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Abstract: Nuclear Magnetic Resonance (NMR) is one of the primary techniques used to elucidate the 3 

chemical structure, bonding, stereochemistry, and conformation of organic compounds. The distinct 4 

chemical shifts in an NMR spectrum depend upon each atom's local chemical environment and are 5 

influenced by both through-bond and through-space interactions with other atoms and functional groups. 6 

The in-silico prediction of NMR chemical shifts using quantum mechanical (QM) calculations is now 7 

commonplace in aiding organic structural assignment since spectra can be computed for several candidate 8 

structures and then compared with experimental values to find the best possible match. However, the 9 

computational demands of calculating multiple structural- and stereo-isomers, each of which may typically 10 

exist as an ensemble of rapidly-interconverting conformations calculations, are expensive. Additionally, 11 

the QM predictions themselves may lack sufficient accuracy to identify a correct structure. In this work, 12 

we address both of these shortcomings by developing a rapid machine learning (ML) protocol to predict 1H 13 

and 13C chemical shifts through an efficient graph neural network (GNN) using 3D structures as input. 14 

Transfer learning with experimental data is used to improve the final prediction accuracy of a model training 15 

using QM calculations. When tested on the CHESHIRE dataset, the proposed model predicts observed 13C 16 

chemical shifts with comparable accuracy to the best-performing DFT functionals (1.5 ppm) in around 17 

1/6000 of the CPU time. An automated prediction webserver and graphical interface are accessible online 18 

at http://nova.chem.colostate.edu/cascade/. We further demonstrate the model on three applications: first, 19 

we use the model to decide the correct organic structure from candidates through experimental spectra, 20 

including complex stereoisomers; second, we automatically detect and revise incorrect chemical shifts 21 

assignment in a popular NMR database, the NMRShiftDB; and third, we use NMR chemical shifts as 22 

descriptors for determination of the sites of electrophilic aromatic substitution.   23 
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Introduction: Nuclear Magnetic Resonance (NMR) spectra are a primary source of molecular structural 24 

information. NMR chemical shifts report detailed information on atoms' local chemical environments that 25 

can be used to determine the atomic connectivity, relative stereochemistry and conformations of molecules. 26 

Organic structure assignment has for many years been performed manually, however, recent advances in 27 

computational chemistry have paved the way for the in-silico prediction of chemical shifts. Comparisons 28 

of experimental isotropic chemical shifts (i.e., those measured for solution samples) with computationally 29 

predicted values have been applied, sometimes including scalar coupling constants, to various problems in 30 

structure elucidation: the assignment of relative stereochemistry in flexible organic molecules as pioneered 31 

by Bagno and Bifulco,1-3 complex natural product structure elucidation and reassignment,4-6 identification 32 

of the side product(s) in synthetic reactions,7, 8 deducing the macromolecular conformation adopted by 33 

cyclic peptides,9 and in correcting literature misassignments.10 The growing importance of computational 34 

chemical shift prediction, particularly of 13C and 1H nuclei, in natural product, mechanistic and synthetic 35 

organic chemistry is the subject of an authoritative review by Tantillo and co-workers.11 36 

 37 

To serve as a useful tool for structure elucidation, prediction errors in computed chemical shifts must be 38 

smaller than the experimental variations between different candidate structures. To this end, empirical 39 

correction schemes for density functional theory (DFT) computed shielding tensors have been instrumental 40 

in improving the levels of accuracy: Tantillo and co-workers11 derived  and compiled linear-scaling 41 

parameters for many levels of theory, basis set and solvation models (in the CHESHIRE repository12), and 42 

have established standardized molecular training and test sets for chemical shift prediction. Alternative 43 

correction schemes to improve computational results have been developed using multiple external 44 

standards13, 14 and atom-based correction factors.15, 16 As a result, contemporary "best practice" DFT 45 

protocols boosted by empirical corrections routinely approach accuracies of 2.5 ppm in the prediction of 46 
13C shifts, or 0.15 ppm for 1H shifts, expressed as root mean square error (RMSD).11 The quantitative 47 

application of these predictions to organic structure elucidation has been pioneered by Goodman and co-48 

workers17, 18 in the development of CP3 and DP4 parameters, the latter of which provides a statistical 49 

estimate for the confidence of a particular computational structural assignment. Ermanis and Goodman 50 

recently introduced the DP4-AI platform, which enables automated stereoisomer elucidation directly from 51 

a 1H and 13C spectrum.19 In general, however, the time and computational resources associated with 52 

quantum chemical approaches can be significant, particularly for large and conformationally flexible 53 

molecules.20 Even with access to high-performance computing resources, the consideration of multiple 54 

structures in a high-throughput manner is highly challenging at present.  55 

 56 
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Empirical approaches to chemical shift prediction provide a less expensive alternative to electronic structure 57 

calculations by harnessing pre-existing knowledge such as large datasets of experimentally measured 58 

chemical shifts. Additive methods have been developed to predict chemical shift based on the cumulative 59 

effects of local substituents, as implemented in ChemDraw.21 More sophisticated machine learning (ML) 60 

methods encode each atom as a one-dimensional vector using an atom-based connectivity scheme. For 61 

example, a hierarchically ordered spherical description of environment (HOSE) code22 predicts chemical 62 

shifts based on the measured similarity to database entries or by using fully-connected neural networks.23-63 
28 When trained against a large number of experimentally measured chemical shifts, these methods have 64 

achieved predictive accuracies of 1.7 ppm for 13C chemical shifts and 0.2 ppm for 1H shifts (expressed as 65 

mean absolute error, MAE).23 These earlier ML approaches tend to rely upon feature engineering29: expert-66 

crafted rules are required to encode atomic environment, which can suffer from human bias and 67 

incompleteness, and which are often trained separately for different atom types (e.g., different models are 68 

developed for tetrahedral and trigonal carbon atoms). In particular, the rise of feature learning, as embodied 69 

by graph neural networks (GNNs),30 has enabled 'end-to-end' learning from molecular structures and avoids 70 

rule-based encoding. Jonas and Kuhn31 have developed a GNN to predict the 13C and 1H chemical shifts 71 

and achieved an accuracy of 1.43 ppm for 13C and 0.28 ppm for 1H (MAE for the testing set) using 2D 72 

molecular connectivity as input.  73 

 74 

Empirical approaches to NMR chemical shift prediction use interatomic connectivity to define the local 75 

neighborhood around a given atom, while the effects of stereochemistry and molecular conformation are 76 

most often ignored. However, geometric factors play a fundamental role in influencing chemical shift. 77 

Diastereoisomers of a given compound are distinguishable by NMR (Scheme 1a), as are diastereotopic 78 

atoms or groups within the same molecule (Scheme 1b). Furthermore, molecular conformations give rise 79 

to different chemical shifts that may appear as distinct signals or as ensemble-averaged values depending 80 

on the interconversion rate relative to the NMR timescale (Scheme 1c). Such phenomena are not 81 

conveniently captured by the commonly-used descriptions of atomic environments that only encode local 82 

connectivity. Although DFT chemical shift predictions are now routinely used to differentiate stereoisomers, 83 

empirical approaches based on the 2D molecular graph fail this task absolutely. We reasoned that this 84 

challenge could be directly addressed by a model that uses a spatial representation of atomic environments 85 

in the form of a 3D molecular graph.32 Interatomic distances, including both bonded and nonbonded 86 

interactions, are an inherent part of this description, which is therefore able to capture variations in chemical 87 

shift across diastereoisomeric molecules, diastereotopic groups within a single chiral molecule, and 88 

spatially distinct molecular conformations. 89 



4 
 

 90 
Scheme 1 | Stereochemical and conformational influences on chemical shift. 91 

 92 

Unlike the valence bond model of chemical structure, 3D representations of local atomic environments such 93 

as atom-centered symmetry functions,33, 34 do not require pre-conceived rules concerning topology, 94 

chemical bonding, or other physicochemical descriptors. These and related representations have been 95 

widely applied to predict atomic and molecular properties by ML methods.35-41 We surmised that the 96 

prediction of NMR chemical shift, being strongly influenced by local environment and stereochemistry, 97 

would be amenable to such an approach, although this has received limited attention.42, 43 Using a sorted 98 

Coulomb matrix44 to represent atomic environments, von Lilienfeld and co-workers42 have predicted 99 

shielding tensors for small organic molecules by kernel ridge regression (KRR),45 obtaining MAEs of 3.9 100 

ppm for 13C and 0.28 ppm for 1H relative to DFT values. However, the moderate levels of accuracy and 101 

reliance on DFT optimized structures as inputs limit practical applications to chemical structure elucidation. 102 

Using a smooth overlap of atomic positions (SOAP) kernel46 to evaluate the correlation between local 103 

atomic environments, Ceriotti and co-workers43 performed Gaussian Process Regression in a seminal 104 

work47 to predict shielding tensors of molecular solids with RMSEs of 4.3 ppm for 13C and 0.49 ppm for 105 
1H. Their model was able to assign the crystal polymorphic of cocaine from a selection of candidate 106 

structures by comparing against experimental chemical shifts. Another machine learning model, 107 

IMPRESSION,  involving Kernel Ridge Regression was developed by Butts and co-workers, where they 108 

leverage DFT-computed NMR parameters to predict  1JCH scalar couplings and 13C and 1H chemical shifts 109 

with an MAE of  0.87 Hz , 0.23 ppm and 2.45 ppm respectively for an independent test set.48 Community-110 

powered approach has also been sought to improve the prediction of NMR properties, where they develop 111 

a combined model which was 7-19 times more accurate than existing prediction models.49  Herein, we 112 

develop a GNN model to predict isotropic 13C and 1H chemical shifts from a 3D representation of atomic 113 

environments. The favorable levels of accuracy and speed permit structural and stereochemical assignments 114 

to be carried out for large and flexible organic molecules that would be enormously challenging for quantum 115 

chemical approaches.   116 

 117 

Approach: Empirical chemical shift prediction models require large amounts of experimental data. 118 

Although a large number of NMR spectra certainly exist, the majority of these are in a form not readily 119 
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utilized by ML methods. NMR data and the assignment of experimental shifts to specific atoms in molecular 120 

structures are processed and reported in a variety of formats that are difficult to parse automatically.50 121 

Additionally, the literature contains assignment errors, incompletely recorded spectral data, and partially 122 

assigned structures. Manually-curated datasets have thus featured heavily in the development of predictive 123 

models for chemical shifts,23 requiring considerable effort and expertise to build and maintain. The 124 

NMRShiftDB51 stands as an exception to this approach, being an open-submission and open-access 125 

database containing around 400,000 experimental 13C chemical shifts. However, the frequency of incorrect 126 

assignments has been debated in the literature,25,28 and incomplete annotation of stereochemistry affects a 127 

significant proportion of chiral molecules contained in this dataset.  128 

 129 

To address these challenges, we set out to exploit advances in quantum chemistry, high-performance 130 

computing, and automation in developing a large dataset of QM computed values to train an ML model.36, 131 
38, 42, 43, 52, 53,54 A principal advantage of this approach is that DFT-based predictions of chemical shifts can 132 

be mapped to the responsible atom in a high-throughput fashion with complete reliability, avoiding 133 

incomplete or erroneous assignments and the need for manual intervention. Datasets containing 100,000 134 
13C and 1H chemical shifts are readily attainable via automation (see below), and the conformational 135 

dependence of chemical shifts can be effectively learned by the inclusion of different molecular geometries. 136 

Without experimental data, however, the predictive accuracy of any prospective ML model is 137 

fundamentally limited by the underlying performance of the DFT methodology, basis set, description of 138 

solvation, and other sources of computational error. Therefore, we pursued a transfer learning (TL) 139 

strategy,55, 56 inspired by the work of Roitberg, Isayev, and co-workers57 in which the accuracy of a NN 140 

potential extensively trained against DFT energetics could be enhanced using a much sparser dataset of 141 

high-quality CCSD(T) values. We demonstrate improvements in the predictive accuracy of a DFT-trained 142 

model by applying TL with a smaller collection of experimental values: following model retraining against 143 

a curated set of 13C experimental shifts, a mean absolute error (MAE) of 1.23 ppm against experiment could 144 

be obtained for 500 held-out structures (see below). This involved additional 5,000 experimental structures 145 

to the existing 8,000 DFT optimized structures. Taking a step further, we demonstrate that molecular 146 

geometries obtained from inexpensive molecular mechanics calculations can be used directly without a 147 

substantial loss in accuracy, generating chemical shift predictions on the order of 5-10,000 times faster than 148 

conventional electronic structure calculations.  149 

 150 

GNNs for atomic property prediction: GNNs 30, 52, 58-66 do not depend on pre-computed descriptors and 151 

are able to learn underlying regularities directly from the molecular graph, represented either in 2D form, 152 

encoding interatomic connectivity, or in 3D form, where spatial information is included. GNNs have 153 
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recently been applied to end-to-end (i.e., structure-to-property) learning of molecular properties such as 154 

molecular energies and HOMO/LUMO gaps38, 52, 67, 68 and have been extended to the prediction of bond 155 

properties within molecules.69 In this work, our network was modeled after the Schnet deep learning 156 

architecture of Müller and coworkers64, combined with edge updates.70 The model is implemented using 157 

Tensorflow, and all underlying code is openly accessible and documented.71 This was then trained to predict 158 
13C and 1H chemical shifts as the target properties. A schematic of our network is shown in Fig. 1a. From 159 

a query 3D molecular structure, two input vectors are constructed with rdkit72 containing (i) element types 160 

and (ii) interatomic distances less than 5 Å. Discrete node feature vectors (of size 256) are then generated 161 

by categorizing each element type through an embedding layer, while continuous edge feature vectors are 162 

generated by an expansion of the interatomic distances as a series of 256 radial basis functions (RBFs).70 163 

This is described by Eqn. 1, where the continuous vector 𝑒!"#"  represents the initial "edge" linking atoms i 164 

and j and is expressed in terms of the interatomic distance 𝑑$% and constants µ and 𝛿. These constants are 165 

chosen such that the range of the input features can be covered by the centers of the RBFs; in this work 𝛿 166 

= 0.04 and µ = 0.  167 

 
𝑒!"#" = $𝑒

$(&!"$('()*))#

) %
*∈[#,	0,	1,…134]

 (1) 

 168 

The feature vectors for atoms/nodes and bonds/edges then go through a loop consisting of edge updating, 169 

message passing, and node updating blocks (inset, Fig. 1a). In the message-passing block (brown color), 170 

each atom receives "messages" from other atoms within 5 Å, which reflect its local environment. We might 171 

reasonably expect to capture the shielding or deshielding influence upon chemical shift (whether these 172 

occur through-bond or through-space) of neighboring atoms, including those for which there is no direct 173 

bonding path. Using a larger cutoff distance led to a degradation in the model's validation loss (see SI). The 174 

final updated node feature serves as a 3-dimensional representation of the atomic environment for each 175 

atom, which is then passed through a fully connected NN73 to produce a chemical shift value. More details 176 

of the model architecture are provided in SI Text 1. Unlike models based only on atom-centered symmetry 177 

functions, our model allows local structural information to be exchanged between neighboring atoms. 178 

Chemical shift predictions for all atoms in the molecule are performed simultaneously, leading to an 179 

efficient numerical implementation. 180 
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 181 

Figure 1 | (a) Illustration of the GNN architecture. Molecules are represented according to their atom types and 182 
interatomic distances. Each atom, or node, is embedded as a vector of atomic attributes. Each atom pair within a 183 
distance of 5 Å is linked by an edge, which is embedded into a continuous vector with a set of radial basis functions 184 
(RBF). Node and edge feature vectors are then iteratively updated by the updating blocks, through which each atom 185 
is responsible for learning atomic features by message passing. Updated node features for all 1H or 13C atoms then 186 
pass through a series of dense layers to yield final chemical shift predictions. (b) Data processing workflow. NMR8K 187 
is a primary dataset composed of 8,000 2D structures along with unchecked experimental chemical shifts sampled 188 
from NMRShiftDB directly; DFT8K is the corresponding dataset we generated by appending MMFF/DFT optimized 189 
3D structures and GIAO chemical shifts; “Cleaned” experimental chemical shifts filtered by DFT results as well as 190 
corresponding 3D structures are stored in Exp5K. Three distinct GNN models were trained on these datasets. During 191 
transfer-learning, we fixed a subset of network parameters, shaded in grey, while the OPT block indicates optimizable 192 
parameters. Model ExpNN-ff, trained against DFT and experimental chemical shifts while processing molecular 193 
mechanics geometries as inputs, has been developed into a web-based predictor. 194 
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Learning DFT predicted chemical shifts: As an alternative to a large, manually curated collection of 195 

experimental chemical shifts, a computationally generated dataset offers several advantages. DFT 196 

computed chemical shifts are easily parsed and unequivocally assigned to the responsible atom in each 197 

compound. By sampling different structures, the dataset can be designed to ensure broad model coverage. 198 

Accordingly (Fig. 1b) we developed a dataset of 8,000 DFT optimized structures with ca. 200,000 DFT 199 

computed chemical shifts (the DFT8K dataset). All datasets generated by this work are shared openly.71  200 

 201 

We began by sampling a subset of structures from the NMRShiftDB, which contains 43,475 structures at 202 

the time of writing. The sampling procedure is as follows: we first extracted all neutral organic molecules 203 

with MW < 500. From the resulting set of around 20,000 structures, 8,000 were selected by a farthest-204 

neighbor algorithm74 to create a computationally manageable dataset while maximizing structural diversity.  205 

Initial 3D geometries were then embedded from each molecule’s SMILES representation using a distance 206 

geometry approach (SI Text 2),75 which was followed by conformational analysis with MMFF, culminating 207 

in the optimization of M06-2X/def2-TZVP geometries and empirically-scaled mPW1PW91/6-311+G(d,p) 208 

chemical shifts for each of these 8,000 structures. This process was automated by a parallel Python 209 

workflow that takes structures from a 2D molecular database (NMR8K), performs conformational analysis, 210 

submits and monitors Gaussian jobs, and finally parses outputs (see SI Text2 for details on the automated 211 

workflow and DFT calculation methods). A new dataset, DFT8K, is populated by DFT optimized 212 

geometries and the corresponding computed chemical shifts (around 120,000 1H and 100,000 13C DFT 213 

chemical shifts in total, Fig. 1b).  To obtain DFT-predicted isotropic chemical shifts we applied an empirical 214 

scaling formula to the raw shielding tensor values.5, 11 The 13C chemical shift values were obtained from the 215 

relation δ = 181.40 – 0.97σ and 1H values from δ = 29.30 – 0.91σ. 216 
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 217 
Figure 3 | Prediction of DFT chemical shifts by the trained DFTNN model. Scatter plots and histograms compare 218 
DFT computations and GNN predicted chemical shifts for 1H (a) and 13C (b). The held-out test set contains 500 219 
randomly sampled structures (testing/training rate: 1/12) from the DFT8K dataset.  220 
 221 

DFT optimized geometries (inputs) and chemical shifts (prediction targets) from the DFT8K dataset were 222 

then used to train a GNN. 500 structures were used to evaluate the validation loss during model training, 223 

and another 500 structures were held-out as an external test set (Fig. 3). We refer to this ML model as 224 

DFTNN. Since 13C chemical shifts have a wider ppm distribution than 1H shifts we used separate models 225 

for each nucleus. DFTNN performs well in predicting the DFT shifts of held-out structures, giving a MAE 226 

and RMSE of 1.26 and 2.15 ppm, respectively, for 13C, and 0.10 and 0.16 ppm for 1H. These results compare 227 

favorably alongside other ML models for NMR chemical shift predictions.  Kernel-based learning was 228 

reported to have an RMSE of 0.49 ppm for 1H and 4.3 ppm for 13C;43 a fully-connected neural network 229 

using HOSE descriptors27 has an RMSE of 2.7 ppm for 13C, and a 2D GNN based model has MAE of 0.22 230 

ppm for 1H and 1.35 ppm for 13C.76 Direct comparisons are, however, complicated by the use of different 231 

training and test sets across different models. 232 

Transfer learning with experimental chemical shifts: Although DFTNN shows encouraging performance 233 

in predicting NMR chemical shifts, this GNN was trained solely against DFT calculated results that 234 

approximate experimental reality. Previous benchmarking studies suggest that DFT calculated chemical 235 
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shifts have an RMSE of 0.1-0.2 ppm for 1H and 2.5-8.0 ppm for 13C, which vary according to functional 236 

and basis set used for the structure optimization and chemical shift calculation.11 To minimize prediction 237 

errors associated with the use of DFT reference data, we sought to further optimize performance by 238 

subjecting our GNN to additional refinement with TL, incorporating experimental data. Importantly, we 239 

also devised a strategy to check and clean these experimental data using the results of DFT calculations as 240 

described below. 241 

 242 

Around 5500 molecules in the NMR8K dataset are annotated solely with experimental 13C data, while 1H 243 

and 13C chemical shifts are present for the remainder. 1H chemical shifts show greater sensitivity to the 244 

solvent used for experimental data collection, and while we had hoped solvent-induced variations in 245 

chemical shift could be captured during this next phase of model training, the identity of the solvent used 246 

was often lacking in our primary data. We were therefore forced to focus solely on the refinement of 13C 247 

predictions. We also had to disregard experimental data for structures with ambiguously defined 248 

stereochemistry. A more difficult task involves the removal of possible misassignments, for example where 249 

an experimental spectrum may be assigned to an incorrect structure or a chemical shift attributed to an 250 

incorrect atom.28 Since even a small fraction of anomalous training data can result in noticeable degradation 251 

of ML models,43 we adopted a cautious approach and rejected experimental data that was statistically at 252 

odds with our DFT calculations. A comparison of DFT and experimental 13C shifts (Fig. 4a) showed 911 253 

values differing by > 10 ppm (1.6% of all DFT calculated shifts) and 10% of values differing by > 5 ppm. 254 

By removing outliers more than 1.5 interquartile ranges (IQRs) below the first quartile or above the third 255 

quartile, corresponding to 5% of the experimental data, the RMSE drops from 3.8 ppm to 2.26 ppm, which 256 

is close to the expected accuracy of our DFT methodology (2.4 ppm).11 Some of these discrepancies may 257 

reflect severe failings of DFT rather than errors in experimental assignments, however, the final 258 

performance of our model supports the use of this conservative strategy. Ultimately, this data-processing 259 

pipeline (SI Fig. 6) produced a “cleaned” dataset containing around 5,000 structures and 50,000 260 

experimental 13C chemical shifts, which we refer to as Exp5K.71 261 

 262 

We then used transfer learning (TL)56, 77 with the Exp5K dataset to retrain DFTNN. With TL, a pre-trained 263 

network model can be improved by learning from a new, higher accuracy dataset even when data is sparsely 264 

available.57 The optimizable parameters in our GNN model can be categorized into two groups: updating 265 

layers and the following readout layers (Fig 1a). The updating layers learn how to encode atomic 266 

environments into an atomic fingerprint, while the readout layers interpret these fingerprints to generate 267 

chemical shift predictions. To preserve the information previously learned during model training against 268 

DFT results, as well as to prevent overfitting to the smaller Exp5K dataset, only the readout layers were 269 
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optimized while the updating layers were frozen (Fig. 1b, with further details of implementation in SI Fig. 270 

1). 500 molecules from Exp5K were held out as the test set. The resulting retrained model is named ExpNN-271 

dft, since DFT optimized structures are still required as inputs. The ExpNN-dft predictions achieve a 13C 272 

MAE of 1.25 ppm and RMSE of 1.74 ppm for the held-out testing set. When compared with experimental 273 

chemical shifts, the accuracy of ExpNN-dft apparently surpasses that of DFTNN by more than 30% with a 274 
13C MAE of 1.90 ppm. 275 

 276 

Figure 4 | Learning experimental chemical shifts | (a) 53334 DFT-computed and experimental 13C chemical shifts 277 
were compared to identify erroneous values. Outliers identified by IQR analysis (green) were removed while 278 
remaining data points (red) were retained and comprise the Exp5K dataset. (b) MAE of ExpNN-dft predictions against 279 
experiment as a function of training set size, with and without transfer-learning. The performance is also compared to 280 
DFTNN (green dash line) and DFT calculations (gray dash line). 281 

 282 

We compared the above approach against training a model whose parameters are randomly initialized (i.e., 283 

from scratch). Fig. 4b illustrates the efficiency of TL in the present work, and also highlights the fact that 284 

the performance of ExpNN-dft is superior to the DFTNN model and DFT computations, even though the 285 

experimental training set is relatively sparse. The success of this approach arises from the strong correlation 286 
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between DFT chemical shifts and experimental shifts, the molecular structures shared by DFT8K and 287 

Exp5K, and the strategy of freezing 94% of GNN hyperparameters during TL.  288 

 289 

Transfer learning to use inexpensive molecular geometries: Our GNN models give rapid NMR chemical 290 

shift predictions, which through the inclusion of experimental training data, outperform DFT accuracy. 291 

However, the requirement of DFT optimized structures as inputs significantly limits a model’s practicality 292 

and applicability. Therefore, we opted to retrain the ExpNN-dft model using 3D structures obtained from 293 

inexpensive molecular mechanics (MM) calculations (MMFF94)78 as input, retaining experimental 294 

chemical shifts from Exp5K as targets. Transfer learning was again employed for this retraining. This time, 295 

however, to reflect the fact that the training data contains modified molecular geometries, the six hidden 296 

layers in the edge updating block were optimized (Fig. 1b), while all other parameters were held fixed. This 297 

second round of transfer learning led to a 13C MAE of 1.43 ppm against experiment. This final GNN model, 298 

named ExpNN-ff, retains the high accuracy of the previous models while processing MM input structures, 299 

facilitating real-time 13C chemical shift prediction.  300 

 301 

The three trained GNN models (DFTNN, ExpNN-dft, and ExpNN-ff) were evaluated using an external 302 

dataset of chemical shifts, CHESHIRE, which is widely used to benchmark DFT methods (Fig. 5). ExpNN-303 

ff, which avoids expensive DFT structure optimizations, took 10 seconds of CPU time to predict all 13C 304 

chemical shifts for 24 molecules in the CHESHIRE test set compared to 19 hours for those methods 305 

requiring DFT structure optimization. Note that the GNN model in the ExpNN-ff workflow only cost 3% 306 

of the total CPU time (0.35s), while the highest cost is still on conformer searching. Even though using 307 

MMFF structures as inputs, the performance of ExpNN-ff does not degrade compared to ExpNN-dft. In 308 

contrast, performing DFT chemical shift predictions on MMFF geometries (FFDFT),18, 79 leads to a 309 

noticeable degradation in performance for this testing set. Out of 25 electronic structure methods  310 

mPW1PW91/6-311+G(2d,p)//M062X/6-311+G(2d,p) calculations provide the lowest MAE for this dataset 311 

(SI Table 2), however, all are outperformed by our two GNN models augmented by transfer learning 312 

against experimental data. Of these, ExpNN-ff is around four orders of magnitude faster. Encouraged by 313 

this comparison against DFT methods that have been applied successfully to revise organic structures,3-5 314 

we next set out to apply whether the ExpNN-ff model can be accomplish more challenging applications of 315 

structure elucidation in seconds. 316 
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 317 

Figure 5 | GNN performance on the CHESHIRE set of organic molecules. Performance and computational cost 318 
for three GNN models (ExpNN-ff, ExpNN-dft, and DFTNN) and DFT methods (DFT and FFDFT) for the CHESHIRE 319 
testing set.45 DFT indicates optimizations and chemical shift prediction at this level, while FFDFT indicates DFT shift 320 
predictions on MMFF geometries. CPU times are shown in logarithmic scales. TCPU: total CPU time of computing 321 
chemical shifts from smile strings for CHESIRE testing set; NCPU: CPU time for NMR chemical shift computations; 322 
CCPU: CPU time for conformer searching through MMFF94; OCPU: CPU time for structure optimizations.  323 
 324 

Application to structure elucidation and reassignment: We first confirmed the ability of ExpNN-ff to 325 

describe stereochemical and conformational effects upon chemical shift. We were pleased to see that for 326 

the three cases outlined in Scheme 1, our approach was able to (a) successfully discriminate between the 327 

diastereomers of 1,3-hydroxymethylcyclohexane, (b) predict different chemical shift values for the 328 

diastereotopic methyl groups of L-valine, and (c) show differences between the two conformers of 329 

methylcyclohexane (quantitative comparisons are shown in SI text 6). Importantly, in each case the use of 330 

a conventional HOSE-based or 2D graph approach would be unable to provide any such distinction. We 331 

then turned to significantly more challenging tasks of structure elucidation, several of which would be 332 

extremely taxing for conventional DFT-based approaches due to their complexity in terms of size and 333 

conformational flexibility (Fig. 6a-f). Constitutional isomers are compared in the first three examples, while 334 

the final two involve pairs of diastereomers. For cases a-e, we compare the predicted chemical shifts for 335 

two candidate structures against the experimental 13C spectrum. All analyses are automated from SMILES 336 

queries, with sorted lists of predicted and experimental shifts being compared. ExpNN-ff gives a lower 337 

MAE for the correct assignment across all five examples. A detailed breakdown for a is shown in Fig. 6f, 338 

in which the most egregious errors of the originally proposed, incorrect assignment (e.g., at C1, C11, and 339 

C16) are highlighted. Predicted chemical shifts for these atoms in the revised, correct structure are much 340 
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closer to the experimental data. We further tested ExpNN-ff to match the four diastereoisomers of a 341 

conformationally flexible 1,3-diol with four experimental NMR spectra (Fig. 6f). Since ExpNN-ff generates 342 

conformer-specific predictions (SI Fig. 8), these were Boltzmann weighted (using MMFF relative energies) 343 

from around 200 conformers to yield final predictions. The lowest MAE was obtained for the correct 344 

diastereomer in three out of four cases. However, ExpNN-ff could still be used to correctly assign all four 345 

diastereoisomers by considering the cumulative MAE values across all structures.  346 

 347 
Figure 6 | Structure elucidation using ExpNN-ff. (a)-(e) Historical cases of natural product structural misassignment. 348 
MAE values are compared for the originally proposed, but incorrect, structure and the revised, correct structure against 349 
experimental 13C spectra. In each case a better match is obtained for the correct structural assignment in seconds. (f) 350 
MAE values obtained by comparing all four diastereomeric structures of a highly-flexible 1,3-diol against four sets of 351 
experimental data. In three of four cases the lowest MAE value matches the correct spectrum. (g) The error between 352 
predicted and experimental chemical shifts for each atom in proposed and revised structures for example a.  353 

 354 

We next investigated the performance of the ExpNN-ff model for organic structures larger than those used 355 

for network training (MW > 500). We compared our predicted 13C chemical shifts against experimental 356 
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values for 650 large molecules (MW > 500) taken from NMRShiftDB (Fig. 7a). Each prediction requires 357 

at least one MMFF conformation of a given molecule and where multiple conformers were present a 358 

Boltzmann-weighted average was used. As an illustrative example, we used ExpNN-ff’s predictions to 359 

detect obvious database errors/misassignments in an automated, high-throughput fashion. Predicted 360 

chemical shifts were first compared against the structural assignments from NMRShiftDB. For structures 361 

with MAE values > 3.5 ppm the experimental shift values were reordered to find the optimal assignment 362 

(i.e., lowest MAE, Fig. 7b). One such example automatically identified is shown in Fig. 7c, where enoate 363 

a- and b-carbon shifts were found to be swapped in the experimental assignment. After this workflow was 364 

complete, remaining egregious outliers were then inspected manually. The structure of Taxol C (ID: 365 

20244313) was found to be incorrectly recorded in the database, with a cyclohexyl rather than phenyl ring. 366 

This approach highlights the application of ExpNN-ff as high-throughput method to detect assignment 367 

errors,  however, the incorporation of sophisticated metrics such as Goodman’s DP418 would be necessary 368 

for a more rigorous evaluation of possible structural assignments, and is the subject of further work.   369 

370 
Figure 7 | Screening and revising misassignment in NMRShiftDB. (a) Correlation between predicted and 371 
experimental 13C chemical shifts for large molecules (MW > 500). Outliers (red), here defined as structures with an 372 
MAE > 3.5 ppm, are investigated for possible misassignments (b) Experimental chemical shifts for reordered 373 
assignments of outlying structures. The remaining outliers (green) helped us to identify an incorrect structure for Taxol 374 
C in the database. (c) Incorrectly assigned enoate carbons were corrected for Leueantine A. (d) The correct structure 375 
of Taxol C. 376 
 377 

Application as atomic descriptors in selectivity prediction: NMR Chemical shift is influenced by the 378 

electron density around a nucleus of interest. It is therefore an attractive choice of physically-motivated and 379 

interpretable atomic descriptor for use in predictive machine learning models.80, 81  By foregoing expensive 380 

quantum chemical computations, chemical shifts accurately predicted by ExpNN-ff provide easier and 381 

faster access to descriptors for use in regression tasks such as reactivity and selectivity prediction. We have 382 
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investigated this approach in predicting the regioselectivity of electrophilic aromatic substitution (EAS) 383 

reactions. Previously, the combination of DFT-computed atomic Fukui coefficients, atomic partial charges, 384 

bond orders, and partitioned solvent-accessible surface areas with semi-empirical regioSQM82 predictions 385 

was used to develop a random forest (RF) model with 93% accuracy in predicting the site of substitution 386 

using 80/20 train/test splits for 376 molecules.83 Below (Fig. 8) we demonstrate comparable accuracy with 387 

fewer atomic descriptors, using just (i) the 13C chemical shift, (ii) the attached proton 1H chemical shift, and 388 

(iii) the regioSQM prediction. We also find that using GNN predicted shifts gives similar performance in 389 

place of more expensive DFT (mPW1PW91/6-311+G(d,p)// M062X/def2TZVP) values. The prediction 390 

accuracy averaged across 10 runs for different RF models is shown in Fig 8d. After optimization of model 391 

hyperparameters, accuracy increases with the inclusion of chemical shift descriptors to 90.7% from 88.5% 392 

using regioSQM alone. ROC and precision-recall plots (Fig 8e and 8f) illustrate that the inclusion of 393 

chemical shift descriptors increase the performance of an RF classification (i.e., correctly labelling reactive 394 

and unreactive positions) from 0.90 to 0.94 and that the average precision is also higher with chemical shift 395 

descriptors. These GNN-derived atomic descriptors impose low computational cost such that we anticipate 396 

future utility in related prediction tasks of organic reactivity and selectivity, for example in combination 397 

with other machine-learned representations.84 398 

 399 

 400 

 401 



17 
 

 402 
Figure 8 | Regioselectivity prediction of electrophilic aromatic substitutions. (a) Representative molecules present in 403 

the EAS dataset. The highlighted atoms depict the experimental (red) and the predicted (green) site of substitution. (b) 404 
DFT computed 13C chemical shifts vs. GNN-predictions. (c) DFT computed 1H chemical shifts vs. GNN-predictions. 405 
(d) Random forest classifier accuracies in identifying reactive/unreactive ring positions. (e) ROC curves comparing 406 
the true positive vs false positive rate. (f) Precision-recall curves for the different random forest classifiers. 407 

 408 
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Conclusion: Predicting NMR chemical shifts in real-time that can distinguish stereoisomers and 409 

configurations/conformations poses both conceptual and technical challenges. The GNN model we have 410 

presented in this work overcomes this hurdle by learning suitable atomic environments from 3D structures 411 

and predicting chemical shifts based on these learned environments. MAEs between GNN predicted 412 

chemical shifts and DFT are 0.16 ppm for 1H and 1.26 ppm for 13C, which compare favorably with other 413 

approaches. This approach requires large quantities of labelled chemical shift data, which was provided by 414 

a large-scale quantum chemical dataset. To mitigate errors associated with using DFT training data, we also 415 

curated a smaller dataset of experimental chemical shifts that was used for retraining the NN model through 416 

transfer learning. Additionally, the model was retrained to process inexpensive molecular mechanics 3D 417 

geometries so that high-quality structures are not a prerequisite. These steps resulted in a predictive model 418 

of comparable accuracy to DFT when compared against experimental chemical shifts of small organic 419 

molecules, with a 7,000-fold performance increase. This efficiency enabled us to (i) perform GNN 13C 420 

predictions for flexible structures impractical to study with DFT with sufficient accuracy to discriminate 421 

between correct and incorrect assignments, (ii) carry out high-throughput screening and error detection of 422 

a large database of NMR assignments and (iii) rapidly obtain chemical shifts to be used as atomic 423 

descriptors in a machine learning model for regioselectivity. The resulting deep learning model can be used 424 

as a command line tool or as a web-based product-level calculator that allows real-time chemical shift 425 

predictions from a molecule sketch or SMILES input (http://nova.chem.colostate.edu/cascade/predict/).  426 

 427 

Just as every model has limitations, the framework we present in this work still leaves room for 428 

improvement. We mention that the accuracy of the model depends on the quality of 3D structures generated 429 

by MMFF to some extent. We have found several examples where the poor MMFF structure leads to a 430 

discrepancy in prediction, for instance, ketenimines. Thus, the model is likely to improve further with more 431 

robust empirical or semi-empirical structures, along with associated relative energies that are used to carry 432 

out Boltzmann averaging, such as those from xTB.85 Other potential improvements will include extending 433 

the model to biomolecules, coupling constant prediction, and the adoption of probability metrics such as 434 

DP4 for structure elucidation. 435 

 436 

Methods 437 

Computational details. NMR isotropic chemical shifts in the present work are predicted using a GNN 438 

derived from Schnet.38, 64, 70 The network receives 3D molecular structures via a vector of atom types and a 439 

vector of interatomic distances. The network is directly trained against chemical shifts for individual atoms. 440 

As discussed above, these chemical shifts are sourced from empirically-scaled DFT computations and this 441 

training data is augmented by experimental values during later stages of model training. Atom indices are 442 
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also processed by the neural network, which is used to pool out corresponding node features in the readout 443 

layer. Detailed architectures, hyper-parameters, and training processes are given in the Supplementary 444 

Methods section 1. 445 

 446 

Three subsets of organic structures from the NMRShiftDB are used in this work, referred to as NMR8K, 447 

DFT8K, and Exp5K. The NMR8K dataset contains 8,000 neutral molecules with molecular weights up to 448 

500, comprising elements: C, H, O, N, F, Cl, P, S.  3,016 of these structures have associated 1H NMR 449 

experimental spectra; 6,000 have associated 13C spectra. These structures were processed with a 450 

computational workflow to generate the DFT8K dataset used for our GNN training. Our workflow involved 451 

embedding and molecular mechanics (MM) conformational analysis with the MMFF94 force field 452 

implemented in rdkit.78 The most stable MM conformers were then optimized at the M06-2X/def2-TZVP86 453 

level of theory, for which isotropic shielding constants were then calculated with gauge-independent atomic 454 

orbital (GIAO)87 method at the mPW1PW91/6-311+G(d,p)88 level of theory. This combination of MM and 455 

DFT methods has been used successfully for structure assignments with NMR chemical shift predictions.89 456 

This workflow produced 7,455 DFT optimized structures with 117,997 1H and 9,9105 13C calculated 457 

chemical shift values, which make up the DFT8K dataset. The NMR8K and DFT8K datasets were then 458 

compared to prepare a clean experimental dataset from which apparent outliers are absent.  This produced 459 

5,631 structures labeled with 59,413 experimental 13C chemical shifts, which make up the Exp5K dataset. 460 

Further details of dataset construction are contained in the Supplementary Methods section 2.  461 

 462 

Three separate GNNs were trained, referred to as DFTNN, ExpNN-dft, and ExpNN-ff. Architectures and 463 

hyper-parameters for these networks are the same, but they are trained against different targets or using 464 

different input structures. The DFTNN is trained against DFT calculated chemical shifts using the optimized 465 

geometries from the DFT8K dataset with randomly initiated parameters. This model is then retrained 466 

against experimental chemical shifts from the Exp5K dataset while retaining the DFT geometries, with 467 

partially fixed parameters to generate the ExpNN-dft model. Finally, the model is again retrained using 468 

experimental chemical shifts from Exp5K while geometries are replaced by MMFF structures, with 469 

partially fixed parameters to produce the ExpNN-ff model. Further details on transfer-learning and frozen 470 

parameters are given in the Supplementary Methods section 3. 471 

 472 

Practical usage considerations: All code is openly accessible from GitHub under an MIT license at 473 

https://github.com/bobbypaton/CASCADE. This includes the automated workflow to process a SMILES 474 

query, perform conformational analysis and 3D structure optimization, and generate NMR chemical shift 475 

predictions, as well as the three ML models (DFTNN, ExpNN-dft, and ExpNN-ff) presented here. Training 476 
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and testing data for each deep learning model are also publicly available from the same GitHub repository. 477 

For ease of use, a real-time web-app has been developed, http://nova.chem.colostate.edu/cascade/predict/ 478 

which performs 1H and 13C predictions for SMILES queries or via a graphical molecular editor. Boltzmann 479 

averaged and individual conformer-specific chemical shifts are rendered with JSmol.   480 
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