neural networks have been used to develop density functionals for KS-

DFT with no reference to the standard analytical forms generally utilized in functional

development.21–23 Inspired by this work, we extend this idea to nonclassical functionals in

order to develop functionals specifically for use with MC-NCFT without reference to any

functionals in KS-DFT.

Training Geometries. We have taken our training geometries from the QMSpin database of

Schwilk et. al.24 which contains carbenes optimized in the singlet state using CASSCF(2,2)/cc-

pVDZ-F12 as well as benchmark-quality vertical singlet-triplet splittings obtained using ex-

plicitly correlated multireference configuration interaction with single and double excitations

and the Davidson quadruples correction (MRCISD-F12+Q).25–28 In this work we use a subset

of these carbenes that contain only carbon and hydrogen atoms.

Network Architecture. We have taken an approach very similar to the recent work of of

Dick and Fernandez in their development of NeuralXC.21 Atomic feature vectors for atoms I

are obtained by projecting the density ρMC or on-top density ΠMC onto atom-centered basis
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functions φnlm via quadrature:

cI,ρnlm =

∫
r

φInlm(r)ρMC(r) cI,Πnlm =

∫
r

φInlm(r)ΠMC(r) (2)

and these features are then made rotationally invariant by the transformations:21,29

dI,ρnl =
∑
m

cI,ρnlm
2 dI,Πnl =

∑
m

cI,ρnlm
2 (3)

In this work we have opted to use the 108 optimized basis functions developed by Chen

et. al. for featurization on each atom;30 this results in a total of 36 rotationally invariant

features for each atom and density ρ or Π: 12 "s" features (l = 0, dI,ζ1,0 . . . d
I,ζ
12,0), 12 "p"

features (l = 1, dI,ζ2,1 . . . d
I,ζ
13,1), and 12 "d" features (l = 2, dI,ζ3,2 . . . d

I,ζ
14,2). We then input each

atomic feature vector vI = {dI,ρnl , d
I,Π
nl } into its respective element network, fλI to obtain the

total energy correction:

E =
∑
I

fλI (vI) (4)

as in the work of Behler and Parrinello.31 This approach makes the network both size-

extensive and permutationally invariant.

Networks were implemented and developed in PyTorch32 from the starting point of Neu-

ralXC available on GitHub.33 Element networks consist of an input layer, nlayers fully con-

nected hidden layers each with nnodes, and a one-node output layer, with nlayers and nnodes

treated as hyperparameters. The GELU activation function34 was used for all nodes.
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Figure 1: Network training scheme. Given a starting reference energy Eref with output
∆Eref , the element networks {α, β, . . .} are regressed to minimize the mean squared deviation
between corrected energy differences ∆Eref +∆EML and the target energy difference ∆Etarget.

Network Training. We focus our non-classical functionals on predicting benchmark-quality

energy differences between two states |ψ〉1 and |ψ〉2. Given a difference in energy between

these states from an inexpensive reference method, ∆Eref , we train functionals to mini-

mize the mean squared deviation between the corrected energy difference, ∆Eref + ∆Etarget,

and a target energy difference, ∆Etarget (in this work, singlet-triplet energy splittings from

MRCISD-F12+Q); this training scheme is outlined in Figure 1. Although this centering of

the loss function solely on relative energies stands in contrast to previous work in NeuralXC,21

DeepKS,22 OrbNet,23 and KDFA,29 it has three advantages: (i) it allows benchmark results

to be obtained from a variety of different sources (including experiment, which almost always

yields relative energies); (ii) relative energies are the quantities of most interest to chemists,

since bond energies, energies of reaction, and barrier heights are all relative energies; and

(iii) theoretical data used for training is almost always more accurate for relative energies

than for absolute energies.

For optimization of parameters and hyperparameters, the 360 carbenes were split into a

training set of 289 carbenes, a validation set of 37 carbenes, and a test set of 36 carbenes. All
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features were normalized using a StandardScaler fit on the training set,35 and networks were

optimized to reduce the mean squared error loss over the entire training set in Pytorch using

the Adam optimizer36 with a learning rate of 0.01 for a maximum of 20001 steps. A PyTorch

scheduler (torch.optim.lr_scheduler.ReduceLROnPlateau) was used to decrease the learning

rate over time upon an observed plateau in the loss to a minimum learning rate of 1.1e-7,

after which the training was stopped early. The hyperparameters considered were the weight

decay of the Adam optimizer and the number of nodes and layers in the element networks;

these hyperparameters were optimized using Optuna37 by minimizing loss on the validation

set. The final hyperparameters of all networks and the ranges explored are outlined in the

Supporting Information.

Wave Function Generation. State-averaged (2,2)-CASSCF wave functions, along with

tPBE and NEVPT2 energies for the singlet and triplet states of each carbene, were ob-

tained using PySCF,38 as integrated with MC-PDFT capabilities using publicly available

development code.39 Atomic feature vector inputs (eq 2) were obtained via quadrature using

the highest grid quality (grid_level=9). During development it was found that these input

features converge at significantly lower thresholds than the CASSCF energy, and therefore

more stringent CASSCF optimization parameters were used in obtaining the singlet and

triplet wave functions to insure consistency (mc.conv_tol = 1e-10, mc.conv_tol_grad =

1e-6, mc.ah_lindep = 1e-14, and mc.ah_conv_tol = 1e-12).

Active Space Selection. With the exception of benzene, the active spaces for all CASSCF

calculations were chosen automatically using the ranked-orbital approach.40 The highest

23 doubly occupied orbitals and the lowest 23 virtual orbitals of an ROHF wave function

were individually Boys-localized41 and the approximate pair coefficient (APC) method40 was

employed on all doubly occupied orbitals and the localized virtual orbitals to approximate

orbital entropies (the remaining virtual orbitals were not considered for the active space).

These entropies were then used to rank the orbitals in terms of importance, and the final

active space was selected by setting a maximum number of allowed CSFs in the wave function
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expansion (e.g. max(2,2), max(4,4), and max(6,7)) and dropping orbitals from the active

space until the size of the active space satisfied the threshold. In the training data we selected

all active spaces at the max(6,7) level.

Active Space Error. Although the ranked-orbital approach above is imperfect at ranking

orbitals in importance for the active space, at the max(6,7) level our method failed to select

active spaces with qualitatively accurate CASSCF excitation energies (<1eV in absolute

error) in only a small number of cases; these cases were rejected from the training, validation,

and test sets. However, in addition to the calculations at the max(6,7) level that were used to

train the functionals, we performed some tests with minimal active spaces generated at the

max(2,2) level, which requires a perfect ranking of the orbitals; in these tests we experienced

a much higher failure rate (33%). Therefore, these tests were carried out on a test subset of

only 24 carbenes (listed in the Supporting Information).

Types of Data-Driven Functionals. We have developed three types of functionals using

the above scheme:

1) Purely data-driven functionals (PDDFs), which correct the classical energy of a wave

function:

EMC−PDDFT = EMC
class + EPDD[ρMC,ΠMC] (5)

2) ∆-data-driven functionals (∆DDFs), which correct MC-NCFT calcuations that employ

translated or converted functionals from KS-DFT, e.g. tPBE:

EMC−∆DDFT = EMC
tPBE + E∆DD[ρMC,ΠMC] (6)

3) Energy-correcting data-driven functionals (ECDDFs), which correct the total energy of

a wave function theory:
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EMC−ECFT = EMC
tot + E∆DD[ρMC,ΠMC] (7)

Below, we present results on the four new functionals we have developed in these cat-

egories: DDF21, a purely data-driven functional; ∆tPBE-21, a ∆-data-driven functional

that corrects tPBE; ∆CASSCF-21, an energy-correcting functional that corrects CASSCF;

and ∆NEVPT2-21, an energy-correcting functional that corrects NEVPT2. All of these

functionals can be referred to collectively as "data-driven functionals" (DDFs). When used

in combination with their reference energies they form multiconfiguration data-driven func-

tional methods (MC-DDFMs).
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Results

Figure 2: Mean absolute errors (MAEs) on MRCISD-F12+Q benchmark data for a test set
of 36 carbenes excluded from the training data. For each MC-DDFM (DDF21, ∆tPBE-21,
∆CASSCF-21, and ∆NEVPT2-21, shown in green), we show the performance of its reference
method (tPBE, CASSCF, and NEVPT2, shown in blue) as well as a one-parameter mean-
corrected method (Reference-µ) shown in orange. The MAE of the classical CASSCF energy
(1.1eV) is not shown due to scale.

Results. Figure 2 shows the performance of the four MC-DDFMs in comparison to their

respective reference methods on the test set of 36 carbene singlet-triplet energy splittings.

For comparison, we also show the performance of a simple one-parameter mean correction to

the singlet-triplet energy splittings, in which ∆Eref is corrected by its mean deviation from

MRCISD-F12+Q on the training data. Encouragingly, all four functionals are able to greatly

improve upon these one parameter corrections, surpassing the mean absolute errors (MAEs)

of their reference methods by factors of 29 (DDF21), 16 (∆tPBE21), 3 (∆CASSCF-21),

and 2 (∆NEVPT2-21). Although all the data in the article proper are for functionals that

depend on both the density and the pair density, additional results given in the Supporting
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Information show that we obtain similarly high accuracy using only density features or only

on-top density features.

Figure 3: Mean absolute errors on MRCISD-F12+Q benchmark data from a test subset of
24 carbenes for which our automated scheme chose a reasonable (2,2) active space, tested
with the cc-PVTZ basis at four different active space sizes: max(2,2), max(4,4), max(6,7),
and max(8,8).

We tested the active space dependence of our data-driven functional methods on 24 car-

benes with four different active spaces whose number of configurations vary by four orders

of magnitude: max(2,2), max(4,4), max(6,7), and max(8,8). Figure 3 shows that all MC-

DDFMs maintain their near-benchmark accuracy across this wide range of active spaces,

despite being trained on only max(6,7) active spaces. We note that this active space robust-

ness is likely a benefit of the sole dependence of the loss function on relative energies rather

than absolute ones. However, we find that one drawback of our approach is that the param-

eters do not seem to be easily transferable to other basis sets; when switching to either a

cc-pVDZ or cc-pVQZ basis the errors of the MC-DDFMs increase dramatically (Supporting

Information).
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Figure 4: Mean absolute error of reference and data-driven functional methods on three
difficult singlet triplet gaps, consisting of one aryl system (C6H6, using the standard mini-
mal cc-pVTZ@UNO-(6,6) active space42) and two biradical systems (cyclobutadiene, C4H4,
and 1,3-bis(methylene)-cyclobutadiene (C4H2-(1,3)-(CH2)2), using automatically selected
max(10,10) active spaces).

As a final test of generalizability, we tested the MC-DDFMs on three difficult singlet–triplet

energy splittings quite different than any data in the training set: benzene and two biradical

systems; cyclobutadiene (C4H4) and 1,3-bis(methylene)cyclobutadiene (C4H2-(1,3)-(CH2)2)

(Figure 4). These systems were taken from previous benchmark studies on translated func-

tionals,43,44 with benchmarks for benzene taken from experiment45 and benchmarks for the

biradicals from theoretical results.46 While MC-DDFMs correcting total energies (∆tPBE-21,

∆CASSCF-21, and ∆CASSCF-21) all did worse on average than their respective reference

methods, DDF21 maintains a large improvement upon the CASSCF classical energy, reduc-

ing its MAE from 0.77 eV (unshown in Figure 4) to only 0.25 eV. This suggests to us that

corrections to the classical energy may be more generalizable than corrections to "complete"

methods such as CASSCF or NEVPT2, and similar generalizability in this regard is achieved

by MC-DDFMs trained solely on the density or on-top density (Supporting Information).
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Conclusions. We have presented a data-driven approach to the development of energy

functionals for strongly correlated systems utilizing neural networks parametrized in terms

of the density and on-top density. Using a dataset of carbene singlet-triplet energy splittings

taken from the QMSpin database,24 we find that the new multiconfiguraional data-driven

functional methods (MC-DDFMs) are able to achieve benchmark-quality accuracy on car-

benes not included in the training set and improve markedly on approaches using translated

functionals even when extended to different active spaces. Furthermore, this work shows that

data-driven functionals hold particularly great promise for multiconfigurational non-classical

functional theory, as corrections to the classical energy appear to be more generalizable than

corrections to total energies such as yielded by CASSCF or NEVPT2. It will be interesting

to see if this good performance can be maintained when the functionals are parameterized

using larger and more diverse sets of training data.
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