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Unsupervised Machine Learning for Unbiased Chemical 
Classification in X-ray Absorption Spectroscopy and X-ray 
Emission Spectroscopy  

Samantha Tetefa, Niranjan Govindb, Gerald T. Seidlera,† 

We report a comprehensive computational study of unsupervised machine learning for extraction of chemically relevant 

information in X-ray absorption near edge structure (XANES) and in valence-to-core X-ray emission spectra (VtC-XES) for 

classification of a broad ensemble of sulforganic molecules. By progressively decreasing the constraining assumptions of the 

unsupervised machine learning algorithm, moving from principal component analysis (PCA) to a variational autoencoder (VAE) to t-

distributed stochastic neighbor embedding (t-SNE), we find improved sensitivity to steadily more refined chemical information. 

Surprisingly, when embedding the ensemble of spectra in merely two dimensions, t-SNE distinguishes not just oxidation state and 

general sulfur bonding environment but the aromaticity of the bonding radical group with 87% accuracy as well as identifying even 

finer details in electronic structure within aromatic or aliphatic sub-classes. We find that the chemical information in XANES and 

VtC-XES is very similar in character and content, although they exhibit an unexpected tendency to have different sensitivity within 

a given molecular class. We also discuss likely benefits from further effort with unsupervised machine learning and from the 

interplay between supervised and unsupervised machine learning for X-ray spectroscopies. Our overall results, i.e., the ability to 

reliably classify without user bias and to discover unexpected chemical signatures for XANES and VtC-XES, likely generalize to other 

systems as well as to other one-dimensional chemical spectroscopies.

1. Introduction 

The emergence of modern data science techniques, along 

with improved theoretical tools addressing physical observables 

and open access online databases, has led to new and insightful 

interpretation of experimental results. Thus, machine learning 

(ML) has proliferated throughout chemistry, materials science, 

and chemical engineering 1, 2. Large databases, such as the 

Materials Project 3, Inorganic Crystal Structure Database 4, 5, and 

QM9 6, along with open access packages for ML, have all 

contributed to this rise in popularity and reliability of machine 

learning analysis of data 7. Recent work exemplifying the 

interplay between ML methods, databases, and chemistry 

includes using ML to develop a way to represent molecular 

structures 8, 9, to study charge transport at the nanoscale level 
10, or to automate chemical predictions from atomistic 

simulations 11. 

X-ray absorption spectroscopy (XAS), an important chemical 

speciation technique, has seen impressive recent developments 

using ML 12-31. Briefly, XAS encompasses both X-ray absorption 

near edge structure (XANES) and extended X-ray absorption fine 

structure (EXAFS) and involves interrogating the unoccupied 

electronic states by a core photoelectron. On the other hand, X-

ray emission spectroscopy (XES) interrogates the occupied 

electronic density of states by relaxing from an excited state to 

a ground state 32-34. Furthermore, recent developments of 

reliable lab-based spectrometers in multiple energy ranges 

have facilitated an increase in accessibility of both XAS and XES 

measurements 35-39. 

Both XAS and XES are manifestly element-specific, as either 

the excitation or the deexcitation energy, respectively, selects 

the species of interest. These methods appear in a plethora of 

subfields in chemistry, physics, materials science, and earth and 

planetary sciences, with representative contemporary research 

in renewable energy 40, electrical energy storage 41, 42, protein 

structure and function 43, terrestrial and lunar basalts 44, 

chemical catalysis 45 in biomolecules 46, and photochemical 

dynamics 47. In such applications, the experimenter seeks to 

understand local electronic and atomic structure, elucidating 

properties of the selected species such as oxidation state, bond 

lengths, ligand identity, and coordination symmetry and 

numbers.  

Several decades of effort has resulted in theoretical 

approaches that reliably solve the forward problem, i.e., the 

prediction of XAS and XES spectra from known structures 32, 48, 

49. However, the inverse problem of obtaining structural, 

electronic, or chemical information from spectra is ill-posed and 

demands the use of prior information. Although formal 

statistics have been occasionally applied to address the 

imposition of the experimenter’s constraining physical 

knowledge on the system 50-53, prior knowledge is more 

commonly implicit via the user interaction with the standard 

tools for interpretation of EXAFS 54, 55 or XES spectra 56. 
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However, the analysis of XAS – and of XES, as seen here – is 

seeing rapid development, which is both exciting for the XAS 

community and potentially informative for other 

spectroscopies. We propose that these efforts can address 

broader questions of the encoding of chemical information via 

physical measurement.  

In a seminal work, Timoshenko, et al. 26 used supervised ML 

to train a neural network on an ensemble of differently 

coordinated nanoparticles to extract geometric information 

from merely the X-ray absorption near-edge structure (XANES), 

the first ~50 eV of XAS. This work exemplified how prior 

information could be encoded via the selection of structures for 

the training data set as well as showcasing a supervised machine 

learning model that performed better than human researchers, 

who would instead require the entire EXAFS spectrum to obtain 

similar information. Working contemporaneously, Zheng et al. 
30 took a different direction. Instead of seeking inferences about 

fine structural parameters, they developed an algorithm to 

match unknown materials with known materials in a large 

database, showcasing its effectiveness by predicting oxidation 

and coordination from the material’s XAS spectra. 

Subsequent ML work aimed at a better interpretation of XAS 

has sought to identify important energy regions or features of 

spectra that contribute most prominently to specific properties 
12, 15, 28. Moreover, supervised ML has seen use in classifying 

coordination and local chemical environments 14, 16 and the 

oxidation state 19 of 3d transition metals, and used to extract 

geometric properties 29, especially during high-throughput 

experiments 17 in real-time 25. As another example with 

pragmatic purpose, ML has recently been implemented for 

fitting XANES spectra 18. Further work utilizing artificial 

intelligence for fitting EXAFS data is also actively being 

developed 23, 24. Finally, and by means of closure by returning to 

the forward problem, Rankine et al. utilized machine learning to 

quickly predict Fe XANES spectra given local geometric 

parameters 21. Other efforts to utilize machine learning to 

predict XANES spectra, either from structural parameters or 

from the partial density of states, include Carbone et. al 13 and 

Kiyohara et. al 15, respectively. 

In the present manuscript, we take a new direction in the 

use of ML methods in X-ray spectroscopies. Not only is this the 

first analysis of valence-to-core XES (VtC-XES) using ML 

methods, but we apply unsupervised ML to identify chemically 

relevant classes based on both XANES and VtC-XES. 

Furthermore, instead of using unsupervised ML to force a 

correlation of certain geometric regressional properties of a 

system of interest to specific dimensions of a reduced 

dimensional representation of XANES spectra, as seen in the 

recent work of Routh et. al 22, which we believe is the first 

application of unsupervised ML in XAS, we fully examine 

clustering in this reduced dimensional space for unbiased 

discovery of chemical classes and thus the extent of encoded 

information in spectra. As a secondary consequence of our 

choice to investigate both XANES and VtC-XES, we are also able 

to test the common qualitative assertion that the methods are 

“complementary” because of their respective sensitivity to 

unoccupied and occupied electronic states 57, here 

quantitatively addressing whether the chemically relevant 

information in XANES and VtC-XES is indeed complementary or 

is instead highly coincident 58-60. 

Based on our results, we propose that chemical 

classification problems are best addressed with unsupervised 

ML methods at least as a precursor analysis method 11, an 

approach that may enrich or suggest refinement of prior 

structure-specific inferential work in XAS 14, 16, 17, 25, 26, 30 and 

similar work in a wide and rapidly growing range of other 

spectroscopies in chemical sciences 61-63. This distinction is 

nontrivial. Subject only to the imposition of prior information 

through the choice of the training domain of materials or 

molecules, unsupervised learning serves to identify the extent 

of the underlying and scientifically useful chemical properties 22 

for a given spectroscopy without user bias. These methods 

allow any spectral similarities, and thus classes, emerge from 

the algorithm and then a posteriori interpret its chemical 

relevance. This ensures that unanticipated encodings of 

chemical information are not overlooked. An unsupervised ML 

approach is, we feel, especially suitable for X-ray spectroscopies 

exactly because of the challenges posed by the ill-posed nature 

of the inverse problem. Hence, both our motivations and our 

methods are distinct from prior work using data science and ML 

methods in X-ray spectroscopies. 

We now define our system of interest and the methods that 

will be used for classification. Our training domain encompasses 

a very wide range of sulforganic molecules chosen because of: 

(1) their rich diversity of bonding environments; (2) the 

considerable evidence for sensitivity of both XANES and VtC-XES 

of the S K-edge to chemical bonding in this family 59, 64, 65; and 

(3) the prior demonstration of good agreement between 

experiment and time-dependent density functional theory (TD-

DFT) 65 calculation of XANES 66 and VtC-XES 65, 67-69. 

For chemical context, the five “Types” of molecules used in 

our study are shown in Fig. 1. They are: (1) sulfides, (2) 

thiocarbonyls, (3) thiols, (4) sulfoxides, and (5) sulfones. Type 1, 

or sulfides, are compounds with C-S-C bonds. This includes S in 

cyclic sulfides, such as thiophenes and thiazoles, along with 

sulfides where the S is bonded to two separate functional 

groups. Type 2, or thiocarbonyls, have S double bonded to a 

single C. Type 2 includes variations such as isothiocyanates and 

thioureas. Type 3 are thiols, also known as mercaptans, and 

have an SH functional group bonded to a C atom in some radical. 

Types 1, 2, and 3 all have a sulfur oxidation of -2. Type 4, or 

sulfoxides, have S double-bonded to O and single bonded to two 

C atoms. Type 4 has a sulfur oxidation of 0. Finally, Type 5 are 

sulfones, which have S double-bonded to two oxygens and 

single bonded to two C atoms. Type 5 also includes 

sulfonamides. Type 5 has an oxidation of +2. Every Type is 

additionally categorized into subcategories based on whether 

the S is a member of a conjugated system, e.g., in an aromatic 

ring, or not, i.e., is aliphatic. There are similarities and 

differences in these classifications compared to Yasuda and 

Kakiyama 64 and Holden, et al. 65. Specifically, we have 

somewhat expanded the core “Types” compared to that prior 

work but have retained the use of oxidation state and 

aromaticity as additional refining parameters. 
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Fig 1. Schematic representation of the five types of sulforganics 

investigated, along with sub-categories. 

 

Here we investigate three different classification schemes 

that follow the general rubric of dimensionality reduction, 

followed by cluster identification. We report a critical 

comparison of (1) Principal Component Analysis (PCA), which is 

a fully linear method with an underlying Euclidean metric, (2) a 

Variational AutoEncoder (VAE), which is a deeply nonlinear 

method that still has a local metric, and (3) t-distributed 

Stochastic Neighbor Embedding (t-SNE), a nonlinear embedding 

that is inherently non-metric. In all cases, the accrued benefit is 

the ability to see clustering in the reduced dimensional spaces 

from which we then assign chemical descriptors and, in turn, 

infer the general character of chemical information that is 

encoded within XANES and VtC-XES. 

We find surprisingly strong absolute and comparative 

performance for t-SNE, which requires consideration of the 

seriousness of what emerges as a shared core weakness of PCA 

and VAE in the present context. In those methods, the similarity 

of spectra is only quantified after dimensionality reduction, i.e., 

only after information has necessarily been lost. This is in 

contrast with t-SNE, where the original spectra drive the 

creation of a probabilistic description of similarity (with no 

necessary loss of spectral information) and then a subsequent 

embedding in a lower dimension is determined. t-SNE thus has 

significant heuristic benefits for classification, albeit at the cost 

of losing any meaningful metric properties in the resulting 

embedding. On the other hand, the retention of formal 

mappings and metrics for PCA and VAE allows for applications 

that require tracking the trajectory of evolving chemical 

systems, such as in high-throughput synchrotron experiments. 

2. Methods 

2.1 Electronic Structure Calculations 

Our data generation pipeline is shown schematically in Fig. 

2. A list of sulforganic compounds was created from a wide 

variety of sources, starting with the compounds in Yasuda and 

Kakiyama 64 and Holden et al.65, so as to make best contact with 

those prior experimental studies of classification of VtC-XES. 

First, in all cases, structures (in the form of .mol files) were 

downloaded from the PubChem database 70 via the MolView 

API 71. All ground state structures, XANES 72, and VtC-XES 73 

computations were performed with the open-source NWChem 

computational chemistry program 74, 75. In total, 769 molecules 

are included in this work. 

 

 

Fig. 2. Schematic depiction of the data generation pipeline. 

 

The geometry optimizations utilized the 6-31G* basis sets 72, 

73, 76, 77 and the B3LYP exchange correlation functional 78. The 

XANES and VtC-XES spectra were then computed using the 

Sapporo QZP-2012 and Sapporo TZP-2012 basis set 79, 

respectively, for S, while the remaining atoms were represented 

using 6-31G* basis set, and PBE0 exchange correlation 

functional 80. In cases where compounds contained heavier 

atoms than S, such as bromine and chlorine, an effective core 

potential was substituted for the atom, specifically the Stuttgart 

RLC ECP 81.  

A post-processing linear broadening scheme was applied to 

the XANES transitions, similar the scheme in Mijovilovich et. al 
82. Pre-edge transitions until the whiteline were Lorentz 

broadened at a full-width half-maximum (FWHM) of 0.6 eV, to 

be consistent with the core-hole lifetime. Then a linear increase 

in the FWHM broadening was applied, starting from the 

whiteline at 0.6 eV and increasing to 4.0 eV FWHM at 15 eV past 

the whiteline. This scheme accurately depicts features from 

experimental data 59, 83. Finally, the spectra were individually 

normalized by dividing their total Kα intensities and an energy 

shift of -53.3 eV was applied to all XANES transitions to align the 

theoretically calculated transitions with experiment. For the 

VtC-XES, the calculated transitions were all shifted by -18.6 eV 

to align to experiment 64, 65. Additionally, a Lorentz broadening 

of FWHM of 0.6 eV in addition to a Gaussian broadening of 

FWHM of 0.3 eV was added to each transition, which represents 

the core-hole lifetime and the best possible experimental 

resolution (limited by the bent crystal analyzer), respectively. 

The resulting spectra were also normalized by their total Kα 

intensity to achieve a common intensity scale per S atom. 

 

2.2 Supervised ML Methods 

To preprocess our spectra, the intensity was represented 

pointwise with 1000 linearly spaced energy values along a 

consistent energy range across the entire ensemble. The 

training and test set consist of 717 and 52 molecules, 

respectively, and were both scaled such that they were peak 

normalized to the highest intensity value of the training set; this 

ensured spectra had intensity values between 0 and 1 in 

addition to preserving overall transition amplitudes. 

All neural network models in this study were implemented 

in Python using the Keras 84 package with a Tensorflow 

backend 85. As a benchmark for defining “good” accuracy when 

compared to the dimensionally reduced spaces, we performed 

classification via supervised machine learning by passing the 

original high-dimensional spectra into a fully connected neural 
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network classifier. The fully connected neural network for the 

three classification schemes for the VtC-XES had one hidden 

layer with dimension 512, ReLU activation, L2 kernel 

regularization, and 5% dropout. It was optimized via Keras’s 

default ADAM using binary cross entropy loss, with a softmax 

output activation function. The network architecture for the 

XANES had all the same hyperparameters as the VtC-XES, except 

it had a hidden dimension of 1024 instead of 512. The resulting 

confusion matrices for VtC-XES and XANES for all classification 

schemes are given in Fig. S3 (Scheme 1: Oxidation), Fig. S3 

(Scheme 2: Type), and Figs. S4 and S5 (Scheme 3: Aromaticity 

within each Type, henceforth simply “Aromaticity”). The 

benchmark accuracies for classifying the VtC-XES spectra were 

100%, 96%, and 71% for Oxidation, Type, and Aromaticity, 

respectively, for the 52 compounds of the test set. And the 

benchmark test accuracies of classifying the XANES spectra 

were 100%, 85%, and 69% for Oxidation, Type, and Aromaticity, 

respectively. 

We applied supervised machine learning on the reduced 

dimensional spaces by implementing K-Nearest Neighbors 

(KNN) classification with scikit-learn using 20 nearest 

neighbors for classification Schemes 1: Oxidation and 2: Type, 

and with 10 nearest neighbors for Scheme 3: Aromaticity 

(within each Type). KNN is a supervised classification algorithm 

that categorizes data points based on the other data points in 

the vicinity, specified by this number of neighbors (k) 

hyperparameter. 

 

2.3 Unsupervised ML Methods 

Our VAE model took the spectra as input, where each 

spectrum was represented by 1000 points of intensity as 

indicated above. This model was also implemented in Python 

with Keras and Tensorflow. The network was trained using 

a batch size of 50 and had two hidden layers of dimension 512 

and 128 respectively, with ReLU activation. Additionally, L2 

kernel regularization was added to each layer, and a dropout of 

10% was applied after every layer, both of which were 

implemented to help prevent overfitting and encourage 

generalizability. The encoder and decoder were then 

symmetric, although the output layer of the decoder had a 

sigmoid activation function. An almost identical model 

architecture and hyperparameters were used to train the VAE 

for both the VtC-XES and XANES spectra; however, the XANES 

model had a dropout of 15% and the second hidden layer had 

dimension 246 instead of 128. Both models were optimized via 

the default settings of the optimizer ADAM in Keras. The VAE 

and fully connected classifier neural networks were verified on 

a validation set via the model loss and reconstruction efficacy 

to check for overfitting. See Fig. S1. The trained VAE models, 

analysis code, and datasets are available on GitHub 86. 

We applied Principal Component Analysis (PCA), along with 

the t-distributed stochastic neighbor embedding (t-SNE), 

independently to the XANES and VtC-XES spectra using the 

scikit-learn 87 package in Python. The optimal 

hyperparameter for t-SNE, perplexity (which roughly represents 

cluster size), was found by searching through perplexity values 

between 5 and 50, with perplexity equal to 18 yielding the 

qualitatively most distinguishable yet believable clusters on the 

training set. All two-dimensional reduced spaces were linearly 

scaled to be between 0 and 1 for each axis. 

3. Dimensionality Reduction Algorithms 

Given the novelty of unsupervised ML in the context of x-ray 

spectroscopies, it is useful to give a detailed overview and 

detailed comparison of the methods used here. To begin, 

dimensionality reduction not only helps determine which 

features in data are most “evident” or variational, but by doing 

so in a data-driven matter, it also removes biases imposed by 

the researcher. Of central importance here, lower dimensional 

representations often yield better classification by addressing 

the curse of dimensionality, i.e., everything in a high 

dimensional space looks far away, so it may be difficult to 

quantify similarity of points in a high dimensional space 88. 

However, selecting the best dimensionality reductional 

algorithm is, as investigated here, closely dependent on both 

the constraints inherent to the method and the underlying 

variance of the training data. The question is whether 

progressive weakening of constraints on the algorithm, such as 

by removing the requirements of linearity or a quasi-metric 

mapping, in fact better preserves information content and thus 

allows for more robust classification. While this is an appealing 

hypothesis, it is by no means a certain outcome: one might find 

that the constraints are needed to suppress overamplification 

of spectral features that do not have physical importance. 

To this end, we will compare linear and nonlinear forms of 

dimensionality reduction where both algorithms perform 

formal mappings between the original high-dimensional space 

(where the calculated ensemble of spectra live) and learn a 

mapping to a lower-dimensional representation. Then, we will 

compare these mapping-based algorithms to a probabilistic 

embedding algorithm that, instead of learning a formal mapping 

function from a higher- and lower-dimensional space, creates a 

lower-dimensional representation by preserving a similarity 

metric of the original spectra. The results of this work elucidate 

the chemically relevant information content in XANES and VtC-

XES, allow a comparison of their relative information content, 

and suggest possible methods for real-time monitoring of high-

throughput experiment.  

We begin with the two mapping algorithms, as opposed to 

the embedding. The dominant linear method for dimensionality 

reduction is Principal Component Analysis (PCA). 89 Nonlinear 

dimensionality reduction can be achieved via unsupervised 

machine learning, specifically here, via the VAE neural network 

model 90. Given that there is very scarce prior work using VAE’s 

in spectroscopies, e.g., optical-wavelength spectroscopy in an 

astrophysical study 91, we will especially discuss the key 

differences between PCA and VAE. For work detailing the use of 

just an autoencoder (AE) for XANES analysis, see Routh et. al 22. 

With this in mind, we will additionally discuss the difference 

between an AE and VAE, and the additional properties inherent 

to a VAE.  
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To begin, in Fig. 3a, we envision a scenario of synthetic data 

in three different clusters in a parameter space of some 

unknown dimension, here shown in two dimensions for ease of 

presentation. If the data distribution is well-represented by a 

simple N-dimensional (hyper)ellipsoid, PCA would successively 

choose orthogonal axes in a new coordinate system that 

consecutively encompassed the most variability contained 

within the high dimensional data set. Equivalently, PCA chooses 

an orthonormal basis to represent a lower dimensional 

(hyper)plane such that the distance the data travels to be 

projected onto this PCA (hyper)plane is minimized. Thus, data 

can be represented using only the first few basis vectors, or 

dimensions, that explain the most variation within the data.  

 

 

Fig. 3. (a) Clusters where nonlinear dimension reduction 

routines, such as from a neural network, might yield better 

clustering than a linear dimension reduction like PCA. (b) 

Architecture of a simple autoencoder (AE) with one hidden 

layer, demonstrating the dimension reduction utility of the AE 

via its nonlinear latent space. (c) Schematic of how t-SNE uses 

the probability that data points are sampled from the same 

distribution to determine their similarity. 

 

However, whether in two dimensions, as in Fig. 3a, or in 

some higher dimensional realization, dimensionality reduction 

for complex data that spans multiple qualitative classes is 

frequently poorly suited to decomposition via purely 

orthogonal axes and Euclidean-preserving metrics in the host 

high-dimensional space. This is where less restrictive coordinate 

transformations often have superior dimensionality reduction 

en route to classification. VAEs have not previously been used 

in X-ray spectroscopies, although they have been shown to be 

superior to PCA in several other contexts 91-94. 

In Fig. 3b, a schematic of a simple autoencoder 

demonstrates how a coupling of two neural networks – an 

encoder and a decoder – performs nonlinear dimensionality 

reduction. The encoder takes in d-dimensional input, reduces it 

down to a nonunique lower dimensional representation called 

a latent space, and then the decoder expands the dimension 

back to the original d dimensions. The nonlinear activation 

functions in each neuron give the mathematical freedom for 

deforming the metric. The autoencoder learns, through 

iterative training, how to encode data to a lower dimension by 

trying to match the input and output – ensuring that maximal 

information is retained as the data is passed through this 

information bottleneck layer, or latent space. Because no 

predetermined classes or labels are given to the network, 

clustering in the latent space is inherently unsupervised – hence 

we neither impose prior knowledge that, for example, oxidation 

state will create useful spectral distinctions, nor limit ourselves 

to discovering only a few prescribed categories of chemical 

information. 

Autoencoders, however, suffer from overfitting that 

reduces their ability to generalize or generate new data and 

thus have limited utility for classifying unseen data. To resolve 

this concern, an autoencoder can be modified into a variational 

autoencoder (VAE) 90. VAEs have almost the same model 

architecture as autoencoders, except instead of learning an 

exact latent space encoding, they learn a latent space 

probability distribution, which is described in more detail in the 

SI. Points in the latent space are instead sampled from a learned 

normal distribution. This sampling creates perturbations in the 

latent space, which helps prevent overfitting and allows the 

latent space to be complete, continuous, and regularized, 

leading to the generation of new data. Most importantly, the 

probabilistic sampling ensures that similar spectra are in fact 

mapped to similar locations in the latent space, and the decoder 

will be able to decode points in the latent space it has not 

previously seen, both of which are imperative for classification. 

Returning to Fig. 3a, the benefits of the VAE’s nonlinear 

dimensionality reduction are illustrated by the thick blue line, 

representing a possible first coordinate axes of a VAE latent 

space. The nonlinearity of the VAE allow it to weave and thus, 

imagining the data in Fig. 3a in a higher dimensional space, 

create a manifold that would better capture variance of the 

data domain with fewer reduced dimensions. Hence, while the 

nonlinearity of the VAE prohibits its use for linear superposition 

analysis of composition – a common application of PCA in XAS – 

we posit that VAEs, or other nonlinear dimensionality reduction 

methods, might provide special advantages for classification 

problems, i.e., for grouping data with respect to the underlying 

chemically-relevant information in XANES and VtC-XES spectra. 

We will demonstrate the utility of unsupervised methods, 

either linear (PCA) or nonlinear (VAE), to not only analyze the 

information retained by a reduced-dimensional representation, 

but most importantly, to generate a mapping to the reduced-

dimensional space. That is, both PCA and VAE create a 

functional mapping from the high-dimensional space of spectra 

to the derived two-dimensional spaces that can be saved and 

used later, without modification, to subsequently map new data 

onto the derived spaces. Thus, they are tools to store data. 

Moreover, this ability allows us to quantify the “goodness” of 

mapping by calculating the accuracy of classification on a 

subsequent test set. However, if the final scientific goal is 

understanding the connection between spectral features and 

information content in an ensemble, then the imposition of a 

well-behaved mapping may be unnecessary and may in fact 

over-constrain and hence degrade performance toward 

chemical classification. This brings us to use of embedding 

algorithms. 
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The t-distributed Stochastic Neighbor Embedding (t-SNE) 95 

is performed by calculating a pairwise similarity matrix over the 

entire dataset by creating a joint conditional probability 

distribution. For example, imagine the three points, called X1, 

X2, and X3 in Fig. 3c, exist in the original high-dimensional space 

that fully characterizes the spectra, i.e., each such point 

corresponds to a full spectrum. Here, X1 and X2 are clearly more 

alike than X3. When t-SNE compares similarities between high-

dimensional points, it assumes all data points are sampled from 

an inherent Gaussian distribution such that data that are more 

similar have a higher probability of being sampled from the 

sample distribution, while dissimilar data have a lower 

probability of being sampled from the same distribution.  

Therefore, similar data points should be closer together in a 

reduced representation, i.e., closer to the assumed mean of the 

inherent joint distribution, and dissimilar data points are farther 

away. To obtain the lower dimensional embedding, t-SNE then 

randomly projects the data to a lower-dimensional space and 

computes an analogous pairwise conditional probability 

distribution function (now assuming points are sampled from a 

t-distribution to encourage spread). Through an iterative 

minimization process, t-SNE tries to match the pairwise 

conditional probabilities from the lower dimensional space to 

the one calculated in the high dimensional space.  

Thus, similarity relationships between data points in the 

original high-dimensional space should be maintained by t-SNE 

in this reduced space. This contrasts PCA and VAE, which project 

the spectra onto a low-dimensional space via a simple basis 

using a Euclidean metric (PCA) or else an adaptive metric (VAE), 

and for which the issue of the similarity of data is only addressed 

after this inherently lossy compression process. 

4. Results and Discussion 

4.1 Dataset and Dimensionality Reduction  

It is useful to consider a qualitative presentation of variance 

of the XANES and VtC-XES spectra – both within and across 

compound Types. Hence, in Fig. 4, we show the VtC-XES and 

XANES spectra for a representative sampling of the molecules 

in this study. Beyond energy shifts, there are some interesting 

variations within Types for each of VtC-XES and XANES. For 

example, the Type 2 XANES has far more variation than the VtC-

XES. Conversely, the Type 3 VtC-XES has far more variation than 

the XANES. Such details encourage the use of unsupervised 

learning en route to a chemical explanation. 

We now report on unsupervised dimensionality reduction 

for this data set. In this, we primarily focus on PCA, VAE, and t-

SNE, but also include several competing linear algorithms for 

completeness. These results are then used for classification in 

Section 4.2. 

 

Fig. 4. VtC-XES (left) and XANES (right) spectra for all 

organosulfur compounds, displayed by compound type. Some 

spectra have been arbitrarily scaled or randomly removed for 

display purposes. 

 
4.1.1 Principal Component Analysis 

The most important measure for the utility of PCA is the 

proportion of variance explained by a PCA basis, in order of 

most important principal component to least, which is shown in 

Fig. 5 (averaged over the entire dataset). The basis elements 

have been sorted so that the eigenvectors corresponding to the 

largest eigenvalues are considered first; in other words, the first 

principal component (PC) is the most important as it explains 

the most variance of the data. For both the XANES and VtC-XES 

data, a point of diminishing returns is found at ~ 6 – 8 principal 

components. 

 

 

Fig. 5. Scree plot of PCA effectiveness for both VtC-XES and 

XANES. The vertical axis is the fraction of variance explained by 

each PC, e.g., the 10th PC. 
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Fig. 6. Spectra reconstructed with increasing number of 

principal components (PCs) kept, for both VtC-XES and XANES 

of 2-thiazolidinone sulfone (Type 5) (top two panels) and 4-

thiazoleaceticacid (Type 1) (bottom two panels).  

 

To illustrate this fact, we show in Fig. 6 the gradual 

convergence with increasing number of PCA basis elements for 

two representative molecules, one from Type 5 and the other 

from Type 1. By increasing the number of PCs kept, more 

information is retained. For example, for 4-thiazoleacetic acid 

(bottom), starting at 2 PCs at the top and increasing downward 

to the original spectra at the bottom, the VtC-XES spectra clearly 

evolves from two peaks to three. For the XANES, the small peak 

in the valley at 2476 eV starts to appear around 8 PCs. However, 

the increase from 10 PCs to 12 PCs does not provide any 

distinguishable change in the spectra. For 2-thiazolidinone 

sulfone (top), the XANES pre-edge features (or lack thereof) are 

not accurately represented until about 8 PCs, whereas just 2 PCs 

captures most of the spectral features for the VtC-XES. Again, 

the principal components were determined using the entire 

training data set for both XANES and VtC-XES. 

The first two PCs can also be visualized by projecting the 

data onto a two-dimensional space using the corresponding 

eigenvectors, as shown in Fig. 7. Here, we color-coded the data 

via two chemically relevant classification schemes: “Scheme 1” 

(oxidation state) and “Scheme 2” (molecular moiety “Type”). 

Note how the oxidation state of the compounds clearly 

dominates the PCA of XANES (due to energy shifts, as expected), 

and thus the PCA of VtC-XES has better distinction between 

Types as it is not being over-dominated by oxidation. That said, 

there is considerable mixing of chemically different compounds 

in the XES projection – for example, the blue Type 2 

thiocarbonyls mixing with the yellow Type 5 sulfones, and the 

purple Type 1 sulfides mixing with the dark green Type 3 thiols. 

 

 

Fig. 7. Principal Component Analysis (PCA) projection for two 

dimensions, color-coded by the two different property 

classification schemes: Scheme 1 is by oxidation and Scheme 2 

is by sulfur bond type.  

 

To summarize, PCA is a linear dimension reduction method 

that, when applied to both the XANES and VtC-XES of our 

ensemble on compounds, can accurately reconstruct spectra 

when a suitable number of PCs are retained. However, even just 

two PCs capture oxidation state, seen most obviously for 

XANES, and significant hints of sulfur bonding environment via 

the VtC-XES under the Type classification scheme. 

However, the question now arises as to whether the 

orthogonalization and use of a Euclidean metric by PCA is 

optimal for the problem of chemical classification, especially if 

strongly limiting the number of principal components. This 

opens two questions. First, it is fair to ask if another linear 

algorithm could prove superior to PCA. This is investigated with 

Fast Independent Component Analysis (FastICA), Factor 

Analysis (FA), and Non-negative Matrix Factorization (NMF), as 

shown in Fig. S6. These methods will be included in our final 

assessment of classification accuracy but require little further 

discussion here, except to say that by initial visual inspection 

some seem to perform comparable PCA but are not 

categorically superior. Second, one must inquire, with linear 

dimensional reduction algorithms exhausted, if there is 

improved performance by using a nonlinear unsupervised 

method – either creating a nonlinear mapping (VAE) or merely 

an embedding (t-SNE). 

 
4.1.2 Variational Autoencoder 

We present in Fig. 8 again a reduction to a two-dimensional 

space, but now via the latent space of a trained VAE. Before 

comparing these results with the PCA-derived two-dimensional 
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space in Fig. 7, it is useful to establish some basic properties of 

the VAE training and resulting latent space. 

 

 

Fig. 8. Latent space representation in two dimensions via a 

Variational Autoencoder (VAE), color-coded by the two 

different property classification schemes: Scheme 1 is by 

oxidation and Scheme 2 is by sulfur bond type. 

 

First, in Fig. 9 we demonstrate the agreement between 

input and decoded spectra – this is roughly analogous to the 

consideration of the number of retained PCs for PCA as shown 

in Fig. 6. The five spectra-pairs shown are for randomly selected 

compounds of each Type. Qualitative agreement is seen with a 

limited number of dominant spectral features, as would be 

expected given the inherent blurriness of decoded data from a 

VAE in two dimensions. Errors are largely restricted to features 

that are spectrally small or (especially) to spectra with 

numerous peaks. In some cases, this includes information-rich 

features, such as the first peak in the XANES of protionamide or 

the loss of the triple-peak structure in the immediate region 

near the Fermi level in the VtC-XES for 1,3-thiazol-4-ylacetic 

acid. 

 

 

Fig. 9. Reconstruction of XES (left) and XANES (right) spectra 

from a two-dimensional latent space via a VAE. From bottom to 

top, the compounds are from Type 1, 2, 3, 4, and 5. The black 

dashed line represents the original inputted spectra, and the 

solid-colored line is the decoded spectra after it has been 

passed through the VAE.  

 

Second, while the VAE is nonlinear, the resulting mapping is 

still continuous and regular, such that similar spectra are 

mapped to nearby points in the latent space and, conversely, 

nearby points in the latent space decode to similar spectra. In 

Fig. 10a, the spectra for tetrabromothiophene and 

tetrachlorothiophene are very similar, and they are in fact 

mapped to a similar location in the latent space. Looking at the 

corresponding oxides in Fig. 10b, there is again a close location 

mapping of chemically related compounds of similar VtC-XES 

spectra. This indicates that the VAE is correctly mapping similar 

data to nearby locations, and therefore the latent space is in 

fact regularized, continuous, and complete. These three 

properties allow for data generation, where the VAE can decode 

points in the latent space it has not previously seen. We return 

to this subtle consequence of the good, if non-Euclidean, 

behavior of the VAE latent space in section 4.3. 
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Fig. 10. Chemically similar compounds are nearby in the latent 

space. (a) The latent space location of tetrabromothiophene 

and tetrachlorothiophene, with the corresponding XES spectra 

on the right. (b) The same structures but oxidized to form 

tetrabromothiophene oxide and tetrachlorothiophene oxide. 

 

As a final point of interest for the fidelity of the VAE latent 

space, it is interesting to investigate outliers in the VAE latent 

space, i.e., those molecules that substantially escape from the 

cluster associated with their oxidation state or Type. In Fig. 11 

we identify both fipronil (only the relevant part of the structure 

is shown) and ethylene sulfoxide as two Type 4 sulfoxides with 

nominally zero oxidation state that are unexpectedly in the 

sulfone +2 oxidation state cluster. The corresponding VtC-XES 

spectra and molecular structures are shown at the bottom of 

the figure. For fipronil, one of the carbons bonded to the S is 

special in that it is bonded to three fluorine, whose 

electronegativity also makes the carbon electronegative and 

thus the sulfur has an effective +1 oxidation, which might 

explain the grouping with the positive oxidation cluster. For 

ethylene sulfoxide, the abnormal triangle shape and unusual 

bond angles and lengths might contribute to its grouping with 

the +2 oxidation cluster. 

 

 

Fig. 11. A closer look at the outliers: the two “neutrally oxidized” 

compounds distinctly in the sulfone (+2 oxidation) cluster. 

 

Moving now to the relative merits of the two-dimensional 

PCA representation (Fig. 7) and the VAE latent space (Fig. 8), the 

superior performance of the nonlinear method is an important 

result of the present study, and there are three details that 

require further discussion. First, note how the latent space of 

the VtC-XES has very clear clustering of chemically related 

compounds in both classification schemes. In fact, the VtC-XES 

has better clustering than the XANES in Scheme 2 as Types 1, 2, 

and 3 are more distinguishable via VtC-XES. Also note that more 

similar compounds, such as Type 1 sulfides and Type 3 thiols, 

which have the same oxidation and very similar sulfur bonding 

environments, are closer together in the latent space for both 

XANES and VtC-XES when compared to the more chemically 

different Type 4 sulfoxides and Type 5 sulfones. 

Second, the fact that there is better clustering of different 

oxidation states than for different sulfur bond type is expected. 

The appearance of peaks due to the introduced oxygen bonds, 

in addition to the blueshift of the high energy tail, makes 

oxidation state correlate to the most pronounced differences in 

VtC-XES spectra. On the other hand, the XANES latent space is 

dominated by the oxidation state because of the multi-eV blue 

shift of the whiteline as oxidation state increases. However, the 

XANES has less-distinct clustering between Types 1, 2, and 3, all 

which have the same oxidation state, because the XANES 

spectra, in general, have less variation, both within individual 

Types and across them (recall Fig. 4). Hence, the fact that the 

VAE, at least when limited to a two-dimensional latent space, 

cannot as clearly distinguish sulfides (Type 1) from thiols (Type 

3) in XANES, indicated by the large overlap in the purple and 

green dots, is expected; the sulfur local environment in both 

those Types is similar enough that there is large overlap. 

Third, the VAE latent space of the VtC-XES has two very 

distinct Type 3 clusters (not clearly seen in the PCA two-
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dimensional representation), whereas the XANES has grouped 

all Type 3 compounds together. These clusters in the VtC-XES 

spectra are directly correlated to whether the sulfur in the thiol 

functional group belongs to a conjugated system (aromatic) or 

a non-conjugated one (aliphatic), as shown in Fig. 12. Here, we 

have color-coded spectra within types to indicate aromaticity, 

following Yasuda and Kakiyama 64, who first noticed the 

sensitivity of sulfur VtC-XES to aromaticity. This separation is 

chemically reasonable as researchers have long known XAS to 

be sensitive to aromaticity for the carbon edges 96, and have 

also observed sensitivity to aromaticity in a ligand, e.g. the 

sulfur K edge of sulfides 59, 64. 

 

 

Fig. 12. Compounds with aromatic sulfur versus aliphatic sulfur, 

in the latent space (VAE) for both VtC-XES (left) and XANES 

(right). 

 

As shown in Fig. 13, the greatest difference in the VtC-XES 

spectra for Type 3 occurs at the highest energy peak, a 

consistent finding with the observations mentioned in Yasuda 

and Kakiyama 64, which notes the aromaticity of the compound 

increases the energy but lowers the intensity of that peak, likely 

due to the presence of the π bonding system. Conversely, the 

XANES spectra, on average, have only a small (< 1 eV) energy 

shift between the aromatic and aliphatic compounds for Type 3 

without any substantial change in the overall spectral features. 

 

 

Fig. 13. Residuals between the average of the aromatic and 

aliphatic spectra of Type 3 (thiols). 

 

This brings us naturally to the final section of raw results, 

where we use an algorithm that diverges even further from any 

metric constraint and instead emphasizes measuring similarity 

of the spectra prior to reducing the dimensionality of the 

problem. 

 
4.1.3 t-SNE, Clustering Without Mapping 

In Fig. 14a, we show the two-dimensional embedding 

generated by the t-distributed Stochastic Neighbor Embedding 

(t-SNE), color-coded by Type, for the same training data sets as 

was used for PCA and the VAE, e.g., that resulted in the 

mappings in Fig. 7 and Fig. 8. Recall that although the closeness 

of points t-SNE embedding does correlate to similarity, the 

distances separating clusters in t-SNE does not necessarily 

represent the relative similarity of the clusters themselves – t-

SNE is, again, inherently non-metric. The clustering is clearly 

tighter and, more importantly, there is less overlap between 

clusters corresponding to the different Types. In Fig. 14b we 

show the additional sub-classifications by conjugation of the 

radical group bonded to the sulfur, i.e., aromaticity. Notice that, 

as with the VAE, the VtC-XES clearly distinguishes the 

aromaticity of the Type 3 thiols. Moreover, there is a clearer 

separation between aromatic and aliphatic compounds for all 

Types. Another observation in the t-SNE VtC-XES that was not 

present in PCA or VAE results is that the blue Type 2 group by 

the yellow Type 5 cluster consists of isothiocynates, which are 

distinct from the other Type 2 thioketones. 

 

 

Fig. 14. t-SNE for VtC-XES (left) and XANES (right). (a) is color-

coded by Type, while (b) is color-coded by aromaticity within 

each Type. 

 

Some sensitivity to aromaticity could have been expected 

(although whether it would be seen in just a two-dimensional 

representation was definitely uncertain), given the prior work 

by Yasuda and Kakiyama 64 on VtC-XES and by Qureshi et al. 59 

on XANES. Here, because t-SNE is unbiased, we can explore 

clustering in more detail to look for unexpected chemical 

classifications, an issue that we explore in Fig. 15 for XANES. 

First, we examine the further splitting of the Type 1 aromatic 

compounds as shown in Fig. 15a. On average, the spectra of the 

bottom cluster have about a 50% increase in the intensity of the 

whiteline. These compounds all have either a chlorine or 

bromine bonded to the aromatic ring with the sulfur. On the 

other hand, the top cluster is typically thiazoles, or compounds 

where there is a nitrogen within the aromatic system containing 

the sulfur. Since chlorine and bromine are more electronegative 

than sulfur, it is chemically reasonable that they will dominate 

the compositions of the transitions close to the Fermi level and 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 2021 J. Name., 2013, 00, 1-3 | 11  

 

 

thus increase the whiteline intensity whereas the nitrogen in 

the ring will have the reverse affect. 

Next, looking at the red aliphatic Type 5 compounds in Fig. 

15b, it appears that they are grouped on either the left or right 

side of the overall Type 5 cluster. The cluster on the right, on 

average, has a slightly lower intensity and energy of the 

whiteline, with ~0.5 eV redshift. About 75% of the compounds 

in this cluster have the sulfur as part of a non-conjugated ring, 

compared to the sulfur being a member of chain-like 

compounds, as on the left side of the Type 5 cluster. 

Finally, examining the split of the green Type 4 compound in Fig. 

15c, we see clear partitioning based on aromaticity. However, 

upon identifying compounds in which one R group bonded to 

the sulfur is aromatic and the other R group is aliphatic, labeled 

as “mixed,” we see these in fact create the bridge between the 

two clusters as they share chemical characteristics with both 

groups. Thus, t-SNE has clearly identified real chemical (and 

thus spectral) trends in the XANES data. 

 

 

Fig. 15 (Main) A closer look the the subclusternig in the XANES 

t-SNE plot. (a) Separation of Type 1 aromatic compounds based 

on inclusion of chlorine or bromine in the aromatic system. (b) 

Separation of Type 5 aliphatic copmounds based on bond strain 

via the inlcusion of sulfur in a ring versus a chain. (c) Type 4 

compounds with one R group aromatic and the other aliphatic 

share characteristics of both and thus form the bridge between 

the two custers. 

 

4.2 Classification 

Hence, our initial qualitative inspection of the relative 

efficacy of PCA, VAE, and t-SNE for classification strongly 

supports the use of the least restrictive algorithm consistent 

with one’s overall goals. We now seek quantitative assessment 

of the accuracy of classification via these algorithms. Based on 

K-Nearest Neighbors (KNN) partitioning on the reduced spaces 

for both VtC-XES and XANES, we derived the classification 

accuracies for the three primary methods of this study as well 

as the auxiliary linear methods FastICA, FA, and NMF, as shown 

in Fig. 16. For t-SNE, because of its nature as an embedding 

rather than a mapping, the test data was folded into the initial 

embedding, so the entire dimension reduction and test 

accuracy were applied in one step, although the KNN was only 

trained on the training dataset. For all other methods, training 

included both fitting the dimension reduction mapping to the 

training dataset, and then applying KNN on the two-

dimensional space using that training data projection. To assess 

accuracy, the test data was then passed through the mapping 

to lower dimensional and subsequently through the fitted KNN 

partitioning. 

 

Fig. 16. Accuracy of KNN classification schemes on all 

dimensionally reduced spaces for both VtC-XES (top) and XANES 

(bottom). 

 

Regarding classification Scheme 1: Oxidation, most methods 

performed extremely well (above 95% accurate) and were 

comparable to the benchmark accuracy obtained from the fully-

connected neural network classifier, as shown in purple in Fig. 

16. Applying KNN to achieve classification accuracy using 

Scheme 2: Type on all reduced spaces for both XES and XANES 

is also shown in Fig. 16. For the VtC-XES spectra, VAE, FA, and t-

SNE performed the best (with FA having surprisingly high 

accuracies) and closest to the benchmark, while for the XANES 

spectra, all methods (besides FA) performed comparably. 

Finally, we applied KNN to the spaces for classification Scheme 

3: Aromaticity. All methods performed comparatively to each 

other as they performed on the Type classification, and 

accuracies were comparable for both the VtC-XES and the 



ARTICLE Journal Name 

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2021 

 

 

XANES, despite the clear Type 3 separation in the VtC-XES. 

However, t-SNE applied on the XANES spectra clearly 

dominated, achieving a notable accuracy of 87% for aromaticity. 

Some things to note overall: (1) t-SNE and the VAE were 

much more consistent and robust than the linear algorithms, 

whose accuracies greatly depended on both the chosen dataset 

and classification scheme and thus seem more volatile than the 

nonlinear methods (all KNN spaces can be viewed in Figs. S7 to 

S12); (2) the performance of VAE is comparable to t-SNE for 

oxidation state and Type (although not for aromaticity or finer 

speciation), but has an additional benefit in that it is a mapping 

and can thus be used to efficiently store future spectra, 

discussed in more detail below; and (3) the VtC-XES and XANES 

had extremely similar overall categorical sensitivity to 

electronic structure. 

 

4.3 Summary and Outlook 

We have focused here on qualitative chemical classification. 

It would be interesting in the future to evaluate more fully the 

VAE and t-SNE reduced spaces for other potential properties of 

interest, such as bond length, that can be used for prediction via 

regression. Furthermore, expansion of the dataset to include 

ligands other than carbon or oxygen would be another 

beneficial investigation, which has been shown to be 

challenging in other systems 58. Furthermore, the extension of 

our methods to other classes of organic and inorganic systems 

would not only help to understand the spectral encoding of 

chemically relevant information in those other systems but will 

also further illuminating the differences, or lack thereof, in the 

information content of VtC-XES and XANES. 

On a different point, the observation that some of the 

dimension reduction routines performed comparably to the 

benchmark accuracy indicates that they are ripe, either in their 

current condition or with some more tuning, for compressing 

high dimensional spectra with minimal informational loss, and 

thus provide classification accuracies close to an upper bound, 

limited only by the aleatoric variation of the dataset itself. 

Moreover, classification accuracies can be further improved by 

keeping more dimensions when projecting onto these reduced 

spaces, along with more training data, if available. Further 

tuning of these methods would allow for potential use in 

encoding high dimensional spectral data in high throughput 

experiments. 

As a case in point, recall that in section 4.1.2, and especially 

in Fig. 10, we discussed the regularized, continuous, and 

complete nature of the VAE latent space. These characteristics 

allow for both the encoding of additional spectra into the latent 

space and, conversely, allow the VAE to decode points in the 

latent space that do not correspond to previous observations. 

We propose that this capability might be useful for the growing 

number of high-throughput XAS experiments that require real-

time data encoding, although the same may of course also hold 

for other one-dimensional spectroscopies. For example, in 

operando XAS catalysis studies are a high-throughput effort that 

observes progressive changes in spectral features and then 

seeks to understand the corresponding local chemical changes. 

A latent space mapping of such chemical evolution might be at 

least qualitatively useful to the experimenter. 

In Fig. 17a we show the evolution from goitrin (oxidation 

state -2) to thiophene oxide (oxidation state 0). In Fig. 17b, we 

have the decoded spectra from the points in Fig. 17a along a 

trajectory corresponding to linear combination of mole fraction 

of the two molecules. A more complete depiction of latent 

space trajectories is shown in Fig. 17c, where we have over 3000 

different combinations of randomly selected species evolutions. 

Because the tracks cross over the regions between the clusters, 

generating or tracking in this region will be reliable, whereas the 

spaces outside these clusters will not yield any meaningful 

interpretation to the latent space encoding. 

 

 

Fig. 17. As shown in (a), the evolution from goitrin (oxidation -

2) to thiophene oxide (oxidation 0). (b) The linear combination 

of the spectra of thiophene oxide (top) and goitrin (bottom) that 

correspond to the points along the track in (a). (c) Tracks of 3000 

different species evolutions. 

5. Conclusions 

Using a large family of sulforganic molecules as a test case, 

we have performed a comprehensive survey of dimensionality 

reduction via unsupervised machine learning (ML) methods 

applied to X-ray absorption and X-ray emission spectroscopy as 

a means toward chemical classification. In this paper, we come 

to three main conclusions.  

First, despite all algorithms being restricted to two 

dimensions, the unsupervised ML methods showed good 

accuracy for most of the relevant chemical information, with t-

SNE somewhat outperforming the supervised benchmark and 

the other methods comparable to it. In particular, t-SNE appears 

to have surpassed the other methods exactly because it retains 

the similarity measures initially calculated in the original high-

dimensional space of the training data set, avoiding the lossy 

compression inherent to methods that map first and compare 

second. These results suggest multiple directions forward, 
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particularly for their use not only across other chemical 

systems, but also other one-dimensional spectroscopies. 

Second, t-SNE not only had superior performance for 

classifying aromaticity, but also unexpectedly found new 

chemically relevant clusters not seen in any other method, such 

as distinguishing finer sub-classes within the aromaticity of 

sulfides (Type 1), sulfoxides (Type 4), and sulfones (Type 5). We 

see consider future benefit to combining highly adaptive 

unsupervised ML algorithms, such as t-SNE, in tandem with 

supervised ML or with structural parameterization questions 

that have to date been only addressed in XAS using supervised 

ML. 

Finally, the above results allow us to formally quantify and 

compare the chemical information content between XANES and 

VtC-XES, an issue which has only seen qualitative discussion. We 

find that XANES and VtC-XES methods each have strengths for 

chemical classification, but that many are the same, at least for 

the question of chemical classification of sulforganics. 
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