1. Introduction

As the demand for electrochemical energy storage surges, the research, development and application of new systems require comprehensive understanding of the electrochemical properties at an ever-increasing pace. A critical parameter for the community, from materials chemists to application engineers, is the diffusion coefficient of the redox-active species; i.e., Li⁺ in the case of Li-ion batteries. The GITT has been the most widely applied method for deriving the diffusion coefficient from electrochemical measurements. Derived from Fick’s second law, GITT was first demonstrated in 1977 for a bulk Li,Sb electrode.¹ The technique consists of two repeating steps. First, a constant current is applied for a duration where the assumption of semi-infinite diffusion holds. Second, the current is switched off until the voltage becomes invariant, which indicates that equilibrium is reached. Through the analysis of the electrode potential measured during the current pulse and the change in the equilibrium potential, GITT renders the chemical diffusion coefficient of the charge-carrying ions. (The difference between chemical and tracer diffusion coefficients is elaborated in the original GITT manuscript.¹ For simplicity, the former will be referred to as diffusion coefficient in the following text.) Later, the technique was applied to porous composite electrodes of Li-ion-insertion materials,³ which is the format of the majority of electrodes in state-of-the-art Li-ion batteries. Although practical issues, such as nonuniform current distribution, can occur due to the geometry of composite electrodes,³ the technique serves as a powerful tool for the determination of diffusion coefficients if proper experimental parameters are chosen,⁴⁻⁵ e.g. appropriate current and duration of the current pulses.

However, the time required to perform a GITT measurement remains one major drawback. In order to reach the equilibrium condition, the test cell has to be relaxed substantially longer than the time spent on applying current.³ This results in an experiment that can be anywhere from 8 to 100 times longer than a typical galvanostatic test cycle.⁴⁻⁵ Although the test may be accelerated by increasing the duration of current pulses and selecting only the initial data-points for the analysis,⁶ this reduces the number of measurements of diffusion coefficient. In addition, such a test protocol makes it difficult to couple GITT with simultaneous materials characterization, e.g. diffraction or spectroscopy, which can provide valuable structural and/or chemical information at the moment where the process under investigation takes place. In other words, the length of time needed for a typical GITT experiment essentially precludes its use in operando methods, and hence the coupling of operando methods with diffusion coefficient measurements.

In this work, an efficient and non-disruptive alternative to the GITT is proposed: the intermittent current interruption (ICI) method. Our group first developed the ICI method for characterizing the porous carbon electrodes in lithium–sulfur batteries,⁷⁻⁹ and the method has more recently been applied more widely for different battery cell
The concentration at the surface can be expressed as:

\[
\frac{dC(0,t)}{d\sqrt{t}} = -\frac{2I}{FA\sqrt{D\pi}}
\]

Supposing that the change in concentration is small and thus linear to the change in the potential \(E\) but in the opposite direction (i.e., the electrode potential increases with decreasing Li-ion concentration), the above expression can be expanded to:

\[
\frac{dE}{d\sqrt{t}} = \frac{2I}{FA\sqrt{D\pi}} \frac{dE}{dC(0,t)}
\]

With both derivatives of \(E\) extracted from experimental data, which will be elaborated in section 2.3, the diffusion coefficient can be calculated by reorganizing Equation 6.

\[
D = \frac{4}{\pi} \left(\frac{I}{FA} \frac{dE}{dC(0,t)} \right)^2
\]

2.2 Derivation of the ICI method

Instead of analyzing the potential change from open circuit to a constant current load, the ICI method utilizes the opposite case where the current is switched to zero from a constant current load. Considering a constant current \(I\) being applied from \(t = 0\) and switched off at \(t = \tau\), Equation 3 is changed to:

\[
i(t) = I - IH(t)
\]

where \(H\) is the Heaviside function, defined as:

\[
H(t) = \begin{cases}
1, & t \geq \tau \\ 0, & t < \tau
\end{cases}
\]

By inserting Equation 8 into Equation 2 as the boundary conditions, Equation 1 can now be solved as the following by the Zero-Shift Theorem:

\[
C(0,t) = C_0 + F(t - \tau)F(t - \tau)
\]

where \(C_0 + F(t)\) is the full solution of Equation 1 when \(i(t) = I\), shown in Equation S3, \(F(t - \tau)\) can be approximated by the semi-infinite diffusion case \(t << L^2/D\) since the ICI method only analyzes the potential change in a short period \(\Delta t\) after the current is switched off, which means \(\Delta t = t - \tau\). Thus, when \(t \geq \tau\), Equation 10 can be written as:

\[
C(0,t) = C_0 - F(t) + \frac{2I\sqrt{E - \tau}}{FA\sqrt{D\pi}}
\]

So, the surface concentration at \(t = \tau + \Delta t\) is:

\[
C(0,\tau_1 + \Delta t) = C_0 - F(t) + \frac{2I\sqrt{E - \tau}}{FA\sqrt{D\pi}}
\]

Assuming that \(\tau\) is so much larger than \(\Delta t\) that \(F(\tau_1 + \Delta t) = F(\tau_1)\) and thus independent of \(\Delta t\), which is a criterion for the ICI method and is discussed in section 2.3, the following is obtained:

\[
\frac{dC(0,t)}{d\sqrt{\Delta t}} = \frac{2I}{FA\sqrt{D\pi}} \frac{dE}{dC(0,t)}
\]

This expression is similar to Equation 5 and if the change in concentration is small, it can be expanded to:

\[-\frac{dE}{d\sqrt{\Delta t}} = \frac{2I}{FA\sqrt{D\pi}} dC(0,t)\]
In the analysis of the ICI method,8,9 which will be elaborated in section 2.4, \(\frac{dE}{d\sqrt{\Delta t}} \) is readily obtained. How \(\frac{dE}{dC} \) can be obtained with the ICI method will be discussed in section 2.4. With both \(\frac{dE}{d\sqrt{\Delta t}} \) and \(\frac{dE}{dC} \) obtained from the ICI method, the diffusion coefficient can then be calculated from Equation 7.

2.3 Experimental execution of GITT

To employ Equation 7 in a conventional GITT measurement, the two derivatives of \(E \) (\(\frac{dE}{dC} \) and \(\frac{dE}{d\sqrt{\Delta t}} \)) have to be determined. For \(\frac{dE}{dC} \), the change in concentration of the charge carrier is not directly measured but can be calculated under constant current.

\[
dC = \frac{1}{FV} \int dt_i
\]

where \(V \) is the volume of the electrode and \(dt_i \) is the duration of the applied current. Assuming that \(\frac{dE}{dC} \) changes relatively slowly and thus can be interpolated by \(\frac{\Delta E}{\Delta C} \), Equation 7 can be rewritten as follows.

\[
D = \frac{4}{\pi} \left(\frac{V}{A} \frac{\Delta E_{OC}}{dE/d\sqrt{\Delta t}} \right)^2
\]

where \(\Delta E_{OC} \) is the change in the open-circuit potential (OCP) from the rests before and after the current pulse, and \(\Delta t_i \) is the period of the current pulse (denoted as \(t \) in the original paper). It is worth noting that Equation 15 applies to the concentration of the entire electrode. In order to relate the measured electrode potential, which reflects the surface concentration, to the bulk concentration, the measurement should ideally be done when the concentration is uniform throughout the electrode. This is indicated by the fully relaxed electrode potential, i.e. \(\frac{dE}{dt} = 0 \), also known as the open-circuit condition. In practice, it takes long time to achieve equilibrium in the electrode, which is the reason for the substantial time consumption of GITT.3

\(\frac{dE}{d\sqrt{\Delta t}} \) is the slope on the plot of \(E \) against \(\sqrt{\Delta t} \). In the original GITT paper,1 Equation 16 is further reduced by assuming that \(E \) is linear to \(\sqrt{\Delta t} \) during the whole current pulse. However, this assumption is less likely to hold for electrode particles in a composite electrode since the duration for the semi-infinite diffusion condition, \(t << L/D \), is reduced by the shorter \(L \), compared to the bulk electrode used in the original paper. Two solutions to solve the issue are: 1) selecting only the data lying in the linear region on the \(E-\sqrt{\Delta t} \) plot or 2) fitting the data with the full solution (Equation S3) to Fick’s second law (method P3 and P5 in the reference, respectively).4 In this work, we will proceed with the first solution and examine the effect of data selection on the GITT analysis.

2.4 Experimental execution of the ICI method

The change in the potential after the current has been switched off (\(\Delta t = 0 \)) can be expressed as the following.

\[
\Delta E(\Delta t) = E(\Delta t) - E_1 = -IR - Ik\sqrt{\Delta t}
\]

where \(E_1 \) is the potential right before the current is switched off, and \(R \) and \(k \) are termed internal resistance and diffusion resistance coefficient, respectively.9 \(R \) and \(k \) are acquired through the linear regression of \(\Delta E \) against \(\sqrt{\Delta t} \). For repetitive current pulses, the regression can be automated by a script in a common programming language; 10 R2 has been used in this work.

Comparing Equation 14 and 17, it can be observed that

\[
lk = -\frac{dE}{d\sqrt{\Delta t}} = \frac{2I}{FAVd\pi} \frac{dE}{dC(0,t)}/\sqrt{\Delta t}
\]

which can be reorganized into the form of Equation 16 with Equation 15.

\[
D = \frac{4}{\pi} \left(\frac{V}{A} \frac{dE_{OC}}{dE/d\sqrt{\Delta t}} \right)^2
\]

Without the relaxation step, \(\frac{dE_{OC}}{dt_i} \) can be i) obtained from existing OCP data of the electrode material or ii) approximated by the slope of iR-corrected pseudo-OCP. The iR-drop and pseudo-OCP, referring to the measured potential under low constant current,5 are readily available in the ICI analysis. From two neighboring current interruptions, the change in OCP can be approximated by the change in \(E(\Delta t=0) \), which is the potential right before the current pulse subtracting the iR-drop, as shown in Equation 17. The validity of using \(\Delta E(\Delta t=0)/\Delta t_i \) as \(\frac{dE_{OC}}{dt_i} \) will be examined in Section 3.

2.4 Experimental procedure

Two three-electrode half-cells, termed cells 1 and 2, were made for the validation of the theoretical derivation. The working electrode (\(\varphi \) mm) was a tape-cast composite electrode consisting of 90 wt% NMC811 powder (Customcells Itzehoe GmbH), 5 wt% of carbon black (Super C65, Imerys) and 5 wt% poly(vinylidene difluoride) (PVdF, Solvay), whose fabrication procedure can be found in the previous work.23 According to the supplier, the NMC811 particles have a median diameter of 4 \(\mu \)m and specific surface area of 1.5 \(\text{m}^2 \text{g}^{-1} \), determined by the Brunauer–Emmett–Teller (BET) analysis of the nitrogen adsorption isotherm. The specific volume was calculated from the molecular mass and the previously reported (rhombohedral) unit cell parameters obtained through X-ray diffraction (XRD) to be 0.63056 \(\text{cm}^3 \text{g}^{-1} \). The areal loadings of NMC811 were 2.11 and 2.13 mg cm\(^{-2}\) in cells 1 and 2, respectively. Both the counter (\(\varphi \) mm) and reference electrodes (ring with inner and outer diameters of 16 and 22 mm, respectively) were metallic lithium (Cyprus Foote Mineral, 125 \(\mu \)m thick). The reference electrode was placed between the working and counter electrodes with separators (Celgard 2325) on both sides according to a previously reported cell geometry.29 The cells were assembled in an Ar-filled glove box with 1 M LiPF\(_6\) in a mixture of ethylene carbonate/diethylene carbonate (EC/DEC 1:1 by volume, Solvionic, purity: 99.9%) as the electrolyte and sealed in pouch bag material. Assembled cells were rested for 12 hours before 3 pre-cycles at 20 mA g\(^{-1}\) between 3.0 and 4.3 V. Electrochemical tests were carried out using a Biologic MPG 2.

A slightly modified GITT protocol was designed here to compare the GITT, ICI and EIS at the same SoC, which is schematically shown in Figure 1. A constant current of 20
mА g⁻¹ (corresponding to C/10, where C is here defined as 200 mА g⁻¹ for NMC811) was applied for 10 minutes, which was followed by a 1-hour rest. During the first minute of the rest, potential was recorded every 0.1 second for the ICI analysis. After the rest, an EIS measurement was performed from 20 kHz to 10 mHz with an amplitude of 10 mV. Another 10-minute rest followed the EIS measurement before the next current pulse. The modified GITT protocol was applied between 3.0 and 4.3 V for two cycles. In the second discharge, the cutoff was lowered to 2.0 and 2.5 V for cell 1 and 2, respectively. For both GITT and ICI analysis, the electrode volume and area were approximated by the volume and surface area of the NMC particles stated above. The impedance spectra, where a Warburg element is present, were fitted to the equivalent circuit model in Figure S2 by a modified Levenberg-Marquardt algorithm provided by the “minpack.lm” package in the R-programming language.²⁴

Figure 1. Electrode potential (E) plotted against time (t) during a current pulse (I = 20 mА g⁻¹) and a rest period (I = 0) of the modified GITT program used in this work for the comparison of the results from the GITT, ICI method and EIS.

After the above-described test, the cells went on to be cycled with the standard ICI protocol. Both cells were charged to 4.3 V and discharged to 3 V at a constant current of 20 mА g⁻¹. A 10-second current interruption every 5 and 15 minutes was introduced to cells 1 and 2, respectively. During the 57th discharge of cell 1, an operando XRD experiment was performed on the cell as it was charged up to 4.3 V and subsequently discharged to 3.7 V at 20 mА g⁻¹ with a 10-second current interruption every 5 minutes, as in the previous cycles. Patterns were recorded by a STOE STADI P diffractometer in transmission setup with monochromatic Cu-Kα₁ radiation every 15 minutes using a Dectris Mythen 1K detector setup. Rietveld refinements²⁵,²⁶ were performed against the XRD data using the Topas Academic software (V6).²⁷ Further details of the refinements and the results are provided in the SI (Section 5).

Raw data from both the electrochemical and operando XRD experiments, the R-scripts used for the GITT, ICI and EIS analyses and the results of the Rietveld refinements can be accessed via Zenodo.²⁸

3. Results and Discussion

Since cells 1 and 2 are identical and thus show similar behaviors in both cycles of the modified GITT protocol, the results of cell 1 in first cycle are discussed in detail while the rest is presented in the SI.

As shown in Equations 7, 16 and 19, to derive the diffusion coefficient, two measurements are required: \(dE/d\sqrt{t} \) during semi-infinite diffusion and the slope of OCP. Therefore, the following text will first compare the two values obtained by the GITT and ICI method. Then, the diffusion coefficients calculated from the two methods will be presented. The data acquired during the current pulses and the rest periods are analyzed by the GITT and ICI methods, respectively, as indicated in Figure 1. For the GITT, two data selection intervals, 5–40 and 50–150 s, were utilized because they contain the linear region of the \(E-\sqrt{t} \) plot above and below 3.7 V, respectively. An example of each case is plotted in Figure S1. For the ICI method, the interval was chosen to be 0.2–5 s for the same criteria applied on the data during the rest periods.

Figure 2 displays the \(k \) values, which are \(dE/d\sqrt{t} \) normalized by the current (Equation 18) from GITT and ICI, and the Warburg coefficients (\(\sigma \)) multiplied by \(\sqrt{8/\pi} \) from EIS fittings. This linear relationship of \(k = \sigma \sqrt{8/\pi} \) has been demonstrated in previous work.⁹ Above 3.7 V, the \(k \) values determined by ICI and GITT with 5–40 s interval are close to each other, which confirms the theoretical derivation in section 2.2 and is corroborated by the EIS results. The GITT results collected from the 50–150 s interval show higher \(k \) values and two local maxima between 3.7 and 4.2 V whereas the \(k \) values from other three analyses fluctuate less and are more consistent with each other. This is expected from the data beyond the time scale of semi-infinite diffusion, as the surface concentration and thus the potential \(E \) then becomes linear with \(t \), instead of \(\sqrt{t} \), (Equation S5), leading to an overestimation of \(dE/d\sqrt{t} \).

Below 3.7 V, the linear region on the \(E-\sqrt{t} \) plot shifts to 50–150 s, as demonstrated in Figure S1. This means that only the GITT result from the 50–150 s interval properly provides diffusion coefficients below 3.7 V. This phenomenon is also manifested by the expansion of the second semi-circle on impedance spectra (Figure S4), which do not show a Warburg element within the frequency range (20 kHz–10 mHz) and thus cannot render accurate \(k \) values. The increase in charge transfer resistance represented by the enlarged semi-circle has been reported for NMC811 (LiNi₀.₃Mn₀.₃Co₀.₃O₂) at low SoC.²⁹ In summary, Figure 2 illustrates the consistency of EIS, GITT and ICI method within their respective limitations and the importance of selecting the proper time interval where \(dE/d\sqrt{t} \) is linear when conducting the GITT analysis.

The other quantity experimentally determined in these methods used in the calculation of the diffusion coefficient (Equations 16 and 19) is the OCP slope. Figure 3 presents a comparison between the slopes of the OCP obtained from the relaxed potential at the end of the rest period in the GITT protocol and the iR-corrected pseudo-OCP in the ICI analysis. The difference between the values from two methods are minimal above 3.65 V. The deviation at low SoC is presumably linked to the high resistance discussed above, which interferes with the resistance determination
of the ICI method. Nevertheless, the good agreement between the slopes of OCP and iR-corrected pseudo-OCP in most SoC intervals indicates that the ICI method alone can deliver the required electrochemical parameters for the calculation of the diffusion coefficient above 3.7 V. By skipping the time-consuming relaxation periods, the ICI method can save around 90% of the time spent on common GITT protocols, such as the one used in this work.

![Image](image_url)

Figure 2. The diffusion resistance coefficient (k) in NMC811 (D) in cell 1 at various OCP of the electrode (E) against Li/Li⁺ derived from the GITT with data selection interval 5–40 s and 50–150 s, the ICI method and the EIS fitting (k = σ√(8/π), σ: Warburg coefficient). The maximum of the y-axis is set to 30 Ω s⁻¹ to show the differences of the data above 3.7 V. Due to a technical issue, the spectra below 3.8 V in the first charge were not properly collected, but it was solved afterwards.

With both experimental inputs verified, the diffusion coefficients of Li⁺ in NMC811 at various SoC obtained by the GITT and ICI method are exhibited in Figure 4. Overall, the results from the three analyses are close to each other and previously reported Li⁺ diffusion coefficients in NMC811.⁵⁻³⁹ Above 3.7 V, the match is especially close for the values from the GITT with 5–40 s interval and the ICI method. This is expected since the dE/d√t values derived from both GITT and ICI method are in good agreement in Figure 2 and the slopes of OCP from both methods are basically the same above 3.65 V. Below 3.7 V, differences between three analyses are obvious. In principle, the GITT results from the 50–150 s interval is the most credible one among the three because the interval contains the linear region of the E-√t plots at these SoC values. However, the extension of the data selection interval requires the increase in the time limit of semi-infinite diffusion (t << L²/D). The assumption is satisfied upon discharging due to the much lower diffusion coefficients, but not on charging. This issue will be discussed in details in Section 1 of the SI.

It is mentioned in section 2.5 that the BET-surface area is used as A in Equations 16 and 19, which may differ from the electrochemically active surface area. However, the objective of this work is to compare the GITT and ICI method, both of which are equally affected by this factor.

Other valuable information provided by the ICI method is the internal resistance (R), as shown in Figure 5. R values derived from the iR-drop in the GITT and ICI method are compared with the sum of R₀, R₁ and R₂ from EIS (Figure S2). The results from ICI and EIS are almost identical across the whole range of SoC. The GITT with 5–40 s interval yields similar R values during discharge but larger values upon charging. The results from the GITT with 50–150 s interval are scattered compared to the other methods. Nonetheless, all four methods confirm the high internal resistance below 3.7 V, which changes the linear region of E-√t plots, as discussed above. The internal resistance has been reported to be an important indicator for ageing of NMC814 Lithium-ion cells and utilized for detecting Li-plating in commercial Li-ion cells.¹²

![Image](image_url)

Figure 3. The slope of the OCP (dEoc/dt) obtained from the relaxed potentials at the end of each rest period (GITT) is compared with the slope of the potential under constant-current load subtracting the iR-drop derived from the ICI method (ΔE(Δt=0))/Δt, marked as ICI.

![Image](image_url)

Figure 4. The Li-ion diffusion coefficient in NMC811 (D) in cell 1 at various OCP of the electrode (E) against Li/Li⁺ derived from the GITT with data selection interval 5–40 s and 50–150 s, the ICI method with the OCP slope from GITT and the pseudo-OCP slope at 20 mA g⁻¹.

The convenience of the ICI method is further illustrated by the results in Figure 6, which show the change in Li-ion diffusion coefficient and internal resistance over more than 50 cycles. In the upper two panels, a clear decrease in the Li-ion diffusion coefficient can be observed above 4.2 V. The rate of decrease is higher in the first 10 cycles than in the following cycles. This SoC range, 4.2–4.3 V, corresponds to the drastic shrinkage of the c lattice parameter of the rhombohedral (R3m) unit cell, which has also been reported in several operando XRD studies of NMC811.²³⁻³³ On the other hand, the internal resistance increases more
uniformly in all SoC above 3.7 V and the rate is faster in the initial cycles.

Figure 5. The internal resistance (R) of NMC811 in cell 1 at various OCP of the electrode (E) against Li/Li$^+$ derived from the GITT with data selection interval 5–40 s and 50–150 s, the ICI method and the EIS fitting (R0+R1+R2). The maximum of y-axis is set to 200 Ω to show the differences of the data above 3.7 V.

Figure 6. The Li-ion diffusion coefficient in NMC811(D) and internal resistance (R) of cell 1 at various electrode potential (E) against Li/Li$^+$ derived by the ICI method in cycle 6, 15, 25, 35 and 55. Note that the electrode potential here is obtained while cycling, not the OCP. Only values with E ≥ 3.7 V, where the ICI method is applicable as discussed above, are shown.

To further demonstrate the flexibility of the ICI method, an operando XRD experiment coupled with the ICI method was performed on cell 1 after 56 cycles. As depicted in Figure 7, when the 003 reflection (R3m) shifts to higher 2θ values, the diffusion coefficient drops over an order of magnitude and the internal resistance tripled. The shift of the 003 reflection starts at 4.1 V and accelerates at 4.2 V, which coincides with the start of the increase in internal resistance and the decrease in diffusion coefficient, respectively. The reverse can be observed during discharge. In addition, by comparing the patterns taken above 4.2 V with a previous operando XRD study on the same material in the first cycle, it can be observed that in the degraded cell here, the 003 reflection is composed of two rhombohedral phases with dissimilar c lattice parameters (Figure S16). The exact mechanism for this phase separation is still debated, but most models attribute this to the ramifications of the formation of the degraded rock salt phase. Nevertheless, it is shown here that the ICI method can be easily combined with operando XRD and track the diffusion coefficient and internal resistance in real time, which constitutes a valuable method for further studies of the degradation mechanisms of this and other materials.

Figure 7. The evolution of the 003 (first panel) reflections (Cu-Kα) as a heat map, electrode potential (E), Li-ion diffusion coefficient in NMC811 (D) and the internal resistance (R) from the combination of operando XRD and the ICI method conducted on cell 1 after 56 galvanostatic cycles between 3.0 and 4.3 V.

4. Conclusions

This work establishes the theoretical foundation and experimental validation for the application of the ICI method as an efficient alternative to GITT. Provided that 1) the diffusion process under investigation exhibits the semi-infinite diffusion behavior within the maximum time allowed for the current interruption and that 2) the pseudo-OCP slope is a good approximation of the true OCP slope, the ICI method can yield the diffusion coefficient with a much shorter experimental time. In the case of our validation experiment with NMC811, more than 90% of the time required for a typical GITT experiment can be saved. Moreover, the internal resistance and diffusion resistance coefficient (or equivalently, the Warburg coefficient) determined by the ICI method are also verified by EIS for NMC811. The efficient determination of diffusivity and resistance unlocks new applications which GITT and EIS are
deemed too time- or resource-consuming, such as online cell parameterization for adaptive charging protocol and simultaneous observation of \textit{operando} spectro-/diffractometry and electrochemical impedance/resistance. When exemplified by a combination of \textit{operando} XRD and the ICI method, the rapid decrease of the Li-ion diffusion coefficient above 4.2 V over cycling could be correlated to the increasing irreversibility of the contraction and elongation of the c lattice parameter of the NMC structure. To our knowledge, it is the first report of concurrent characterization of the crystal structure and the Li$^+$ diffusion coefficient.

\section*{ASSOCIATED CONTENT}
Supporting information available: The material includes the following sections.
1. Full solution to Fick's Second Law
2. Limit of the current interruption time (Δt) of an ICI measurement
3. Equivalent circuit model and selected impedance spectra
4. Data from both cells in both cycles
5. Analysis of the \textit{operando} X-ray diffraction (XRD) results

This material is available free of charge via the Internet at http://pubs.acs.org.

\section*{AUTHOR INFORMATION}

\section*{Corresponding Author}
* Daniel Brandell
daniel.brandell@kemi.uu.se

* Matthew J. Lacey
matthew.lacey@scania.com

\section*{Author Contributions}
The manuscript was written through contributions of all authors.

\section*{Funding Sources}
Any funds used to support the research of the manuscript should be placed here (per journal style).

\section*{Notes}
The authors declare no competing financial interest. Raw data from electrochemical experiments, the scripts for GITT, ICI and EIS analysis, data from the \textit{operando} XRD experiment and associated plots, are available free of charge at https://doi.org/10.5281/zenodo.4964674.

\section*{ACKNOWLEDGMENT}
The authors acknowledge the financial support from the StandUP for Energy consortium. A. S. M. is grateful to the Swedish Foundation for Strategic Research (SSF) within the Swedish National Graduate School in Neutron Scattering (SwedNess) for funding. H. L., W. R. B. and M. J. L. are grateful to Swedish Energy Agency (Energimyndigheten) for funding through projects: 5813-1, 48678-1 and 45538-1, respectively.

\section*{REFERENCES}
(2) Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li(Ni\textsubscript{0.5281}Co\textsubscript{0.1979}Mn\textsubscript{0.2732}O\textsubscript{2} \textit{J. Electrochem. Soc.} \textbf{2004}, \textit{151}, A1324. https://doi.org/10.1149/1.1775928.