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Abstract: 9 

Techniques from the branch of artificial intelligence known as machine learning (ML) have been 10 

applied to a wide range of problems in chemistry. Nonetheless, there are very few examples of 11 

pedagogical activities to introduce ML to chemistry students in the chemistry education literature. 12 

Here we report a computational activity that introduces undergraduate physical chemistry students 13 

to ML in the context of vibrational spectroscopy. In the first part of the activity, students use ML 14 

binary classification algorithms to distinguish between carbonyl-containing and non-carbonyl-15 

containing molecules on the basis of their infrared absorption spectra. In the second part of the 16 

activity, students test modifications to this basic analysis, including different analysis parameters, 17 

different ML algorithms, and different test datasets. In a final extension of the activity, students 18 

implement a multiclass classification to predict whether carbonyl-containing molecules contain a 19 

ketone, a carboxylic acid, or another carbonyl group. This activity is designed to introduce students 20 

both to the basic workflow of a ML classification analysis and to some of the ways in which 21 

machine learning analyses can fail. We provide a comprehensive handout for the activity, 22 

including theoretical background and a detailed protocol, as well as datasets and code to implement 23 

the exercise in Python or Mathematica. This activity is designed as a standalone exercise for 24 

physical chemistry lab classes but can also be integrated with courses or modules on vibrational 25 

spectroscopy and computational chemistry. On the basis of student surveys, we conclude that this 26 

activity was successful in introducing students to applications of ML in chemistry. 27 

 28 

Main text: 29 

 30 

Introduction: 31 

 32 

Vibrational spectroscopy is a powerful molecular characterization tool encountered in the 33 

organic, analytical, and physical chemistry undergraduate curricula. (Opportunities to incorporate 34 

vibrational spectroscopy into the general chemistry curriculum have also been discussed in this 35 

Journal.1–3) The first introduction to vibrational spectroscopy is often in the context of qualitative 36 

analysis, in which students learn to interpret vibrational spectra by looking for the spectral 37 

signatures of specific functional groups. A variety of approaches have been discussed for 38 

improving student’s ability to learn vibrational spectral characteristics, such as inquiry-based card 39 

games,4 physical models,5 and virtual reality.6 40 
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 The past decade has witnessed a rapid growth of machine learning (ML) for a variety of 41 

applications, such as image classification and machine translation. Broadly defined, ML 42 

algorithms use example training data to “learn” a model that can be used to make predictions or 43 

decisions, without the need for explicit programming of the model. ML has been applied to a wide 44 

variety of problems in chemistry7,8 and efforts have been made to formalize best practices for these 45 

studies.9 More specifically, ML has been applied to both infrared (IR) absorption and Raman 46 

vibrational spectroscopy,10,11 including functional group identification.12–15 47 

Although the chemical education community acknowledges the need for student training 48 

in computational methods and ML,16 there are limited pedagogical materials and no standard way 49 

of incorporating this into the curriculum. One approach has been the development of dedicated 50 

semester-long courses in scientific computing for chemists17 or cheminformatics18 that introduce 51 

programming in general and include modules on ML methods. There are also dedicated courses 52 

on data science for chemistry.19,20 Another approach is the development of standalone laboratory 53 

or classroom experiences that can be incorporated into existing classes, such as prediction of fluid 54 

properties in introductory chemical engineering courses21 or computer vision image analysis to 55 

distinguish different types of laboratory glassware.22 We take the latter approach in this article. 56 

We report a way to introduce ML into the chemistry curriculum by relating it to existing 57 

curricular activities pertaining to vibrational spectroscopy. Students immediately grasp the 58 

practical value and challenges of deducing molecular structure from spectra. Here we describe a 59 

laboratory activity in which students apply ML to functional group identification in IR spectra. 60 

Students construct binary classifier models to identify carbonyl-containing compounds from IR 61 

spectra (using a database of calculated IR spectra), followed by multiclass classification to 62 

distinguish ketones from carboxylic acids or other carbonyls. This activity could be incorporated 63 

into many locations in the undergraduate curriculum, but we have designed it for a junior/senior 64 

level physical chemistry lecture or lab course, where it can be integrated with existing experimental 65 

or computational vibrational spectroscopy lab experiences. Different versions of this experiment 66 

can be completed in either one or two 3-hour lab periods, with a number of optional additional 67 

components. The computational dataset and the code needed for the experiment are provided as 68 

both Python-based Jupyter notebooks and Mathematica notebooks. Interactive notebook-based 69 

programming environments have many advantages both for education17,23–26 and for practicing 70 

scientists.27  71 

 72 

Methods: 73 

 74 

 Below we provide an overview of the methods used in this study. Additional background 75 

is available in the Student Handout and additional technical details are provided in the Supporting 76 

Information. The latest versions of the notebooks and student handout are available from GitHub.28 77 

 78 

Dataset 79 
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This experiment uses a dataset from the Alexandria Library containing the vibrational 80 

frequencies and intensities for 2,337 molecules calculated using density functional theory (DFT) 81 

with the B3LYP hybrid functional and the aug-cc-pVTZ basis set.29 (Although experimental IR 82 

spectra are available from the National Institute of Standards and Technology30 and other sources, 83 

many of these databases are heterogeneous, containing spectra for compounds in different phases 84 

with different units, complicating their use.) In the Alexandria Library, each vibrational mode has 85 

a calculated vibrational frequency and oscillator strength describing its intensity. To simulate IR 86 

absorption spectra, we convolve the vibrational frequencies with a Lorentzian function of 40 cm˗1 87 

width (Figure 1 and Figure 2A). Of the resulting spectra, 90% (2,104) are used as training data and 88 

10% (233) are used as test data for the binary classification. The total dataset contains spectra of 89 

351 carbonyl-containing molecules, of which 90% (316) are used as training data and 10% (35) 90 

are used as test data for the multiclass classification. A Mathematica 12.1 script to perform this 91 

data processing is provided in the Supporting Information; in our activity students are provided 92 

with the compiled training and test spectra, so they do not need to conduct this step. 93 

 94 

Data Preprocessing and Machine Learning 95 

 The training and test spectra must be processed further prior to machine learning analysis 96 

(Figure 1). First, the spectral intensities for each molecule are normalized from 0 to 1 (Figure 2A 97 

and 2B). The intensities in the Alexandria Library represent the oscillator strengths of each 98 

vibrational mode, but this step allows analysis of datasets where intensity values may reflect 99 

concentration differences or other experimental parameters. Next a thresholding step is performed, 100 

in which intensity values below a specified threshold (0.2 by default) are set to 0 (Figure 2C). The 101 

data are then split to separate the attributes (i.e., the spectral intensity at each frequency) and the 102 

labels (i.e., a 0 or 1 indicating whether a carbonyl is absent or present) as two different variables. 103 

Finally, a data balancing step is performed. Carbonyl-containing compounds represent only 15% 104 

of the Alexandria Library dataset. Such an imbalance can sometimes cause ML classification 105 

models, which often assume uniform distribution of training samples among the classes,31 to be 106 

biased toward the majority class. A data balancing approach called synthetic minority 107 

oversampling technique (SMOTE)32 is used to generate new synthetic instances of the carbonyl 108 

class for the training dataset. The resulting training dataset, containing 50% carbonyl-containing 109 

and 50% non-carbonyl-containing spectra, is used to train the ML models. Students are guided 110 

through each of these data processing steps in the activity. 111 

 Four common ML classification algorithms are implemented in this exercise: Decision 112 

Tree,33 Random Forest,34 k-Nearest Neighbors,35 and Naive Bayes.36 These algorithms were 113 

chosen because they are widely-used, robust, and easy to understand; as described below, they also 114 

perform very well for this classification task. (They are not the only choices, and the research 115 

literature provides other alternatives, such as support vector machines and neural networks, that 116 

may be more appropriate vibrational spectral analysis.12,13) The student handout and supporting 117 

information provide brief discussions of the assumptions of each of these models. The multiclass 118 

classification performed in Part III of this activity is structured as multiple one-vs-all binary 119 
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classifications, in which the probability of membership in each class is separately determined for 120 

each molecule and the class with the highest probability is then taken as the final predicted label. 121 

Standard metrics are used to evaluate model performance, including the accuracy (the proportion 122 

of the total number of predictions that were correct), the sensitivity (the proportion of actual 123 

positive cases which are correctly identified), and the specificity (proportion of actual negative 124 

cases which are correctly identified). 125 

The Python (version 3.7) implementation of this activity uses the scikit-learn library37 for 126 

the ML algorithms, the imbalanced-learn (imblearn) library38 for SMOTE, and other common 127 

libraries for handling datasets (pandas39), carrying out mathematical and statistical calculations 128 

(NumPy40 and SciPy41), and visualizing data (Matplotlib,42 Plotly,43 and Seaborn44). Our 129 

implementation was performed in the (free-to-use) Google Colaboratory environment,45 but it 130 

could also be run in any standard Jupyter notebook environment. The Mathematica implementation 131 

uses built-in functionality available in version 12.1 and above and it includes a custom 132 

implementation of the SMOTE algorithm. 133 

 134 

Results: 135 

 136 

Binary Classification 137 

 In Parts I and II of the experiment, students use different binary classification algorithms 138 

to predict whether input IR absorption spectra correspond to carbonyl-containing molecules. The 139 

IR spectra of carbonyl-containing compounds are characterized by the strong carbonyl stretching 140 

mode at 1540 – 1870 cm˗1 (Figure 2A).46 The default classification analysis uses a threshold value 141 

of 0.2, removing weaker vibrational modes (Figure 2C). Table S1 shows representative 142 

performance metrics for the four ML algorithms tested. Although the performance will vary 143 

slightly due to randomness in SMOTE balancing and model training, model performance overall 144 

was very good, with accuracies, sensitivities, and specificities greater than 95% for the Random 145 

Forest and k-Nearest Neighbors models and slightly lower for Decision Tree. The Gaussian Naive 146 

Bayes model is the clear outlier in performance, with an accuracy of 85%, likely due to its 147 

inaccurate assumption of feature independence. 148 

 After this basic analysis is implemented, students explore how different analysis 149 

parameters affect the binary classification performance. For example, students can assess the effect 150 

of changing the threshold setting. There is little change in the performance of the Random Forest 151 

model when this setting is decreased to 0.0 from its default value of 0.2 (Table S2). Increasing this 152 

setting to a large value, such as 0.5, removes all but the strongest vibrational modes, yet the model 153 

performance is still quite good. The sample protocol encourages students to consider the 154 

implications regarding what features the model uses to make predictions, and to reflect on 155 

similarities and differences in how humans interpret vibrational spectra. Students can also explore 156 

the effect of changing the parameters in the different ML algorithms, such as the number of 157 

neighbors to use in label prediction for the k-Nearest Neighbors algorithm. Moderate increases in 158 

this parameter from the default value of five have little effect, but larger increases cause model 159 
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performance to deteriorate because the prediction relies on an increasing number of non-similar 160 

neighbors (Table S2). Finally, students can run the analysis without SMOTE data balancing; in 161 

this case they will observe little change in the performance, indicating that class imbalance is not 162 

necessarily a problem if the classes are sufficiently distinct (Table S2). These examples 163 

demonstrate that model performance depends on the choice of analysis parameters, and that 164 

inappropriate analysis parameters can give poor results. 165 

 A goal of this activity is for students to appreciate possible pitfalls and failure modes of 166 

ML analyses. Part II prompts students to analyze false positive and false negative error cases for 167 

the different ML models. Although there is some variation in these error cases, several common 168 

false positives and negatives are shown in Figure 3. Common false positives, such as trans-nitrous 169 

acid or chromium dihydride, have a strong IR absorption peak near 1770 – 1780 cm-1, in the same 170 

range as the carbonyl stretch. For some of the common false negatives, like N,N-diethylbutanamide 171 

or o-tolualdehyde, the carbonyl stretch is shifted to lower frequencies due to electron-donating 172 

substituents, which likely explains the failure of the model to classify them as carbonyls. Analysis 173 

of these error cases helps students understand that ML models can fail. To illustrate this point 174 

further, students are given four spectra of the carbonyl-containing molecule N-methylacetamide, 175 

three of which are formatted in various ways inconsistent with the training data; for example, one 176 

spectrum uses a smaller spacing between data points so that a smaller frequency range is covered. 177 

Students will observe that the models correctly identify the carbonyl group for the correctly 178 

formatted spectrum but fail for the incorrectly formatted spectra. This example demonstrates the 179 

importance of data preprocessing and the use of consistent data for training and testing ML models. 180 

 The sample protocol suggests several other optional extensions of the binary classification 181 

task, such as generating a learning curve by repeating the analysis using subsets of the training 182 

dataset or using the trained ML models for analysis of other spectra obtained experimentally or 183 

computationally. The National Institute of Standards and Technology (NIST) Chemistry 184 

WebBook30 and Computational Chemistry Comparison and Benchmark DataBase (CCCBDB)47 185 

are good resources for experimental and computational IR absorption spectra, respectively, or 186 

students could analyze spectra that they obtained in previous course modules on IR spectroscopy 187 

or computational chemistry. 188 

 189 

Multiclass Classification 190 

 In Part III of the experiment, students implement a multiclass classification model using 191 

the Random Forest algorithm to classify carbonyl-containing molecules as ketones, carboxylic 192 

acids, or other. Distinguishing between different carbonyl-containing molecules is more 193 

challenging than the binary classification analysis, and the model accuracy is correspondingly 194 

lower, with an overall accuracy of 80% (Tables S3 and S4). Nevertheless, prediction of carboxylic 195 

acids, which have a broad hydroxyl stretching mode in the range of 2500 – 3300 cm˗1,46 is fairly 196 

accurate, as is prediction of other carbonyl-containing molecules. Ketones, which lack distinctive 197 

spectral features other than the carbonyl stretch, have the lowest accuracy (40%). It should be 198 
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noted that the training dataset for this part of the analysis is smaller than for the binary 199 

classification, which likely decreases the overall model performance. 200 

 Although the sample protocol does not provide possible extensions, Part III could be 201 

expanded by using different ML algorithms, analysis parameters, or datasets. Students could also 202 

analyze other carbonyl-containing functional groups, such as amides or aldehydes, although there 203 

are fewer instances of these groups in the Alexandria Library dataset. 204 

 205 

Implementation: 206 

 This activity was implemented in the Spring 2021 semester in physical chemistry lab 207 

courses at Fordham University and Whitman College, with a total of 22 junior and senior chemistry 208 

majors. The core exercise is designed so that Parts I and II can be carried out in a single 3 – 4 hour 209 

laboratory period and Part III can be carried out in a second period of the same duration. Student 210 

estimates of time required to complete the activity were consistent with this timeline (Figure 4), 211 

with most students requiring one hour or less to complete Part I and approximately two hours each 212 

to complete Parts II and III. If two laboratory periods are not available, Parts I and II can be 213 

implemented as a one-day activity that still gives students an overview of ML classification tasks 214 

and possible pitfalls. The exercise was carried out asynchronously at Fordham University and 215 

synchronously but remotely at Whitman College; completion times may be shorter in an in-person 216 

setting where the instructor would be able to assist students more easily. 217 

This exercise is implemented in two notebooks, one for the binary classification in Parts I 218 

and II and a second for the multiclass classification in Part III. These notebooks provide 219 

explanatory information and computer code needed to carry out the analysis. The first notebook 220 

contains the complete code needed to carry out binary classification in Part I of the activity. It can 221 

then be modified by students to carry out the additional analyses in Part II. The second notebook, 222 

used for the multiclass classification task in Part III, only contains a framework for the analysis. 223 

Students must write larger chunks of code on their own, all of which can be adapted from the 224 

binary classification notebook, to complete the analysis. In this way the three parts of the exercise 225 

are designed so that students move from simply executing code and observing the output, to 226 

making small changes to code, and finally to writing their own larger blocks of code. These 227 

notebooks are available as both Python and Mathematica notebooks. Python notebooks can be 228 

executed with the free web-based Google Colaboratory platform,45 or using any available Jupyter 229 

Notebook environment. Mathematica notebooks require a license for either the desktop or online 230 

version of Mathematica. 231 

Although our trials at Fordham University and Whitman College used this activity as a 232 

standalone exercise, instructors could integrate this activity with other course modules and 233 

experiments. For example, this exercise could be performed after a course module on experimental 234 

IR absorption spectroscopy, allowing students to use their trained ML models to classify their 235 

experimentally-obtained spectra. Alternatively, this activity could form the basis of a larger 236 

exercise or independent project in a computational chemistry or machine learning course. Students 237 

could extend the multiclass classification model in Part III to include other carbonyl-containing 238 
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functional groups, or they could use the same approach to train a multiclass classifier to distinguish 239 

between carbonyls and other functional groups (such as alkenes, alcohols, or amines). 240 

 241 

Results of Student Surveys: 242 

 Anonymous surveys were conducted before and after the experiment to assess students’ 243 

previous experience with ML and Python programming and to determine students’ assessment of 244 

the effectiveness of the exercise as an introduction to these topics. The pre-lab survey (Figure 5) 245 

revealed that although most students had heard the term “machine learning” (71%) and were 246 

familiar with its non-chemistry applications (57%), only a small fraction (23%) knew of its 247 

chemistry applications. About half of students (48%) had taken at least one computer science 248 

course previously, either in high school or in college. Almost all students (95%) had heard of 249 

Python, with smaller fractions having read (57%) or written (43%) Python code, but almost no one 250 

had previous experiments working in Google Colaboratory or another Python notebook 251 

environment (5%). 252 

 The post-lab survey (Figure 6) demonstrated that students found the experiment to be an 253 

effective introduction to ML, with large majorities agreeing or strongly agreeing that after the 254 

exercise they understood the basic steps in a ML classification task (95%), some of the factor that 255 

affect ML analyses and possible pitfalls (94%), and some of the possible applications of ML to 256 

chemistry (84%). Most students felt more able to work in a Google Colaboratory environment 257 

(84%) and to read Python code (68%), although not to write Python code (26%). Finally, most 258 

students enjoyed the exercise (63%) and reported increased interest in learning more about ML 259 

(74%). From these results, we conclude that the activity functions as an effective introduction to 260 

ML and to working with Python code in a Google Colaboratory environment, even if it is not a 261 

comprehensive introduction to the Python programming language. 262 

 263 

Conclusion: 264 

 We have developed an activity in which students train ML algorithms to distinguish 265 

carbonyl-containing compounds from IR absorption spectra. This activity, although designed for 266 

a physical chemistry laboratory class, can be incorporated into other chemistry or programming 267 

courses. It can be customized to align with other course activities and can provide a foundation for 268 

more advanced independent projects. Surveys reveal that this activity was effective both in 269 

introducing students to applications of ML in chemistry and in stimulating student interest in the 270 

topic. In light of the growing importance of computational methods and artificial intelligence 271 

across the chemical sciences, activities such as these are an important component of a modern 272 

education in chemistry. 273 
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Figures: 421 

 422 

 423 

 424 

Figure 1. Overview of data preprocessing and machine learning workflow. 425 

 426 

 427 
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 428 

Figure 2. Representative spectra of carbonyl-containing and non-carbonyl-containing molecules. 429 

(A) Original. (B) After normalization. (C) After thresholding. 430 

 431 
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 432 

 433 

Figure 3. Spectra of (a) common false positives and (b) common false negatives in binary 434 

classification analysis. 435 
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 437 

 438 

 439 

Figure 4. Student estimates of time required to complete Parts I, II, and III of the exercise. 440 

 441 

 442 

 443 

Figure 5. Results of the pre-lab survey assessing students’ familiarity with machine learning and 444 

Python programming. 445 

 446 



16 
 

 447 

 448 

Figure 6. Results of the post-lab survey assessing the effectiveness of the activity in introducing 449 

students to machine learning and Python programming and in stimulating student interest in 450 

machine learning. 451 


