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ABSTRACT:  We combined our generalized energy-based fragmentation (GEBF) approach and transfer learning technique to con-

struct machine learning force fields (MLFFs) for proteins only from quantum mechanics (QM) calculations of small subsystems. 

Using a kernel-based model called Gaussian Approximation Potential (GAP), our protocol can automatically generate training sets 

with high efficiency. To facilitate the construction of training sets for various proteins, a protein’s data library is created to store all 

data of subsystems generated from trained proteins. With this data library, for a new protein only its subsystems with new topological 

types are required for the construction of the corresponding training set. With two polypeptides, 4ZNN and 1XQ8 segment, as exam-

ples, the energies and forces predicted by GEBF-GAP are in good agreement with those from QM calculations, and dihedral angle 

distributions from GEBF-GAP molecular dynamics (MD) simulations can also well reproduce those from ab initio MD simulations. 

In addition, with the training set generated from GEBF-GAP, we also demonstrate that GEBF-MLFFs can also be constructed by 

neural network (NN) methods with full QM quality. Therefore, the present work provides an efficient and systematic way to build 

force fields for biological systems like proteins with QM accuracy.

1. INTRODUCTION 

Molecular dynamics (MD) simulation has emerged as an im-

portant tool to understand how the structure of a protein mole-

cule determines its function in a cell. Currently, MD simulations 

with the classical force fields1-6 have been widely applied for 

large biomolecules including proteins.7,8 However, the accuracy 

of classical force fields is still insufficient for reliable descrip-

tions of some proteins. For example, the α-helical propensity is 

underestimated by the AMBER99SB force field compared to 

the corresponding experimental values.9 The classical force 

fields cannot accurately describe temperature-dependent fold-

ing.10Nowadays, the machine learning (ML) method has been 

increasingly applied to develop more accurate atomistic poten-

tials with very general functional forms than the conventional 

force fields with physically inspired functional forms.11-20 The 

resulting machine learning potentials, also called ML force 

fields (MLFFs), have been demonstrated to be quite successful 

for a variety of different systems.21-34 By “learning” from refer-

ence data sets obtained from QM calculations for a given system 

or a type of systems, MLFFs may reach similar accuracy as QM 

methods at a cost which is orders of magnitude less than that 

required for QM calculations of the same system.  

Due to the chemical complexities of proteins and the high 

computational costs of QM methods for large systems, building 

MLFFs for proteins remains a great challenge. Energy-based 

fragmentation (EBF) approaches35-45 provide a practical and at-

tractive solution to overcome these two difficulties. With this 

approach, the ground-state MLFF of a large system can be ob-

tained as the linear combination of MLFF trained from small 

subsystems, which are representations of different local regions 

of a large system. In previous studies, a residue-based neural 

work (NN) approach46,47 was proposed to construct NN poten-

tials for 20 types of amino acid capped with an acetyl group 

(ACE) and N-methyl amid group (NME) and 1 type of ACE-

NME, as shown in Figure 1. Then, the MLFFs of a protein are 

expressed as the linear combination of these NN potentials. The 

resulting ML potentials represent the first step towards ab initio 

quality protein force fields. However, the local regions on these 

subsystems are not same as the target system. Thus, these po-

tentials are not yet accurate enough, with the root-mean-square 

errors (RMSEs) for the energy and forces of (Ala)9 being 0.15 

kcal/(mol·atom) and 4.75 kcal/(mol·Å), respectively, with re-

spect to reference density functional theory (DFT) data.47 Based 

on the generalized energy-based fragmentation (GEBF) ap-

proach developed by our group35, we also constructed MLFFs 

for alkanes with the linear combination of MLFFs of small sub-

systems trained individually in our previous work.48 Our previ-

ous scheme may be suitable for simple biomolecules like cellu-

lose. However, proteins have twenty types of amino acid resi-

dues and too many different types of subsystems will be gener-

ated. It is difficult to construct MLFFs of all kinds of subsystems 

individually according to the previous fragment-based ML 

scheme.46-48 
 

In this work, we propose a new protocol to construct MLFFs 

for proteins with full QM accuracy only from QM calculations 

on small subsystems. To circumvent the difficulty of MLFFs 

construction for enormous types of subsystems in previous frag-

ment-based ML schemes,46-48 a new strategy is adopted here by 

fitting the energy (or forces) of a given protein as the summation 

of atomic contributions from QM calculations of various sub-

systems. To facilitate the construction of MLFF for various pro-

teins, a protein’s data library is created to store all data of sub-

systems generated from trained proteins. For a new protein, a 

subset of subsystems with the same topological types that are 

already in the protein’s data library can be directly taken as a 

part of the training set, together with some newly generated sub-

systems. To automatically collect the training set, an online ac-

tive learning48 is adopted here to generate these new subsystems 

for studied protein. Then, full-QM quality GEBF-MLFF can be 

constructed using either kernel model like GAP12 or NN model 

like Deep Potential17 with the training set generated by GEBF-  



 

 

 

Figure 1. Fragmentation scheme utilized in the construction of MLFFs. In our GEBF method, fragments are capped with their envi-

ronmental fragments or hydrogen atoms if necessary. In the previous residue-based method, fragments are capped with an acetyl 

group (ACE) and N-methylamine group (NME). 

 

ML protocol. Our protocol is applied on two polypeptides 

(4ZNN and 1XQ8 segment) to construct the corresponding 

GEBF-MLFFs and their accuracy and efficiency are validated 

with reference QM calculations. The results indicate that the 

GEBF-MLFFs can reproduce QM results very well at speeds 

several orders of magnitude faster than ab initio calculations. 

We expect that this protocol will greatly promote the develop-

ment of fast and accurate MLFFs for various biological systems.  

The remainder of this paper is organized as follows. In Sec-

tion 2, we describe the theoretical foundations of GEBF-MLFFs 

and the data transfer approach. In Section 3, the accuracy and 

computation costs are demonstrated by applying the GEBF-ML 

method to two polypeptides. In Section 4, a brief summary is 

presented.  

 

2. METHODOLOGY 

2.1. The GEBF-ML Force Fields. To automatically con-

struct the subsystems on the training set, the GEBF approach 

developed by our group is adopted. The generation of subsys-

tems for a polypeptide 4ZNN is also illustrated in Figure 1, we 

will generate various subsystems, each of which contains a frag-

ment and its neighboring fragments and capping hydrogen at-

oms if necessary (in grey oval). Clearly, subsystems constructed 

in this way are better representations of the local chemical en-

vironment of different regions in a protein than those in the res-

idue-based NN approach.  

As the differences between QM and PM6 methods are gener-

ally much smaller than absolute QM values, the errors of ML 

models can be reduced if the PM6 method is used as the base-

line.49,50 In this work, this strategy is adopted, and an atomic ML 

model called GAP12 based on kernel ridge regression with the 

SOAP kernels51 (see details in the Sec.1 of the supporting infor-

mation) is chosen to learn the energy difference of all subsys-

tems for the studied proteins. To illustrate the advantage and 

disadvantage of this approach, GEBF-MLFFs of the 1XQ8 seg-

ment is also constructed by learning the QM energy data of cor-

responding subsystems directly. The approach to construct 

GEBF-MLFFs from QM energies is similar to the method for 

total energy difference prediction explained below, details can 

be seen in the Sec.1 of the supporting information. In addition, 

the Deep Potential method19 is also adopted to construct GEBF-

MLFFs with NN methods. In the GAP or Deep Potential method, 

the energy difference 
ML
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Here, BN is the number of representative local atomic envi-

ronments, 
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w is the weight factor. SOAP is used to describe 

the local atomic environment 
iX  and the kernel K. 

For Deep Potential, the atomic energy ie  can be represented 

as a neural network. Using a two hidden layer feedforward NN 

as an example, the atomic energy can be expressed as  
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Where G is the output of a local embedding network to de-

scribe the atomic environment.19 01 12( )uj jkw w is the weight factor 

that connects node u (j) in the previous layer and node j (k) in 

the current layer, 
23

kw is the weight factor that connects node k 



 

 

in the second hidden layer and output layer, 
1

jb , 
2

kb and 
0b is 

the bias weight factor, 0N , 1N and 2N is the number of nodes 

for input layer and two hidden layers, respectively.  

During the training, the energy differences for a set of refer-

ence subsystems are fitted by GAP or Deep Potential to deter-

mine the weight factor and bias factor. After training, the weight 

and bias factors are fixed. Although only energy differences of 

subsystems are trained, the energy contribution of each atom 

with different local environments in subsystems can be pre-

dicted by the atomic ML models. Based on the similarity of 

atomic environments between subsystems and the target protein, 

the total energy difference of the target system is obtained with 

the summation of atomic contribution ie directly. 
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Here, N is the number of atoms for the target protein and ie

is the atomic contribution of atom i with the local environment 

in the target protein 

The total energy of the target system is the combination of the 

energy difference 
MLE and the PM6 energy 

PM6E (taken as 

the baseline) 

ML PM6E E E=  +                   (5) 
The PM6 energy of the target system with M subsystems are 

evaluated with the GEBF method by the linear combination of 

subsystem energy mE  ( mC  is the coefficient of each subsystem)    

PM6 PM6

          

m m

A B
m m

m A S B A S AB

A B

A B A AB

Q Q
E C E

Q Q

  



 
= − 

 

+

  



R

R

     (6) 

Details of subsystem construction and determination of coef-

ficients are explained in Sec.3 of supporting information. The 

long-range nonbonded interactions between each subsystem 

and background charges on distant atoms are treated as the Cou-

lomb interaction. The point charges are obtained from the natu-

ral population analysis (NPA) of subsystems, which are gener-

ated from the initial structure (extended structure generated 

from peptide sequence using Amber 16 program52) used in the 

online training process. After training, the point charges are as-

sumed to be constant like in traditional force fields1-4. Ar  and 

AQ  denote the coordinate of atom A and the point charge locat-

ing on atom A, respectively.  

2.2. Data Transfer Approach. Because a subset of subsys-

tems generates from a protein may have the same topological 

structure in chemical space as those from another protein, we 

may introduce instance-based transfer learning53 to avoid redun-

dant QM calculations on these subsystems. The flowchart of the 

scheme is shown in Figure 2. In our approach, we create a pro-

tein’s data library, which contains all data of subsystems gener-

ated from trained proteins. Starting from a given conformer of a 

new protein, MD simulation with NVT ensemble is performed 

based on the GEBF-MLFFs. As GAP can give internal uncer-

tainty of Gaussian process regression model, which both con-

sider the sampling density in the conformation space and the 

actual shape of the potential energy landscape, the ML model is 

chosen as GAP when the training sets are constructed. During 

the simulation, subsystems are automatically generated using 

our GEBF approach. If the subsystem types are already in the 

data library (the details of subsystem discrimination can be 

found in the Sec.4 of the supporting information), the corre-

sponding sub-datasets are loaded to the training set. Otherwise, 

online active learning48 (see details in Sec.5 of supporting infor-

mation) is employed to select the representative subsystem con-

formers. When the training set is updated, the GEBF-ML force 

fields are also renewed to fit the energies and forces of conform-

ers explored by online training.  

 

Figure 2. Scheme diagram of the GEBF-ML method. Training 

sets are constructed from relevant sub-datasets from the pro-

tein’s data library and some subsystems from online active 

learning. 

 

3. RESULTS AND DISCUSSION 

3.1 Details of Training Sets and Testing Sets Construction. 

As a proof of concept, MLFFs of two polypeptides, 4ZNN 

(ACE-GVVHGVTTVA-NME) and 1XQ8 segment (ACE-

GVVHGVATVA-NME) are constructed by our GEBF-ML 

scheme. First, online GEBF-GAP based MD simulations are 

performed on 4ZNN to generate the training set of subsystems, 

the GEBF-PM6 method is used as the baseline.  During the 1-

ns MD simulation at 500 K, QM calculations are carried out for 

only 0.15% of generated subsystems. The number of subsystem 

configurations and subsystem types (the definition of subsystem 

type can be seen in Sec.4 of the supporting information) in the 

training set are 8320 and 74, respectively. After the training set 

of 4ZNN has been constructed, all subsystems in the training set 

are divided into sub-datasets according to their topological types 

and stored in the data library. When we construct the training 

set for the 1XQ8 segment, we load the corresponding sub-da-

tasets in the data library to it. As 4ZNN and 1XQ8 segments 

differ from each other by only one amino acid residue, about 

4000 configurations (54 types of subsystems) are loaded from 

the data library. Then, online active learning is performed for 

the 1XQ8 segment to sample new subsystems during the 1ns 

GEBF-GAP based MD simulation at 500 K. For the 1XQ8 seg-

ment, only 0.01% of newly generated subsystems are needed for 

QM calculations during  



 

 

 

Figure 3.  End-to-end distance of 4ZNN and 1XQ8 segment during the GEBF-GAP based MD simulations using GEBF-PM6 as the 

baseline. 

 

the online active learning. The total number of subsystem con-

figurations and subsystem types in the training set are 5020 and 

65, respectively. The fraction of QM calculations for the 1XQ8 

segment is much smaller than that for the 4ZNN, since a large 

number of subsystems generated from 4ZNN can be reused. 

Thus, our GEBF-ML scheme shows high efficiency for building 

the training set. It is also worth mentioning that with a data li-

brary for all trained subsystems, QM calculations on many sub-

systems are avoided when MLFFs on new proteins are con-

structed. The subsystem data is simply transferred according to 

their topology structures and the advantage of this approach is 

robust and intuitive. More advanced data transfer techniques 

may also be adopted if the aim is to construct MLFFs for a new 

protein with as few configurations as possible.  

After the training sets have been constructed, the GEBF-GAP 

force fields are constructed from the QM energy differences. As 

GEBF-GAP based MD simulations show small energy drift 

(less than 0.001 kcal/(mol·atom·ps)) at the microcanonical 

(NVE) ensemble for both two polypeptides (see details in Sec.6 

of the supporting information.), 1-ns GEBF-GAP based MD 

simulation using a Langevin thermostat54 are performed at 300 

K with a timestep of 1 fs in the canonical (NVT) ensemble. Dur-

ing the MD simulation, no QM calculations are performed and 

the MLFFs are not renewed online anymore. Figure 3 shows the 

changes of end-to-end distances between Cα atoms of the first 

and the last amino acid residues during the MD simulation. 

Three representative structures at different times are also plotted 

in Figure 4. As the trajectories show large conformation changes 

of the polypeptides from the chain-like extended structure to the 

folded one, 1000 structures for both two target systems are ran-

domly sampled from the trajectories as testing set to evaluate 

the performance of our MLFFs. The electronic structure calcu-

lations on testing sets are carried out at the ωB97XD/6-31G* 

level with the Gaussian 16 package,55 and the GEBF-PM6 cal-

culations were performed with MOPAC package56 and our 

LSQC program.57 

3.2. Relative Energy Prediction and Structure Optimiza-

tion. After MLFFs have been constructed, we first show the ap-

plicability of the MLFFs on relative energy prediction. The en-

ergies of are conformers in testing sets are calculated with 

GEBF-GAP, PM6, ff14SB and ωB97XD/6-31G*. Here, GEBF-

PM6 is used as the baseline for GEBF-GAP and the energy of 

the first conformer in the test set was taken as zero. For six con-

formers (the structures of conformers are plotted in Sec.7 of 

supporting information.) randomly chosen from the testing sets, 

the absolute deviations of relative energies (relative to the 

ωB97XD/6-31G* results) are shown in Figure 4a. One can note 

that the largest deviations are less than 6 kcal/mol for GEBF-

GAP results, but are much larger (more than 18 kcal/mol) for 

PM6 and ff14SB results. Clearly, PM6 and ff14SB methods 

cannot correctly predict the relative stability of different con-

formers if these conformers are close in energies. The results 

indicate that our MLFFs method could be used to search for the 

low-energy conformers of systems under study. 

Further, we also test whether our MLFFs are suitable for 

structure optimization. The conformers with the lowest energy 

predicted by GEBF-GAP (using GEBF-PM6 method as base-

line) in test sets are optimized with the BFGS algorithm58 (im-

plemented in ASE package59). Figure 4b shows optimized struc-

tures obtained with GEBF-GAP and ωB97XD/6-31G* for 

4ZNN and 1XQ8 segments. The root-mean-square deviation 

(RMSD) between DFT and MLFF results is 0.31 Å and 0.36 Å 



 

 

 

 

Figure 4. (a) The comparison of the absolute deviations of the GEBF-GAP, PM6, and ff14SB relative energies (relative to the 

ωB97XD/6-31G* values) among 6 conformers. For both systems, the energy of the first conformer is taken as zero for each method. 

(b) Optimized structures of 4ZNN and 1XQ8 segment. The superposition between the structure obtained with GEBF-GAP (red) and 

the DFT-optimized structure (green) is shown for both systems. 

on 4ZNN and 1XQ8 segment, respectively. The geometrical pa-

rameters obtained with our MLFFs are very close to the corre-

sponding values from the ωB97XD method. In addition, the ge-

ometries optimized with PM6 and ff14SB are also calculated for 

comparison. At respectively optimized structures, the absolute 

energy deviations predicted by GEBF-GAP, PM6, ff14SB (rel-

ative to the ωB97XD/6-31G* results) are 4.14, 13.96, 21.33 

kcal/mol, respectively, for 4ZNN, and 0.85, 20.40, 24.60 

kcal/mol, respectively, for 1XQ8 segment. Among these three 

methods, only the relative energies of MLFFs at their optimized 

structures are in good agreement with those from ωB97XD. 

Although our MLFFs are not trained from NMR structures of 

proteins, we also applied GEBF-GAP and ωB97XD/6-31G* 

method to obtain the optimized structure with the NMR struc-

ture of 1XQ8 segment as the initial geometry. The optimized 

structures are shown in Figure S1. The RMSD between the 

MLFFs optimized structure and the reference DFT optimized 

structure is only 0.27 Å, which suggests that the present MLFFs 

are also reliable for geometry optimizations outside the MD tra-

jectories.  

3.3. Verification of Accuracy for GEBF-MLFFs During 

the MD Simulation. To investigate the applicability of our 

MLFFs on MD simulations. We first performed 20-ps MD sim-

ulations with GEBF-GAP, ff14SB and PM6 methods, respec-

tively, the GEBF-PM6 method is used as the baseline for 

GEBF-GAP. MD simulations with ωB97XD/6-31G* are also 

carried out for comparison. Figure 5 display the dihedral angle 

distribution calculated with the GEBF-GAP and ωB97XD/6-

31G* method. For each backbone dihedral φ, ψ and ꞷ, histo-

grams are accumulated for all amino acid residues except Gly. 

The results suggest that the distributions obtained from the 

GEBF-GAP and ωB97XD/6-31G* methods are very close to 

each other. The distributions predicted by the ff14SB and PM6 

methods are plotted in Figure S2 and S3, respectively. The di-

hedral distributions from these two methods are quite different 

from the ωB97XD/6-31G* methods. For dihedrals φ and ψ, the 

shapes of distribution show a great difference when compared 

with the results from ωB97X-D/6-31G*. For dihedral angle ꞷ, 

the peak intensity predicted by ff14SB is 20 % larger than the 

ωB97X-D/6-31G* result, and the deviation of the location of 

peak predicted by PM6 method from the ωB97X-D/6-31G* one 

reaches 10°. One can conclude that the dihedral angle distribu-

tions from GEBF-GAP are much more accurate than those from 

the ff14SB and PM6 methods. 

Table 1. The Root Mean Squared Errors (RMSEs) of the 

MLFFs energies [in kcal/(mol·atom)], and forces [in 

kcal/(mol·Å)] (with respect to the conventional ωB97X-D/6-

31G* results) for the testing set, all MLFFs are constructed 

from QM energy difference.   

System 4ZNN 1XQ8 segment 

RMSE Ea 0.025 0.022 

RMSE Fa 1.5 1.5 

RMSE Eb 0.021 0.018 

RMSE Fb 1.3 1.3 
aGEBF-MLFFs using GAP as ML model, bGEBF-MLFFs us-

ing NN as ML model. 

 

 



 

 

 

Figure 5. Backbone peptide dihedral distributions of 4ZNN (top) and 1XQ8 segment (bottom) obtained from 20 ps trajectories with 

reference DFT (blue solid line) and ML (red solid line). Distributions of dihedral angles, φ, ψ and ꞷ are shown from left to right, 

respectively. 

 

Then, we evaluate the accuracy of our MLFFs on the testing 

sets, which are randomly sampled from 1-ns GEBF-GAP based 

trajectories at 300K. As the GEBF-PM6 method is employed as  

the baseline of the MLFFs, the accuracy of GEBF-PM6 with 

respect to conventional PM6 is first evaluated. The mean abso-

lute errors (MAEs) of energies between GEBF-PM6 and PM6 

on the testing set are only 0.003 kcal/(mol·atom). 10 conformers 

of the 4ZNN and 1XQ8 segment are randomly chosen from the 

testing set. The deviations of GEBF-PM6 energies relative to 

conventional PM6 ones are listed in Table S2. The maximum 

deviation is only about 0.008 kcal/(mol·atom).  Thus, the errors 

of GEBF-PM6 results with respect to the conventional PM6 

ones are negligible for the two polypeptides. In Table 1, the root 

mean squared errors (RMSEs) of energy and forces obtained 

with the GEBF-GAP, relative to the conventional ωB97XD/6-

31G* are shown. For both two systems, the RMSEs of energy 

and forces for GEBF-GAP results are about 0.024 

kcal/(mol·atom) and 1.5 kcal/(mol·Å), respectively. For com-

parison, the RMSEs of PM6 and ff14SB force field results in 

energies and forces, relative to the conventional ωB97XD/6-

31G* results, are also shown in Table S3. For two polypeptides, 

the RMSEs with ff14SB are 0.13 kcal/(mol·atom) and 12 

kcal/(mol·Å), respectively. The RMSEs with PM6 are 0.06 

kcal/(mol·atom) and 14 kcal/(mol·Å), respectively. These re-

sults indicate that our MLFFs are much more accurate than the 

PM6 or ff14SB method.  

 

Table 2.  The Root Mean Squared Errors (RMSEs) of the 

MLFFs energies [in kcal/(mol·atom)], and forces [in 

kcal/(mol·Å)] (with respect to the conventional ωB97X-D/6-

31G* results) for the testing set on 1XQ8 segment, all 

MLFFs are constructed from QM energies. 

Method Nst RMSE E RMSE F 

GEBF-GAP 5020 0.045 2.5 

GEBF-NN 5020 0.028 2.1 

GEBF-GAP 6405 0.040 2.3 

GEBF-NN 6405 0.026 1.8 

We also use NN to parametrize subsystems, with the training 

set generated using the GEBF-ML protocol. DeePMD-kit19 is 

adopted to construct the GEBF-NN force field from QM energy 

differences. Table 1 also shows the accuracy of GEBF-NN on 

the testing sets. For both two polypeptides, the RMSEs of the 

energy and forces for GEBF-NN results are about 0.020 

kcal/(mol·atom) and 1.3 kcal/(mol·Å). Both GEBF-GAP and 

GEBF-NN could predict the energies and forces with full QM 

quality. The high accuracy of GEBF-NN also indicates that with 

the training set generated from GEBF-GAP, our MLFFs can 

also be constructed by NNs.  

Although only PM6 calculations on small subsystems are 

needed for the GEBF-PM6 method and the computation cost of 

PM6 calculations is smaller than some MLFFs on small mole-

cules,60 we also construct the GEBF-MLFFs from QM energies 

directly. Using 1XQ8 segment as an example, the root mean 

squared errors (RMSEs) of energy and forces obtained with the 

GEBF-MLFFs, relative to the conventional ωB97XD/6-31G* 

are shown in Table 2. Using the same training sets (5020 sub-

system configurations), the RMSEs of energy and forces for 

GEBF-GAP on the testing set are about 0.045 kcal/(mol·atom) 

and 2.5 kcal/(mol·Å), respectively. The RMSEs for GEBF-NN 

are about 0.028 kcal/(mol·atom) and 2.1 kcal/(mol·Å), respec-

tively. Both GEBF-GAP and GEBF-NN constructed from QM 

energies show slightly larger errors than those constructed with 

energy differences. Fortunately, the accuracy of GEBF-MLFFs 

constructed from QM energies can further increase by adding 

more subsystem configurations in training sets. Using 5020 sub-

system configurations as preliminary training sets, GEBF-GAP 

based MD simulation was performed to sampling more subsys-

tem conformers. With 6405 subsystem configurations as the 

training set, the RMSEs for GEBF-GAP are 0.04 

kcal/(mol·atom) and 2.3 kcal/(mol·Å), respectively. While the 

RMSEs for GEBF-NN are 0.026 kcal/(mol·atom) and 1.8 

kcal/(mol·Å), respectively. The accuracies of both GEBF-

MLFFs are increased by adding more data points in the training 

set. Moreover, the GEBF-NN constructed from QM energies 

shows similar accuracy as GEBF-MLFFs constructed from en-



 

 

ergy differences. Thus, accurate GEBF-MLFFs can be con-

structed either from energy differences between QM and PM6 

methods with relatively small training sets or from QM energies 

of subsystems with more subsystem configurations in the train-

ing set.  

 3.4. MD Simulation with GEBF-MLFFs Constructed 

from QM Energies. With the GEBF-NN force field con-

structed from QM energies, 1-ns MD simulations using a 

Langevin thermostat have been performed for 1XQ8 segment at 

300 K with a timestep of 1 fs. To quantitatively describe the 

conformational changes, the RMSDs with respect to the initial 

structure of the 1XQ8 segment during the simulation are shown 

in Figure 6a. The RMSD increases rapidly and reaches the max-

imum value of 10 Å during the MD simulation. Thus, the tra-

jectory also shows large conformation changes during the MD 

simulation. To evaluate the accuracy of the GEBF-NN force 

field during the simulation, 1000 configurations are evenly sam-

pled from the 1ns trajectory and the mean absolute error (MAE) 

with respect to traditional ωB97X-D/6-31G* are calculated on 

each configuration. Figure 6b shows the time evolution of MAE 

for forces during the 1-ns MD simulations. One can see that the 

MAEs on almost all configurations are less than 2 kcal/(mol·Å). 

Thus, GEBF-NN force fields can also be constructed from QM 

energies with full QM quality if enough subsystem configura-

tions are added in training sets.   

 

Figure 6. (a) Time evolution of the RMSD with respect to the 

initial structure during the GEBF-NN MD simulation of the 

1XQ8 segment. (b) Time evolution of the MAE for forces dur-

ing the GEBF-NN MD simulation of the 1XQ8 segment. GEBF-

NN is constructed from QM energies directly.  

 

Finally, it is also necessary to demonstrate the computational 

cost and scalability of our GEBF and GEBF-MLFF approach by 

comparing them with the conventional QM method and classi-

cal force field. Here, we take polypeptides ACE-(Ala)n-NME (n 

= 50, 100 and 150) as examples. All calculations are carried out 

on 48-core Intel Xeon Platinum 8163 2.5 GHz CPU. In Table 3, 

we present the total CPU time required for ACE-(Ala)n-NME (n 

= 50, 100 and 150) at different theoretical levels (ωB97XD and 

GEBF-ωB97XD with 6-31G* basis set, ff14SB, GEBF-GAP 

and GEBF-NN with or without GEBF-PM6 as baseline).  

First, we compared the scalability of different methods. It can 

be seen from Table 3 that all the tested methods (except the con-

ventional DFT method) show linear scaling behavior. For in-

stance, the total CPU time required by GEBF-GAP constructed 

from energy difference is about 1.9 and 2.9 times for ACE-

(Ala)100-NME and ACE-(Ala)150-NME than that for ACE-

(Ala)50-NME (39.52 seconds).  

Then, we compare the computational cost of our GEBF 

method and GEBF-MLFFs with the QM method and traditional 

force field. As summarized in Table 3, for all three polypeptides, 

the computational cost of GEBF-DFT is smaller than the con-

ventional DFT method and the acceleration ratio on ACE-

(Ala)150-NME is about 20. Thus, the computational costs of QM 

calculations are highly reduced during the training set construc-

tion. For all GEBF-MLFFs, the acceleration ratios are at least 

three magnitude orders than the full QM calculations. Thus, our 

GEBF-MLFFs show the low computational cost, with respect to 

QM methods. However, MLFFs are slower than the ff14SB 

force field, because much more parameters are needed to de-

scribe MLFFs. 

 

Table 3. Total CPU time (in seconds) required for ACE-

(Ala)n-NME (n= 50, 100, and 150) energy and forces calcu-

lations with the DFT, GEBF-DFT, GEBF-GAP, GEBF-NN 

and ff14SB methods. DFT calculations are carried out at the 

ωB97XD/6-31G* level. 

Method n=50 n=100 n=150 

DFT 69732 364847 1013869 

GEBF-DFT 17058 34322 51532 

GEBF-GAPa 33.12 64.42 95.42 

GEBF-GAPb 39.52 77.31 114.82 

GEBF-NNa 4.52 7.12 10.50 

GEBF-NNb 10.92 20.02 29.89 

ff14SB 0.01 0.02 0.04 
aMLFFs constructed from QM energies, bMLFFs constructed 

from energy differences  

 

Further, the computational costs of GEBF-MLFFs con-

structed from QM energies or energy differences are also com-

pared in Table 3. One can see that the computational costs of 

two GEBF-GAP force fields are similar. For all tested polypep-

tides, the total CPU time required by GEBF-GAP constructed 

from energy difference is about 1.2 times than that from QM 

energies. However, for cost-effective ML potential like Deep 

Potential, the computational cost of GEBF-PM6 cannot be ne-

glected, the total CPU time required by GEBF-NN constructed 

from energy differences is about 3 times than that from QM en-

ergies. GEBF-GAP construct from energy differences may be 

appropriate for the online training process and nanosecond-

scale MD simulations. If microseconds-scale MD simulations 

are needed, it is more convenient to construct GEBF-NNs from 

QM energies directly.  

    

4. CONCLUSIONS 

In summary, we developed a general GEBF-ML protocol to 

automatically construct MLFFs for proteins with QM accuracy. 

Using GAP as the ML model, our protocol can automatically 

generate training sets with high efficiency. Moreover, for a 

given protein, only QM calculations on small subsystems con-

taining a few residues are required in the construction of training 



 

 

sets. To facilitate the construction of training sets for various 

proteins, we create a protein’s data library, which contains all 

data of subsystems generated from trained proteins. With this 

protein’s data library, for a new protein only its subsystems with 

new topological structures are required for the construction of 

the corresponding training sets. Using two polypeptides 4ZNN 

and 1XQ8 segment, as examples. The accuracy of the con-

structed GEBF-GAP for both systems is validated by comparing 

the conformational energies, optimized structure, and MD sim-

ulation results with those from conventional DFT results. Our 

results show that GEBF-GAP can lead to quite accurate energies 

and forces similar to those from full QM calculations, and dihe-

dral angle distributions from GEBF-GAP MD simulations are 

in good agreement with those from ab initio MD simulations. In 

addition, we also demonstrated that full QM quality GEBF-NN 

force fields can also be constructed using the training sets gen-

erated by GEBF-GAP. Thus, this work provides an efficient and 

systematic way to build MLFF for proteins, we also expected 

GEBF-ML protocol could be used for polymer materials and 

complex biological systems in aqueous solutions in the future.  
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