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Abstract: 

Chiral cis-cyclopropanes are strained rigid analogs of alkyl chains, whose study and application is 
still limited by their difficult synthesis. A modular approach for the synthesis of this challenging 
structures from abundant olefins is enabled by the discovery of the electron donor-acceptor (EDA) 
interaction between 2-substituted benzothiazolines and N-hydroxyphtalimide esters. These 
complexes are activated by visible light without photocatalysts. In this system, the benzothiazoline 
reagent plays a triple role as photoreductant, stereoselective hydrogen atom donor and Brønsted acid. 
Beyond the enantioselective synthesis of cis-cyclopropanes, these results introduce benzothiazolines 
as accessible and easily tunable self-sensitized photoreductants. 
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Main text: 

Cyclopropanes are central motifs in organic synthesis.1 They have been widely used in the field of 
medicinal chemistry to improve the properties of potential drug candidates due to their resistance 
towards metabolic degradation and their structural rigidity (Scheme 1A).1c,2 As such, several 
enantioselective protocols have been developed over the years, mainly targeting the more 
thermodynamically and kinetically favored trans-cyclopropanes.3 In contrast, the synthesis of cis-
cyclopropanes, an important class of stable and conformationally restricted alkyl chain analogs,1c,2a,4 
remains a synthetic challenge with only a limited number of protocols reported.5 

The asymmetric syntheses of these products require the preparation and derivatization of enantiopure 
Z-vinylboronates (Scheme 1B, top-left),6 or complex catalytic systems employing transition metals7 
or engineered proteins.8 The more desirable catalytic approaches only offer limited scope9 or low 
diastereo- and enantioselectivity.10 In particular, the cis-cyclopropanation of alkenes employing 
benzylidenes is still problematic, due to the instability of the phenyldiazomethane precursors and the 
difficult taming of the resulting reactive intermediates. Thus, current methodologies are mostly non-
enantioselective,11 and the only asymmetric catalytic methods require specific allylic alcohol 
materials (Scheme 1B, bottom-left).12 Seminal studies with chiral iron benzylidene complexes have 
also been reported, but require stoichiometric chiral complexes and are limited in scope (Scheme 1B, 
right).13 Also, a diastereoselective approach from the chiral pool has been demonstrated in a single 
example5f using the decarboxylation of a Barton ester with a large excess of tris(trimethylsilyl)silane 
to trap the cis-isomer of a cyclopropyl radical intermediate. 
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Scheme 1: Current methodologies towards chiral cis-cyclopropanes and our modular approach using 
redox-active carbenes and stereoselective decarboxylation. 

Recently, our group reported the use of redox-active diazoacetate reagents for the general 
enantioselective synthesis of cyclopropane building blocks from feedstock olefins.14 We envisioned 
that aryl-substituted redox-active diazoacetates 1 could be used to convert olefins 2 into cis-
arylcyclopropanes 4, by means of sequential asymmetric cyclopropanation and stereoselective 
decarboxylative reduction of the intermediate cyclopropyl redox-active ester (RAE) 3 (Scheme 1C). 
Given the higher stability of the trans-pyramidalized radical trans-A, the feasibility of this 
methodology was contingent upon the design of a suitable hydrogen atom donor that is able to 
kinetically favor the reduction of the less populated cis-conformer of the cyclopropyl radical cis-A. 
Ideally, the key HAT reagent should be easily tunable, accessible and autonomous at activating and 
controlling the stereoselective reduction to deliver a practical and general method. 

R1
H

R2H

R1
R2

H
H

+ thermodinamically 
   & kinetically favored
+ various methods

– thermodinamically 
   & kinetically disfavored
– synthesis challenging

R1
R2

H
H

alkane

conformationally
flexible

H H

* *

R Ar

R

Ar
O

one-pot
stereoselective

reduction

1 - redox-active
     diazocompound
     (NHPI-DA + Ar–I)

cis-4
enantioenriched
cis-cyclopropane

N2 3
O

* *

R Ar

enantioselective
redox-active

carbene transfer

NHPINHPI

C  One-pot enantioselective cyclopropanation / stereoselective decarboxylation

2

R

Ar

R ArR

Ar

H

substrate
specific

trans-A
[favored]

cis-A
[disfavored]

Me
NS

N
O

R
Me

Me
O
O

NH2
HO

MeO

OMe

OMe

OMeR

R

HO

BACE1 inhibitor
treatment for dementia

combretastatin A4 analog
anti-cancer

resolvin E2 analog
anti-inflammatory

trans-4
[undesired]

B
R1

O

O *

R1

OH

R1
Ar

H
H

[Fe]

H

R

[Cr]

[LnFe]

H

R2

Zn-carbenoid
cyclopropanation

elaborated allylic
or chiral materials

[Pietruszka]

[Charette]

[Brookhart]

[Hossain]

B  Asymmetric synthesis of cis-diarylcyclopropanes (state-of-the-art)

A  Cyclopropanes: rigid analogs of alkanes

trans-cyclopropane
rigid analog

cis-cyclopropane
rigid analog

R2 = CH2OH

Fe-benzylidene
cyclopropanation

stoichiometric
narrow Ar scope

this work

?

stereoselective
kinetic HAT

no HAT

+ e–
+ H+CO2  +

PhthNH

+ H·

single
reagent?

*
R2 = H R2 = H

R2 = H

+

ref. 14b

Rh*



4 (13) 

Initially, we evaluated known HAT reagents for the reduction of model substrate 3a (Table 1). It was 
found that the known nickel-catalyzed protocol,15 although highly diastereoselective, could only 
provide the desired cyclopropane cis-4a in low yields (entry 1). In contrast, chloroform16 could not 
afford high stereoselectivity (entry 2). Exploration of the recently discovered photoreduction using 
N-substituted nicotinamides,17 and Hantzsch esters,18 was promising (entries 3,4), but further attempts 
to increase the yield or diastereoselectivity by tuning the structure of the dihydropyridines proved 
unsuccessful (see SI for details). On account of these results, we explored the possibility of employing 
a reductant with a more sterically hindered hydrogen atom. 2-Substituted benzothiazolines (BTA, 6), 
have been used as an alternative hydride source to Hantzsch esters in transfer hydrogenation 
reactions.19 More recently, these compounds have been used as hydrogen atom donors in 
photocatalytic reactions20 requiring auxiliary thiyl radical carriers20b or metal photocatalysts.20a 
However, benzothiazolines have never been employed as self-sensitized photoreductants or in 
reductive decarboxylative reactions as far as we know. A screening of several benzothiazolines 
(entries 5-10) revealed their unforeseen potential for the desired transformation. In particular, phenyl- 
and tert-butyl-benzothiazolines 6a,b (entries 5,6) provide optimal performance, whereas other 
substituents provide either lower yields or diastereomeric ratios (entries 7-10). Control experiments 
with the optimal reagents 6a,b confirmed the need for blue light irradiation for efficient reduction 
(entries 11,12). These results introduce the benzothiazoline platform for the design of cheap, easy to 
handle, readily available and fine-tunable HAT reagents in reductive decarboxylative reactions 
without any auxiliary light harvesting or chain carrier systems. 

Table 1: Optimization of the stereoselective decarboxylative reduction of redox-active ester 3a. 

 
entry HAT reagent x (equiv.) solvent 4a (%)a d.r. (cis:trans)b 
1c,d PhSiH3 1.5 THF:DMF:iPrOH 30 90:10 
2e CHCl3 > 100 CHCl3 43 77:23 
3 5a 1.2 DMSO 76 90:10 
4 5b 1.2 DMSO 60 94:6 
5 6a 1.2 DMSO 88 95:5 
6 6b 1.2 DMSO 81 95:5 
7 6c 1.2 DMSO n.d. - 
8 6d 1.2 DMSO 92 89:11 
9 6e 1.2 DMSO 54 88:12 
10 6f 1.2 DMSO 44 90:10 
11c 6a 1.2 DMSO < 10 97:3 
12c 6b 1.2 DMSO n.d. - 

 
 

See SI for experimental details. aYields measured by 1H-NMR using 1,1,2,2-tetrachloroethane as an 
internal standard. bDiastereomeric ratio determined by GC-MS. cNo light irradiation. dReaction 
conditions: PhSiH3 (1.5 equiv.), Zn (0.5 equiv.), NiCl2(H2O)6 (10 mol%), 4,4’-di-t-Bu-2,2’-bipyridyl 
(20 mol%), THF:DMF:iPrOH 10:2:1, 40 °C. eReaction conditions: Et3N (2 equiv.), 4CzIPN (2 mol%), 
CHCl3. 
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The simplicity of the new photoreduction system allowed to telescope the cyclopropanation and 
stereoselective reduction in a one-pot method that deliver cis-cyclopropanes cis-4 from olefins 2 and 
redox-active diazocompounds 1. The latter are modularly synthesized from unsubstituted NHPI-DA 
(7) and aryl iodides 8 through a method previously developed in our group.14b The scope of the one-
pot synthesis of cis-cyclopropanes was explored using the optimal benzothiazoline 6a, which was 
easily prepared and stored in multi-gram amounts. For the initial cyclopropanation step, we adapted 
the recently reported conditions by our group14b using strictly stoichiometric amount of the olefin (1.0 
equiv.) and shorter reaction time (5 h). As shown in Scheme 2A, electron-rich and electron-poor 
styrenes were tolerated in this transformation, furnishing cis-diarylcyclopropanes 4b-l in good yields 
and high enantio- and diastereoselectivities. Substitution in various positions in the aromatic ring 
were tolerated. Interesting naphthyl (4i) and indolyl (4j) cyclopropanes could also be generated with 
this protocol. The slightly lower stereoselectivity observed in the tricyclic indene derivative 4k, may 
be explained by a slower stereo-inversion equilibrium or the particular instability of the corresponding 
trisubstituted cis-cyclopropyl radical intermediate. Divinyl benzene undergoes double cis-
cyclopropanation to afford the C2-symmetric product 4l as a single enantiomer in 43% yield over the 
four reactions performed in one-pot. It is important to notice that negligible erosion of 
stereoselectivity was observed for all products relative to the intermediate cyclopropanes,14b 
indicating that the stereochemical information is conserved throughout the photochemical reduction 
step. The modular nature of the NHPI-aryldiazoacetates allows for the asymmetric transfer of a 
variety of aromatic fragments. This way, olefin 2a can be transformed in a number of cis-
cyclopropane products decorated with different functionalities (4m-u), that include pendant alkyne 
(4p), nitrile (4r), and ketone (4t) moieties. To further explore the synthetic potential of this system, 
we obtained a cis-cyclopropane-modified phenylalanine amino acid (4u) in two steps from 
commercially available 4-iodophenylalanine. Moreover, the asymmetric total synthesis of the 
combretastatin A4 analog 4v6a was achieved in three steps starting from isovanillin in 39% overall 
yield (Scheme 2B). To put this results in perspective, twice as many steps (including a resolution) 
were previously required to obtain this product in < 10% overall yield from comparable materials.6a 
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Scheme 2: Scope studies and synthetic applications. Reactions conditions: 1 (1 equiv.), 2 (1 equiv.), 
Rh2(S-TPCP)4 (0.5 mol %), dry EtOAc (0.05 M), r.t., 5 h; then 6a (1.2 equiv.), dry DMSO (0.1 M), 
blue LEDs (450 nm), r.t., 16 h. Isolated yields. Diasteromeric ratios determined by HPLC. 

The autonomous photoactivation of benzothiazoline 6a was unexpected based on the previously 
known reactivity of these systems based on HAT-transfer followed by pro-aromatic radical reduction 
with auxiliary photosensitization or chain carriers.20 Thus, photochemical studies were performed to 
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investigate the mechanism of the photoreduction. UV-visible spectroscopy revealed that neither 2-
phenylbenzothiazoline 6a nor NHPI-ester 3a absorb light effectively in the visible range (Figure 1A). 
Upon mixing, enhanced absorption in the visible range (450 nm) is observed and a Job plot (Figure 
1B) revealed that it is maximum when 3a and 6a are mixed in a 1:1 stoichiometry, consistent with a 
bimolecular EDA complex21 absorbing at the LED irradiation wavelength. Clearly defined excitation 
and emission features (λmax = 435 nm; λem = 490 nm) of the new EDA complex can also be detected 
by fluorescence (Figure 1C).  The formation of this species is further confirmed by time-correlated 
single photon counting (TCSPC), which allow to identify different fluorescence lifetimes for the 
benzothiazoline 6a (τ0 = 1.7 ns) and the EDA complex (τ = 1.4 ns). Stern-Volmer quenching studies 
performed by increasing the concentration of redox-active ester 3a revealed an unconventional raise 
in steady-state fluorescence intensity (see SI), while the corresponding fluorescence lifetime remains 
constant (Figure 1D). This feature strongly supports a static quenching scenario through the 
formation of a more emissive bimolecular EDA complex, and it rules out dynamic processes 
involving the excited state of free benzothiazoline (6a*) that would instead result in a concentration-
dependent decrease of the observed fluorescence lifetime. 

 

  

Figure 1: Photophysical characterization of the stereoselective photo-decarboxylation. (A) UV-
visible spectrum of NHPI-ester 3a, Ph-BTA (6a) and their 1:1 mixture. (B) Job plot of the mixture 
between 3a and 6a measured at 450 nm (ctot = 0.1 M).  (C) Normalized excitation and emission spectra 
of Ph-BTA (6a; 0.02 M) and its EDA complex (0.1 M) with NHPI-ester 3a. (D) Lifetime Stern-Volmer 
plot of Ph-BTA 6a (c = 0.1 M) with NHPI-ester 3a (λex = 450 nm). 

 

Although we initially hypothesized that the diastereoselectivity would be kinetically controlled by 
the hydrogen atom transfer (HAT) process, our results could also be explained by a fast stereo-
retentive HAT before stereo-inversion. To distinguish between these possibilities, the diastereoisomer 
of the redox-active cyclopropane diast-3a was independently synthesized and subjected to the 
reaction conditions (Scheme 3A). Similar yield and stereoselectivity for the product cis-4a is 
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observed, demonstrating that the stereo-inversion equilibrium is faster than the HAT process, and the 
latter is kinetically controlled.  In principle, benzothiazoline radical cations have two hydrogen atoms 
susceptible of undergoing the key HAT transfer. To assess their relative contribution, several 
deuterium incorporation experiments were carried out (Scheme 3B). A first control experiment with 
DMSO-d6 ruled out any relevant contribution from the solvent. The monodeuterated benzothiazoline 
at the benzylic carbon 6-d1 resulted in 70% deuterium incorporation (56% yield), while the analogue 
deuterated in the N–H moiety led to < 5% isotopic labelling and higher efficiency (77% yield). These 
observations indicate that the benzylic C–H bond is the main hydrogen atom donor, but HAT from 
either the N–H moiety or the imine tautomer22 of 6a may have a secondary role. Indeed, the use of 
benzothiazoline 6-d2 increased the degree of deuteration to >90%, thus accounting for the most 
relevant HAT processes. These results are consistent with the variable diastereoselectivities observed 
in the benzothiazoline screening (Table 1) with aliphatic (entries 6,10) and aromatic substituents 
(entries 5,8,9) of different size in the benzylic position, which affect the relative barriers of the HAT. 
Furthermore, the quantum yield of the reaction was determined to be 0.09 ± 0.03 (Scheme 3C), 
disfavoring the possibility of a radical-chain mechanism. This behavior contrasts with that of related 
dihydropyridine systems 5a,b, operating through radical chain reactions.17c,18e The formation of the 
EDA complex was also directly observed by 1H-NMR NOE experiments (see SI),23 that clearly 
evidence the spatial proximity of 3a and 6a in their equimolar mixture in DMSO (Scheme 3C). 
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Scheme 3: Mechanistic experiments and model. See SI for details. aDiasteromeric ratios determined 
by GC-MS. bDiasteromeric ratios determined by 1H NMR. 
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to promote the fragmentation of the redox-active ester, sterically tuned hydrogen atom source to 
enhance stereoselectivity, and proton source to neutralize the phthalimidate anion by-product. 

In summary, a general and highly enantioselective method to obtain cis-diarylcyclopropanes from 
olefins and redox-active carbenes has been developed. This protocol allows for quick and modular 
access to ring- and conformationally-strained compounds from available olefin materials, ultimately 
facilitating the synthesis of interesting bioactive molecules. These advances are bestowed by a new, 
efficient and stereoselective photo-decarboxylation driven by a novel EDA complex between redox-
active esters and benzothiazoline reagents. The photophysical properties of the newly discovered 
system have been investigated, disclosing a new reactivity manifold of benzothiazolines as single-
electron transfer reagents. Beyond enantiopure cis-cyclopropanes, these discoveries open the door for 
further progress in reductive decarboxylative reactions driven by benzothiazolines as a new platform 
to develop fine-tuned autonomous photo-reductants. 
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