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Abstract

We demonstrate the accuracy and efficiency of the restricted open-shell and unre-

stricted formulation of the absolutely localized Huzinaga projection operator embed-

ding method. Restricted open-shell and unrestricted Huzinaga projection embedding

in the full system basis is formally exact to restricted open-shell and unrestricted Kohn-

Sham density functional theory, respectively. By utilizing the absolutely localized basis,

we significantly improve the efficiency of the method, while maintaining high accuracy.

Furthermore, the absolutely localized basis allows for high accuracy open-shell wave

function methods to be embedded into a closed-shell density functional theory envi-

ronment. The open-shell embedding method is shown to calculate electronic energies

of a variety of systems to within 1 kcal/mol accuracy of the full system wave func-

tion result. For certain highly localized reactions, such as spin transition energies on
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transition metals, we find that very few atoms are necessary to include in the wave

function region, in order to achieve desired accuracy. This extension further broadens

the applicability of our absolutely localized Huzinaga level-shift projection operator

method to include open-shell species. Here we apply our method to several representa-

tive examples such as spin splitting energies, catalysis on transition metals, and radical

reactions.

1 Introduction

The accurate simulation of systems with complex electronic character poses a significant

challenge to modern computational methods. While Kohn-Sham density functional theory1,2

(KS-DFT) can provide accurate, computationally efficient results for many systems, current

exchange-correlation functionals have significant limitations. It has been well documented

that for reactions involving a transition metal3–6 and spin-state energetics of transition metal

centers,7–13 the accuracy of KS-DFT is largely functional dependent with no obvious choice of

which functional to use. Systems with degenerate and near-degenerate states, such as those

with stretched covalent bonds and transition metals, are notoriously difficult to simulate

accurately by modern KS-DFT methods.6,14–17

When studying systems with transition metals, correlated wave function (WF) methods

such as coupled cluster (CC), and complete active space (CAS) are commonly considered

more accurate. Unlike DFT, WF methods can be systematically improved (e.g. including

additional excitations for CC calculations, or increasing the size of the CAS active space)

to increase the accuracy of the calculation. However, WF calculations are often limited to

a small model of the system of interest due to the high computational cost. This can be a

successful strategy because of the localized nature of many reactions, but new errors may be

introduced by dividing the full system into a smaller model and there is evidence that the

process of choosing a model is not always a clear, systematically improvable process.18

Quantum embedding calculations seek to improve upon the small model simulations by
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including some influence of the full system on the final energy. Quantum embedding meth-

ods such as QM/MM,19 ONIOM,20 DMET,21,22 embedded mean-field theory,23–27 Green’s

function embedding,22,28–30 partition DFT,31–33 and DFT embedding22,34–37 among many

others38–43 were designed to combine the benefits of high accuracy and systematic improv-

ability from WF theory for a small subsystem, while including effects from the full system

at a comparably negligible computational cost. Projection operator based DFT embedding

has been developed by many groups with significant success.44–55 Recent work in our group

has focused on Huzinaga level-shift projection operator DFT embedding in the absolutely

localized basis. We have demonstrated the efficiency, accuracy, and systematic improvability

of this method for closed-shell molecular ground56,57 and excited states,18 and ground state

properties of periodic systems.58 We have found that the absolutely localized basis not only

reduces the size of the valence orbital space thus decreasing the computational cost of the

WF calculation, it also improves the total accuracy of the reaction energy due to favorable

error cancellation.57

Given our success with the Huzinaga based DFT embedding for closed-shell systems,

we have expanded the method to allow restricted and unrestricted ground state embedded

energies of molecular systems. We demonstrate highly accurate embedding energies for

radical reactions, gas adsorption onto transition metals, and transition metal spin-state

energetics. We also discuss how transition metal energies using the Huzinaga embedding

method are far less functional dependent than traditional KS-DFT calculations.

2 Theory

We have developed unrestricted and restricted open-shell Huzinaga level-shift projection

based embedding. Both methods are extensions of the closed-shell method described pre-

viously.57 In the sections that follow the full system is divided into two subsystems for

simplicity, however the total system may be divided into any number of subsystems.
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2.1 Unrestricted

For unrestricted embedding, the total system electron density is divided into α and β spin

components, γα, γβ and those components are then subdivided into subsystem A, γA, and

subsystem B, γB where,

γα = γA
α + γB

α , (1)

γA = γA
α + γA

β . (2)

The definition of γβ is analogous to equation 1 and γB is analogous to equation 2. These

subsystem spin electron densities are defined in the absolutely localized basis. The absolutely

localized basis defines the Kohn-Sham orbitals in a subsystem using only those basis functions

centered on atoms within that subsystem. In the absolutely localized basis, the α spin Kohn-

Sham orbitals of subsystem A are defined as,

φA
iα =

∑
µ

CA
iµαχ

A
µ , (3)

where φA
iα are the α spin Kohn-Sham orbitals of subsystem A, CA

iµα are the spin orbital

coefficients of subsystem A, and χA
µ are basis functions associated with subsystem A. This

basis is also used for all embedded WF calculations in this paper.

In order to maintain orthogonality between subsystems, the unrestricted spin Huzinaga

level-shift projection operator is added to the subsystem Hamiltonian. The unrestricted

spin Huzinaga level-shift projection operator may be added to a subsystem Hamiltonian,

allowing simple incorporation with any existing QM method utilizing an electron potential

Hamiltonian. The form of the spin Huzinaga level-shift projection operator for subsystem A

in the presence of subsystem B is,

PB
α = −

(
FAB
α γB

αSBA + SABγB
αFBA

α

)
(4)
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where,

FAB
α = 〈χA|F̂α|χB〉 (5)

with F̂α being the full system α spin Fock operators and,

SAB = 〈χA|χB〉. (6)

Including the unrestricted spin Huzinaga level-shift projection operator into the spin Fock

matrix of subsystem A embedded into subsystem B results in the projected α spin Fock

matrix,

fA-in-B
α = hA-in-B

α [γA
α , γ

A
β , γ

B
α , γ

B
β ] + J[γA] + vxc[γA

α , γ
A
β ] (7)

where J is the electron Coulomb potential, vxc is the exchange-correlation (XC) potential,

and the embedded core Hamiltonian is

hA-in-B
α [γA

α , γ
A
β , γ

B
α , γ

B
β ] = h + J[γA + γB]− J[γA] + vxc[γα, γβ]− vxc[γA

α , γ
A
β ] + PB

α [γB
α ], (8)

where h is the total one-electron Hamiltonian.

The embedded DFT energy of subsystem A, EA
DFT, is calculated by,

EA
DFT = Tr

(
γA
α · hA-in-B

α [γA
α , γ

A
β , γ

B
α , γ

B
β ]
)
+Tr

(
γA
β · hA-in-B

β [γA
α , γ

A
β , γ

B
α , γ

B
β ]
)

+J[γA]+Exc[γA
α , γ

A
β ],

(9)

and the WF energy of subsystem A embedded in the DFT potential of the full system, EA
WF,

is

EA
WF = 〈ΨA

α |ĤA-in-B
α |ΨA

α 〉+ 〈ΨA
β |ĤA-in-B

β |ΨA
β 〉. (10)

Here ĤA-in-B
α is

ĤA-in-B
α = ĥA-in-B

α + ĝA
α (11)

where ĥA-in-B
α is equivalent to equation 8 (now written in operator form) and ĝA

α is the α two-
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electron operator for a given WF theory acting on the electrons of subsystem A. Therefore

the overall WF-in-DFT embedding energy is,

EFull
WF-in-DFT = EFull

KS-DFT − EA
DFT + EA

WF, (12)

and uses an subtractive embedding framework like ONIOM,20 where EFull
WF-in-DFT is the total

WF-in-DFT energy, EFull
KS-DFT is the canonical KS-DFT of the full system, EA

DFT is the DFT

energy of subsystem A embedded in the full system.

2.2 Restricted Open-shell

For restricted open-shell embedding, the total system electron density may be divided as in

equations 1 and 2. The same absolutely localized basis is also employed, however defined in

the restricted sense as,

φA
i =

∑
µ

CA
iµχ

A
µ , (13)

where φA
i are the restricted open-shell Kohn-Sham orbitals of subsystem A, CA

iµ are the

restricted open-shell orbital coefficients of subsystem A, and χA
µ are basis functions associ-

ated with subsystem A. The restricted open-shell Huzinaga level-shift projection operator is

defined using the restricted open-shell Fock matrix, FRO,

PB = −1
2
(
FAB

ROγ
BSBA + SABγBFBA

RO

)
. (14)

Here, the restricted open-shell Fock matrix is,

FRO =


Fcs
cc Fβ

co Fcs
cv

Fβ
oc Fcs

oo Fα
ov

Fcs
vc Fα

vo Fcs
vv


core (c)

open-shell (o)

virtual (v)

(15)
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where Fα and Fβ are the α and β spin Fock matrices respectively, and Fcs is (Fα + Fβ)/2.

Then we arrive at FAB
RO as,

FAB
RO = 〈χA|F̂RO|χB〉. (16)

The restricted open-shell embedded core Hamiltonian is,

hA-in-B
RO [γA

α , γ
A
β , γ

B
α , γ

B
β ] = h+J[γA+γB]−J[γA]+vxc, RO[γα, γβ]−vxc, RO[γA

α , γ
A
β ]+PB[γB], (17)

where vxc, RO is the restricted open-shell exchange-correlation potential matrix defined as

vxc, RO[γα, γβ] =


vcs

xc[γα, γβ]cc vxc[γβ]co vcs
xc[γα, γβ]cv

vxc[γβ]oc vcs
xc[γα, γβ]oo vxc[γα]ov

vcs
xc[γα, γβ]vc vxc[γα]vo vcs

xc[γα, γβ]vv


core (c)

open-shell (o)

virtual (v)

(18)

with

vcs
xc[γα, γβ] = vxc[γα] + vxc[γβ]

2 . (19)

The embedded DFT energy of subsystem A, EA
DFT, is calculated by,

EA
DFT = Tr

(
γA · hA-in-B

RO [γA
α , γ

B
αγ

A
β , γ

B
β ]
)

+ J[γA] + Exc[γA
α ] + Exc[γA

β ], (20)

and the WF energy of subsystem A embedded in the DFT potential of the full system, EA
WF,

is

EA
WF = 〈ΨA|ĤA-in-B

RO |ΨA〉. (21)

Here ĤA-in-B
RO is

ĤA-in-B
RO = ĥA-in-B

RO + ĝA
RO (22)

where ĥA-in-B
RO is equivalent to equation 17 (now written in operator form) and ĝA

RO is the

restricted open-shell two-electron operator for a given restricted open-shell WF theory act-
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ing on the electrons of subsystem A. The total WF-in-DFT embedding is the same as for

unrestricted embedding, equation 12. We note that for both unrestricted and restricted

open-shell embedding, if the full system basis is employed the exact KS-DFT energy and

density would be obtained from the DFT-in-DFT embedding procedure as this formulation

is formally exact.

3 Computational Details

The thiol-ene reaction molecular geometries were optimized using Gaussian 1659 using the

M06 functional60 and aug-cc-pVDZ basis.61 The Fe-MOF-74 cluster geometry was calcu-

lated using Gaussian 1659 following the procedure outlined by Lee and coworkers.62 Fe spin

transition cluster geometries originate from a recent study by Radoń.63 Furthermore, all ge-

ometries are reported in the Supporting Information (SI). Single point DFT and UCCSD(T)

energy calculations were performed using PySCF version 1.7.464 and all ROCCSD(T) and

CASPT2 calculations were done using Molpro 2019.2.65–71 WF-in-DFT embedding energies

were calculated using our Quantum Solid-state and Molecular Embedding code72 (QSoME)

via the same freeze-and-thaw scheme outlined in our previous paper.57 All relevant output

files including full system energies are included in the SI. Interestingly, we have found that

embedding two charged subsystems results in higher accuracy than embedding two open-

shell subsystems. This result supports our previous findings and further details are provided

in the SI.

4 Results and Discussion

With the addition of restricted open-shell and unrestricted embedding, a myriad of new

chemical systems may be studied using our absolutely localized Huzinaga embedding method.

Here we have chosen several open-shell systems as demonstrative examples of the broad

applicability of our embedding method.

8



4.1 Radical Reactions

Systematic improvability, that is where energies improve through a well defined process, is

an important feature of our embedding method. We have demonstrated previously that

the method is systematically improvable for closed-shell systems,57 and here have chosen

to study a simple radical thiol-ene reaction (Fig. 1) to demonstrate the same systematic

improvability for our open-shell embedding method. The system is divided into a series

of incrementally larger WF subsystems in order to understand how the energies changed

as the size of the WF region grows. For this calculation, we chose CCSD(T) for the WF

method and used the M06 DFT exchange-functional. We calculated the reaction energy using

S

1 2 3 4 5

1 2 3 4 5

S+CH3
CH2

Figure 1: 1-(Ethylsulfyl)pentane formation by thiol-ene radical reaction. Numbering indi-
cates the size of the WF subsystem. Implied hydrogen are included within the subsystem
containing their associated bonded carbon.

both restricted open-shell and unrestricted Huzinaga embedding and compared the result

to the full system CCSD(T) reaction energy. As is evident from Fig. 2, our embedding

method exhibits desirable systematic improvability with increasing WF subsystem size for

restricted and unrestricted calculations. Furthermore, including only those atoms directly

bonded to the reaction center is sufficient to recreate full system CCSD(T) results to within

1 kcal/mol, demonstrated by the high accuracy for WF subsystem size 2. A significant

difference between CCSD(T) and embedding results for WF subsystem size 1 was expected

based on our previous closed-shell embedding calculations.57 Additionally, the difference
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between CCSD(T) and embedding results does not monotonically converge to exactly zero

due to our use of the absolutely localized basis, however the difference does converge to well

within accepted chemical accuracy (1 kcal/mol).

Figure 2: Absolute energy difference of CCSD(T) embedded in M06 for 1-
(Ethylsulfyl)pentane formation by thiol-ene radical reaction compared to full system
CCSD(T). Subsystem size divisions correspond with the division in Fig. 1. Dashed lines
represent unrestricted embedding, dash dotted lines represent restricted open-shell embed-
ding.

4.2 Fe-MOF-74 Gas Adsorption

As was mentioned in the introduction, transition metal systems are notoriously difficult for

DFT methods to calculate accurately. We have successfully calculated the energy of hydrogen

gas adsorption on an closed shell singlet Fe-MOF-74 cluster model using our closed-shell

method.57 However, the ground state spin for this model is actually a quintet. Therefore,

we now calculate the adsorption energy of the true ground electronic state. We divided the

system following the scheme shown in Fig. 3 and embedded CASPT2 subsystems within

M06 DFT. All five Fe 3d orbitals with seven electrons, and both adsorbate hydrogen 1s

orbitals with two electrons were included as the active space for the CASPT2 calculation.

Our results, shown in Fig. 4, once again demonstrate highly accurate WF results once all

atoms adjacent to the reaction are included in the WF subsystem (subsystem size 3). Here

10



Figure 3: Hydrogen gas adsorption reaction on a Fe-MOF-74 cluster model. WF subsystem
divisions are specified; the smallest subsystem includes only the Fe and hydrogen adsorbate.

for the first time we see an increase in error as the size of the WF subsystem is increased

however, it is important to note that this error increase only occurs for restricted open-

shell embedding. We attribute this exception to the smooth convergence of the embedding

energy to WF results to the restricted open-shell orbital restriction in conjunction with the

absolutely localized restriction. In our restricted open-shell embedding, the unpaired electron

must be localized to the atoms in the WF subsystem while the DFT subsystem is described

as a closed shell singlet because of our absolutely localized basis. This can result in increased

errors due to forced localization of the spin density if the WF region is too small. We do

note that there is a uniform convergence once the WF subsystem size is sufficiently large.

Figure 4: Absolute energy difference of CASPT2 embedded in M06 DFT hydrogen adsorption
compared to full cluster CASPT2 results. Dashed lines represent unrestricted embedding,
dash dotted lines represent restricted open-shell embedding.
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4.3 Spin Transition Energy

One particularly difficult property to accurately calculate for many systems is the spin-

transition energy (STE), or vertical excitation energy. Spin-transition energies for systems

with transition metals often have a significant dependency on the exchange-correlation func-

tional.73 The spin density is typically localized to the transition metal which makes spin-

transition energy calculations an appealing target for embedding methods. To demonstrate

the effectiveness of absolutely localized Huzinaga WF-in-DFT embedding, we calculated the

STEs of two Fe cluster systems previously identified by Radon as having high functional

dependence.63 We compared UCCSD(T) calculations on the full system to embedding STEs

using a variety of functionals.

Fe
H2O

OH2

H2O

OH2

OH2
OH2

3+

Figure 5: Spin-transition energy (STE) difference of embedding in a variety of DFT XC
functionals compared to UCCSD(T). Green shaded region indicates 1 kcal/mol difference
from full system WF results.

For the smaller, weak field ligand system shown in Fig. 5, the embedded WF region is

limited to only include the Fe (any larger would contain the full system). There still exists

some exchange-correlation functional dependency, but embedding reduces the deviation from

more than 50 kcal/mol between functionals to less than 10 kcal/mol. Additionally, for all

functionals except the M06 functional embedding improves upon the DFT results. In the

case of the M06 functional, we believe the slight increase in error by 2 kcal/mol is due to

the fact that the M06 functional closely recreates the WF results on its own and embedding
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Fe
H2N

NH2

H2N

NH2

NH2
NH2

3+

1

2

Figure 6: Spin-transition energy (STE) difference of embedding in a variety of DFT XC
functionals compared to UCCSD(T). Green shaded region indicates 1 kcal/mol difference
from full system WF results. The only subsystem size 1 embedding results presented are for
B3LYP and M11L functionals as all other functionals failed to converge for subsystem size
1.

introduces minor errors for small subsystem divisions as we have seen previously. Some

embedding error for small WF subsystem sizes is expected however, and has been well

documented by Bensberg and Neugebauer in a recent article55

When looking at the strong field system shown in Fig. 6, it is clear that expanding the

WF region does significantly improve the embedding results and in every case more closely

recreates the UCCSD(T) results than the corresponding XC functional. This system proved

difficult to converge for subsystem size 1, however following our general recommendation of

including atoms adjacent to the region of chemical interest results in spin transition energies

that are in close agreement with UCCSD(T) results for the full system, regardless of XC

functional.

5 Conclusions

With this improved Huzinaga embedding method, we have demonstrated the effectiveness

of the method for nearly every domain of Born-Oppenheimer localized chemical reaction:

periodic or non-periodic, ground state and excited state, closed-shell or open-shell. Specifi-
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cally here we have shown that our method can accurately recreate WF results for a variety of

open-shell systems embedding a variety of QM methods. These WF results were achieved for

a fraction of the computational cost of the full system WF calculation while retaining high

accuracy. The spin transition energies are of particular note as embedding can help break the

functional dependency of calculations on transition metals. The absolutely localized Huzi-

naga WF-in-DFT method is an incredibly valuable tool for the chemical community and by

publishing our code, user manual, and tutorial we seek to make the method as accessible as

possible.
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