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Abstract 
 

 
 
 

Recently, academic and industrial interest in molecular glue-based therapeutics has grown 
dramatically. Traditional drugs are designed to act on single targets, whereas molecular glues 
simultaneously bind two targets. By forming a ternary complex, molecular glues can create new 
therapeutic effects, such as rewiring cellular machinery to degrade specific proteins. Unfortunately, 
rational design of these therapies is challenging as current pharmacological theory is based on binary 
complex equilibria. 

Here, we extend our previous ternary-complex equilibrium work (JACS, 2013, 135, 6092) to derive 
a set of kinetic models highly analogous to Michaelis-Menten kinetics. This similarity has enabled us to 
derive conceptual rules-of-thumb and identify the weakest binding affinity as the most important 
engineerable parameter in the design of ternary-complex–based therapeutics. Finally, we have combined 
these equations with “big data” from new thermodynamic and kinetic databases to build interactive online 
tools that enable non-computational investigators to graphically simulate their own systems: 

• https://douglasslab.com/ternary_equilibrium/ 
• https://douglasslab.com/Btmax_kinetics/ 

 
 
  



Introduction 
MOLECULAR GLUES IN THE CLINIC 

 Most clinical drugs are designed to bind a single target to form a binary complex (Figure 1a). 
These drugs typically act as inhibitors, blocking the function of their protein targets. In contrast, drugs 
that bind two targets – forming a ternary complex (Figure 1b) – have the potential to create new functions 
by scaffolding new protein protein-protein interactions (PPI). Classical examples of ternary-complex-
based drugs include several biologicals such as heparin, interferon, growth hormones and monoclonal 
antibodies.1-6 In addition, the efficacy of several natural and synthetic small molecules has been shown 
to be dependent on the formation of a ternary complex including: rapamycin, cyclosporine and 
lenalidomide.7 

Recently, interest in rational design of ternary complex-based drugs has increased significantly.7,8 
Prominent examples include both biological and chemical agents such as bispecific antibodies (BsAbs) 
and proteolysis targeting chimera’s (PROTACs), respectively.4,9 BsAbs can simultaneously bind the CD3 
receptor of T-cells and tumor antigens on cancer cells; this colocalization directs anticancer immune 
responses in the absence of classical T-cell activation or TCR specificity. PROTACs simultaneously bind 
E3 ubiquitin ligases and oncogenic proteins, causing ubiquitination and degradation of pathogenic 
proteins. BsAbs first entered the clinic in 2009, and now over 40 different bsAb’s are currently in clinical 
development for various cancer indications.4,10 In 2019, PROTACs began initial clinical validation, and it 
has been estimated that 15 new PROTAC-based clinical trials will begin by the end of 2021.11 

 
CURRENT PHARMACODYNAMIC THEORY 
 Current pharmacodynamic theory is built off of the Langmuir Hill equation, which gives the fraction 
drug bound as a function of the total drug concentration ([𝐷𝑟𝑢𝑔]!) and the binding affinity or dissociation 
constant (𝐾") for its molecular target:12-14 
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This equation captures the saturating S-shape of most dose-response curves that is characteristic of 
binary complex equilibria (Figure 1c). Critically, it identifies the dissociation constant (𝐾") as the most 
important parameter in drug design: changes in 𝐾" directly correlate with the drug’s potency, or EC50 
(effective concentration at which 50% drug-target complex forms) (Figure 1c). 

In classical pharmacokinetic theory, Michaelis-Menten kinetics is employed to model drug-
metabolism and transport by hepatic and renal enzymes:15,16 
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The history of each of these models and their influence on pharmacology is detailed in the supporting 
information to illustrate the parallels between classical pharmacological theory and ternary-complex 
theory discussed below. In addition, we present the derivations of these models in parallel to the 
derivations of ternary complex models to illustrate the overlaps in underlying mathematics as well. 
 
RATIONAL DESIGN OF MOLECULAR GLUES 

Rational design of Bifunctional therapies (B) requires knowledge of the biological function of the  
two targets (A & C) to predict how they will behave when colocalized. Typically, one species is functionally 
Active (A) and that activity is re-directed to the Contingent target (C) (Figure 1b). For PROTACs, the 
active species are E3 ubiquitin ligases and the contingent targets are oncogenic proteins.9 For many 
bsAbs, the active species are immune cells and the contingent targets are cancer cells.4 Conceptually, 
this redirection strategy is analogous to creating a new enzyme-substrate pair, or “re-wiring” the inputs 
of one pathway with the outputs of another. 

Rational optimization of ternary therapeutics will be aided by an understanding of their 
pharmacodynamics and pharmacokinetics. While traditional drug-development might focus on improving 
a drug-target binding affinity (Kd) to increase potency (Figure 1a,c; Eq. 1),12,17 ternary complex-based 



therapeutics are significantly more complicated. Ternary therapeutic pharmacodynamics feature multiple 
binding-affinities (KAB and KBC), multiple targets (A and C), and cooperative stabilizing or destabilizing 
interactions (a) between these two targets (Figure 1b). This additional complexity often results in a bell-
shaped dose-response curve for ternary-complex therapeutics (Figure 1d), distinguishing them from the 
S-shaped saturating behavior of most clinical drugs (Figure 1c). The ternary complex bell-shaped dose-
response curve has an intrinsic maximum effect dose ([B]t,max), and at this dose the fraction of possible 
ternary complex formed can be less than 100%, which can limit the efficacy (y-axis magnitude) of 
bifunctional drugs (Figure 1d).18  

 
MANUSCRIPT SUMMARY 

Though current pharmacological theory is useful in the optimization of classical therapeutics, it is 
difficult to apply to the development of 
ternary therapeutics. For example, predicting 
how optimization of one of the two Kd’s will 
affect efficacy and/or potency of a ternary 
therapeutic requires a new pharmacological 
framework. Here, we simplify and expand 
our 2013 models on ternary complex 
equilibria to generate a set of simple models 
to assist in the rational design of ternary 
complex therapeutics.18 By focusing on the 
maximum of the ternary complex curve 
([B]t,max), we have derived a set of simple 
equilibrium and kinetic models that are 
analogous to the traditional pharmacological 
models discussed above (Eqs. 1 and 2). The 
behavior of these models hinges on the 
weaker of the two binding affinities, which 
has a disproportional effect on the amount of 
ternary complex that forms and the rate at 
which ternary complexes can redirect 
catalytic processes (Figure 1b). Finally, we 
have assembled a set of interactive online 
tools to aid non-computational investigators in the application of ternary complex equilibrium and kinetic 
mathematics: 

https://douglasslab.com/ternary_equilibrium/         
https://douglasslab.com/Btmax_kinetics/ 
          
 

  

 
Figure 1. The dose-response curves of binary and ternary 
systems are distinct, and altering the Kds in these systems has 
different effects. a. Most clinical drugs bind and inhibit a single-
target protein. b. Ternary-complex drugs bind two targets 
simultaneously, creating a new PPI between A and C. c. Saturating 
dose-response curves for binary-complex drugs showing the effect 
of improving Kd (ΔKd, blue). d. Bell-shaped dose-response curves 
for ternary-complex based drugs showing differential effects of 
improving the different binding constants. 



Results and Discussion 
 

 In 2013, we published the first exact equilibrium model for ternary complex equilibria.18 Though 
an important advance, this “Hill equation” for ternary complex equilibria was quite complex and has seen 
limited use outside of the computational community. Below we highlight relevant insights from that work 
and show how they can be expanded to understand the kinetic behavior of ternary complex drugs. 
 
TERNARY EQUILIBRIUM MAXIMA 
 In our previous work, we identified the curve maximum as a uniquely solvable value: 
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(3) 

 
where [A]t and [C]t reflect the total concentrations of A and C, and KAB and KBC are the equilibrium 
dissociation constants of the bifunctional drug (B) for A and C, respectively (Figure 1b). In addition, α 
reflects cooperative interactions between A and C, which can be stabilizing (α>1) or destabilizing (α<1). 
Using this equation, we showed that the maximum ternary complex formed often fails to saturate the 
receptors (A & C) at any concentration of drug (B) (Figure 1d, max 10-40%). This is a major conceptual 
difference between binary and ternary systems. In binary systems, high concentrations of ligand will 
completely saturate the target, but many ternary systems can only reach a fraction of their theoretical 
maximum.  
 To focus on the system parameters that have the greatest effect on the [ABC]max, we sought to 
simplify equation 3. As detailed in the supporting information, by assuming that one of the target 
concentrations in excess and one is limiting ([X]t and [L]t), we can simplify equation 3 to: 
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By assuming that one Kd is 100-fold greater than the other (Kstrong & Kweak), we can further simplify 
equation 4 to:   
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Dividing both sides of equation 5 by the concentration of limiting reagent ([L]t) we obtain an expression 
for the fraction of ternary complex that forms at the curve maximum: 
 

𝑇𝑃𝐹 =
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We have previously defined this as the ternary partition fraction (TPF). The amount of ternary complex 
that can form is constrained by the limiting target ([L]t). The TPF represents the fraction of the limiting 
target that is engaged in ternary complex at the optimum drug dose ([B]t,max). Equation 6 mirrors the 
Langmuir-Hill equation for binary complexes, and it reflects a similar saturation effect where excess 
terminal species [X]t can drive ternary complexes to saturate the limiting reagent [L]t. Thus, the amount 
of ternary complex formed is largely a function of the parameters in equation 6, so additional ternary 
complex will be obtained by: (1) increasing the excess receptor ([X]t), (2) increasing the system’s 
cooperativity (α), and (3) decreasing/improving the weakest binding affinity (Kweak). These predictions 
have been borne out in several experimental systems, as discussed below. 
 



IMPORTANCE OF WEAKER BINDING AFFINITY AND EXCESS TARGET 
 

Equation 6 defines the weakest binding affinity (Kweak) as the most important binding parameter 
for increasing the fraction of ternary complex that forms at equilibrium. This effect can be observed 
directly with simulations from our 2013 model. Our model predicts that, in some systems, improving Kweak 
can improve both the potency (x-axis) 
and efficacy (y-axis) properties of a 
drug’s dose-response curve, whereas 
improvements in Kstrong only improves 
the potency of the drug (Figure 1b). 
This prediction has been borne out 
experimentally from our work 
designing synthetic antibodies (Figure 
2a).18,19 In addition, optimizing Kweak 
has been noted by several other 
investigators to be critical to improving 
several ternary-complex therapies 
including: cytokines, heparin and 
antibody-based therapeutics.2,3,21-24 
 

The [X]t term also has practical 
implications for experimental design. 
For example, if the TPF in an assay is 
low (~10%), it can be difficult to 
directly detect the ternary complex 
and/or the downstream reporters. If 
the levels of A or C can be adjusted in 
the assay, increasing the 
concentration of one can increase the 
TPF and thus the signal to noise ratio 
of the assay. We have leveraged this 
strategy in previous antibody 
recruiting work, where we were able to 
increase in vitro immune response by 
increasing the concentration of Antibody ([X]t in that assay) (Figure 2b).20  
 
TISSUE SELECTIVITY OF TERNARY COMPLEXES 

In addition, the [X]t term can be used to design tissue-specificity into ternary complex therapeutics 
by leveraging the differential expression of recruited targets in different tissues. With classical therapies, 
the fractional saturation of the target (or limiting reagent) will be the same across all tissues that the 
unbound drug can access (Equation 1). For ternary-based therapies, the fractional saturation of the 
limiting reagent will be controlled by the total concentration of the excess target in the tissue ([X]t, Eq. 6).   
Further, if one assumes non-saturating conditions ([X]t < Kweak/a), then equation 6 enables one to make 
a simple estimate of the tissue-selectivity as the fraction of [X]t in each tissue: 
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This ratiometric estimate of tissue selectivity is unitless and can therefore employ a diverse range of 
target-expression inputs (e.g., calibrated proteomics, RNAseq). For PROTACs, several recent 
publications have highlighted the differential tissue-expression of E3 ligases as a useful handle for 
engineering tissue-level specificity.9,25,26 
 

 
Figure 2. Two of the most important factors in increasing the ternary 
complex TPF are the weakest binding affinity (Kweak) and the excess 
concentration ([X]t). a. Previously published work19 on small molecule 
antibody mimics has demonstrated that improvement in in the weaker 
binding affinity (KAB = Kweak) Fc-Receptor (250 nM → 60 nM) had a larger 
effect on total phagocytosis than improving the stronger binding affinity (40 
nM → 20 nM) b. Previously published work20 on antibody-recruiting 
molecules has demonstrated that increasing the concentration of the excess 
target species ([X]t = ([Antibody]t) increases cancer cell lysis.  



PRE-EQUILIBRIUM VELOCITY 
For ternary systems in pre-equilibrium conditions, the equilibration of the complex occurs faster 

than the transformation by the enzyme (kcat). As detailed in the supporting information, we estimate that 
most PROTAC systems can be approximated with the following pre-equilibrium analysis. Indeed, two 
recent kinetic analyses of PROTACs concluded that they were in a pre-equilibrium regime27,28. Assuming 
pre-equilibrium, the reaction velocity is 
the product of the kcat and the ternary 
complex concentration:  

 
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 	𝑘#$![𝐴𝐵𝐶] (8) 

 
The maximum velocity of such a system 
occurs when the bispecific ligand is at 
[B]t,max and the amount of ternary 
complex is at its maximum height:  
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By substituting the [ABC]max 
approximation from equation 5, we 
obtain:  
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Equation 10 has a similar form 

the classical Michaelis-Menten kinetic 
equation (Eq. 2), but 

 equation 10 is more general in 
that the enzyme can be either limiting 
([L]t) or in excess ([X]t). As with the 
related TPF equation (Eq. 6), it is critical 
to remember that this equation does not 
model ternary-complex kinetics 
generally but rather ternary complex 
kinetics at the maximum of the dose-
response curve (Figure 3b). Thus, this 
equation gives the maximum velocity 
and should be taken as a kinetic ceiling 
for ternary-complex based catalysis. 
Nevertheless, this equation provides a useful framework to understand the relative contributions of 
binding constant (Kweak) and target concentrations ([L]t & [X]t) to the kinetics of a ternary complex 
catalyzed process. 
 
PRE-EQUILIBRIUM TIMESCALES 

While the differential form of equation 10 can be useful for mathematical modeling, solving for the 
half-life of the target of degradation can provide an additional conceptual handle to understand the 
system. Fortunately, this can be obtained for equation 10 by integration with respect to the continent 
target C. As the contingent target can be in excess or limiting, it is necessary to integrate equation 10 for 
both conditions, which is detailed in the supplemental information. Under non-saturating conditions ([X]t 
< Kweak/α)  where the limiting species is not saturated, first order timescales are the same when C or A is 
in excess (Figure S10-11): 

 
Figure 3. A pre-equilibirum framework for understanding the kinetics 
of PROTACS. a. Under pre-equilibrium conditions, the ternary complex 
equilibrates faster than catalysis. As detailed in the supporting information, 
we estimate that PROTAC systems where Kweak is double-digit nM or 
higher should be in pre-equilibrium. For these analyses, we assume that 
A is an E3 ligase, B is the PROTAC, and C is the degradation target. b. In 
a ternary system, Vmax occurs at [B]t,max, as that is the ligand concentration 
where the ternary complex is greatest ([ABC]max). In many pre-equilibrium, 
ternary-complex systems, Vmax will be lower than the enzymatic “speed 
limit”, which is set by the maximum rate of the enzyme. c. As detailed in 
the supporting information, integration of the maximum ternary reaction 
velocity allows for estimation of the timescale on which the target (C) is 
transformed. This simple estimate is a product of the enzymatic “speed 
limit” and the targeting efficiency of the PROTAC.  
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where [A]t represents the active, or enzymatic, target. Under saturating conditions ([X]t > Kweak/α), the 
identity of the excess target gives different approximations. When the Active enzyme in in excess ([A]t = 
[X]t and [A]t > Kweak/α), the half-life of C can be approximated as (Figure S11d): 
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Strikingly, equations 11–12 give a very simple conceptual framework for understanding the timescales 
of ternary-complex-mediated catalysis (Figure 2b). First, the kinetic “speed limit” can be directly 
inspected in the yellow shaded regions of equations 11–12. We call this the “speed limit” because the 
redirected degradation cannot be faster than the enzyme itself. Second, the targeting efficiency for these 
equations is highlighted in blue and is dependent on the expression level of the redirected enzyme (A) 
and the weakest binding affinity in the ternary complex (Kweak). 
 
THERMODYNAMIC & PHYSIOLOGICAL ESTIMATES OF MODEL PARAMETERS 

Thermodynamic and physiological estimates of parameters enable us to explore the behavior of 
the ternary complex models by assuming representative value ranges when exact values are not known. 
To generate these constraints, we collected data from several large databases. By curating >60,000 
medicinal chemistry studies, the 
ChEMBL database has begun to 
define the “normal range” of drug-
target Kds as centered around 100 
nM (Figure 4a).29 In addition, 
recent quantitative proteomics 
work has identified the average 
intracellular protein concentration 
as around ~10 nM (Figure 4a).30,31 
These representative values are 
consistent with the assumption 
used to derive equation 11 above 
([X]t < Kweak; ~10nM < ~100nM). 
Taken together, these ranges 
indicate that Figure 1d gives an 
accurate picture of the equilibrium 
ternary complex achieved by most 
early molecular glue medicinal 
chemistry studies, with Kds 
between 10–1000 nM and most 
target concentrations between 1-
100 nM. In addition to this 
thermodynamic data, several 
datasets on kinetic parameters 
exist as well. For example, the 
BRENDA database has catalogued 
over 33,000 enzymatic rate 
constants (kcat), and the mean enzymatic turnover emerges as around 10x per second (Figure 4b).32 

By combining our pre-equilibrium model with literature values and typical physiological values, we 
can estimate the half-life of a PROTAC target. Typical saturated ubiquitination kinetics for E3 ligases 
occur on a 10 second time scale. Assuming the E3 ubiquitin ligase is expressed at 1 nM and the PROTAC 
Kweak » 1µM, we would expect a ubiquitination time-scale on the order of approximately 3 hours. 

 

 
Figure 4. Reasonable ranges for parameter values can be estimated based 
on databases. a. Normal range of dissociation constants and protein 
concentrations compiled from medicinal chemistry studies and quantitative 
proteomics. b. Normal range of enzymatic rate constants and protein half-lives 
compiled from the biochemistry literature and quantitative proteomic study. 
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This half-life of hours is consistent with recent kinetic studies on PROTAC kinetics and is significantly 
faster than the typical rate of protein turnover (~48 hours, Figure 4b).27,28,30 Using equation 11 and 
representative physiological parameter ranges, we can see that a PROTAC with relatively weak binding 
affinities and low E3 ligase expression can still significantly accelerate the rate of target degradation. 
 
INTERACTIVE ONLINE APPLICATIONS 

We have presented the above simplifications (Eqs. 6, 10, 11) to emphasize the parameters that 
most affect the formation of ternary complex and cause subsequent enzymatic activity. For scientists who 
wish to model these ternary systems more completely, we have developed interactive online applications 
that calculate the full dose-response curve at equilibrium (https://douglasslab.com/ternary_equilibrium/) 
and a time course for the enzymatic conversion of C when the bifunctional drug is at [B]t,max 
(https://douglasslab.com/Btmax_kinetics/). Both of these applications use the exact equations for the 
simulations and show how our approximations for the critical points (EC50, IC50, TPF, t1/2) fit onto these 
simulations (Figure S12). As the input values for the system change, the simple approximations 
displayed update to give the best approximation for the critical points. As discussed here and our previous 
work,18 we emphasize these simple approximations to show the parameters that most strongly affect the 
behavior of the critical points to enable more rational design of these systems, but we caution that there 
is always some error inherent in these approximations. To limit the error in the half-life estimate in the 
online application, we have employed: 

 

 
rather than equation 11, as equation 15 gives less error when the Kds are within two orders of magnitude 
of each other.  

For the online applications, we chose to place the system concentrations and Kds on the same 
logarithmic scales and in the same units to emphasize how their relative values affect the ternary system 
(Figure S12). We confined these values to reasonable ranges from the literature values (Figure S12). If 
an equilibrium dose-response curve modeled with different or more precise parameter inputs is needed, 
one can be obtained using the excel file in the supporting information of our previous paper.18  
  

𝑡5/* =	
ln	(2)
𝑘#$!

	× 	
=>𝐾'( + >𝐾()?

*

𝛼[𝐴]!
 (15) 



Discussion 
 

 We have adapted our previous ternary complex equilibrium analysis to model catalytic ternary 
complex therapeutics. We have shown that the most important parameters affecting the TPF also affect 
kinetic rates. Though we restricted our detailed analysis to the system’s Vmax, increasing the TPF 
parameters is expected to improve enzymatic rates at all concentrations of bispecific drug (B). Thus, the 
most important parameters in ternary complex enzymatic rates are the excess concentration of receptor, 
the weaker Kd, and cooperativity between the two receptors (A and C).  
 Our more detailed kinetic analyses are restricted to the Vmax of a pre-equilibrium system (Figure 
3B). Thus, the estimated Vmax and half-life will apply at [B]t,max, and represent a kinetic ceiling for the 
system. Additionally, we have assumed the system is in a pre-equilibrium state. As noted above, this was 
found to apply to several experimental PROTAC systems, and we estimate that many such systems can 
be assumed to be in pre-equilibrium. For this assumption, we have assumed that the koff,weak/α > kcat, 
which would apply when Kweak is double-digit nM or higher (assuming kon,weak = 107 M-1·s-1, α = 1, and kcat 
= 0.1 s-1). Of course, kon values for small molecules can range from 106–109 M-1·s-1, some ternary systems 
may show cooperativity, and some enzymes of interest might be faster than typical E3 ligases (~0.1 s-1). 
For systems where the two koff/α values approach and become lower than kcat, the system will be in steady 
state (Figure S9a). Such systems should operate close to the enzymatic “speed limits” shown in 
equations 12–13 or diffusion, whichever is limiting (Figure S9b).  
 Our derivation of the half-life timescales from the reaction velocity closely mirrors a similar 
derivation of classical Michaelis-Menten kinetics. Unfortunately, it seems that this integrated form of MM 
kinetics is not very well known, especially relative to its derivative form (Eq. 2). As detailed in our 
supporting information, half-life for binary systems can be estimated for subsaturated (Eq. D80) and 
saturated systems (Eq. D82), analogous to our equations 11–13. In fact, an exact solution to the half-
life of a classical Michaelis-Menten process can be derived (Eq. D78). These derivations are described 
in detail in the supporting information. 
 We intend that these simple critical point estimates and more detailed interactive applications will 
enable the rational optimization of bispecific drugs that involve kinetic turnover. While numerical 
simulations of well-parameterized systems will provide more accurate simulations than our simplified 
models, we believe that analytical modeling is an important route to develop an intuition for how 
parameters will affect the behavior of complicated systems, even when detailed knowledge of the system 
parameters is lacking. We also hope that these models and interactive applications will be useful for 
scientists without significant computational training. 
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