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ABSTRACT: Making accurate, quantitative predictions of chemical reactivity based on 

molecular structure is an unsolved problem in chemical synthesis, particularly for complex 

molecules. We report a generally applicable and mechanistically based structure-reactivity model 

for the oxidative addition of (hetero)aryl halides to palladium(0), which is a key step in myriad 

catalytic processes. This model links simple molecular descriptors – electrostatic potential, steric 

parameters, and bond strengths – to relative rates of oxidative addition for 71 electrophile 

substrates. Because oxidative addition often controls the rate and/or selectivity of palladium-

catalyzed cross-coupling reactions, this model can be used to make predictions about catalytic 

reaction outcomes. Demonstrated applications include a quantitative model for the rate of 410 

different Sonogashira coupling reactions, and successful site-selectivity predictions for a series of 

multihalogenated substrates relevant to the synthesis of pharmaceuticals and natural products.   

 

The synthesis of structurally complex organic molecules relies on forging new chemical bonds 

between diverse molecular building blocks. Palladium-catalyzed cross-coupling is one of the most 

versatile and widely-used methods to link these molecular fragments,1 with applications ranging 

from the manufacture of active pharmaceutical ingredients,2 to the selective modification of 

biomolecules,3 to the creation of new functional materials.4 While much has been done to develop 

and understand new cross-coupling reactions and catalysts, less is known about how the specific 

molecular structures of the building blocks affect the likelihood of successful coupling. As a result, 

time- and resource-intensive reaction screening and optimization campaigns are often required for 

each new synthetic target. All too often these efforts fail to identify suitable conditions, impeding 

access to potentially promising new medicines and materials. Emerging approaches in reactivity 

prediction that combine high-throughput experimentation5,6 with molecular descriptor sets7,8 and 

multivariate statistical analysis including machine learning9,10 can accelerate this process and 

increase success rates; however, the predictions generated by these approaches are rarely 

applicable beyond the specific reaction under investigation. Developing and refining the next 

generation of organic chemistry tools, including computer-aided synthesis design, automated 

reaction optimization, and predictive algorithms,11 requires a general and quantitative framework 

that links molecular structure to reactivity for many different reactants and catalysts. 

Here, we describe a general approach to predict catalytic reaction outcomes that focuses 

on mapping the reactivity of a key organometallic transformation common to myriad catalytic 

mechanisms; in this case, oxidative addition. Oxidative addition, the reaction between an 

electrophilic substrate and an electron-rich metal center,12 is particularly relevant to palladium-

catalyzed cross-coupling, where it often controls the reaction rate and/or selectivity13 (Figure 1A). 
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We hypothesized that a quantitative structure-reactivity model for the oxidative addition of aryl 

halides to a catalytically-relevant low-valent palladium complex would enable predictions that are 

generally applicable to many palladium-catalyzed transformations under a variety of conditions. 

We have assembled this model by combining experimental relative rate data (Figure 1B) with 

easily-obtained molecular descriptors for a diverse set of substrates, with an emphasis on 

incorporating pharmaceutically-relevant heterocycles (Figure 1C). As hypothesized, the resulting 

model – a "reactivity map" – is general: it can predict catalytic rate constants as a function of 

substrate structure even when different catalysts/solvents are used, and can correctly identify the 

most reactive position(s) when multiple reaction sites are available. Importantly from both a 

fundamental and practical perspective, the predictive ability of this reactivity map extends well 

beyond the specific molecular structures and reaction conditions included in the initial data set. By 

revealing how subtle changes to the reacting molecules affect a key step in a catalytic mechanism, 

this map serves as a powerful predictive tool that can be successfully applied to multiple reaction 

classes, and will enable more sophisticated and accurate computer-aided retrosynthetic design. 

To construct our reactivity map for cross-coupling catalysis, we conducted a series of 

oxidative addition competition experiments in THF and toluene solvent using a library of 71 

(hetero)aryl halides (Figure 1B). By combining excess but equal amounts of each substrate with 

Pd(PCy3)2, we measured the oxidative addition product ratio by 31P NMR spectroscopy, thus 

determining relative observed rate constants. As a check on these kinetic data, we constructed 

Hammett plots for four sets of substrates, obtaining reaction constants consistent with previous 

reports (Figures S32-37). Using the specific mechanistic features of oxidative addition to Pd(0) as 

a guide (vide infra), we considered potential molecular descriptors that would provide 

mechanistically meaningful correlations between substrate structures and oxidative addition 

reactivity (Figure 1C).14 This led us to a combination of average molecular electrostatic potentials 

(ESP) as electronic descriptors for specific atoms in the substrate,15 A-values as steric 

descriptors,16 and the intrinsic bond strength index (IBSI) as a bond energy descriptor.17 

Importantly, these descriptors are easily calculated from electronic wavefunctions (using density 

functional theory), or are tabulated in the literature.  

Multivariate linear regression analysis of the descriptor sets for each substrate versus the 

relative free energies of activation for oxidative addition (ΔG‡
OA, kJ mol-1, derived from the 

observed relative rate constants) reveals a strong correlation across the entire substrate library. 

Figure 1D shows the correlation from the THF data set, and the corresponding correlation for the 

toluene data set is in Figure S60. This model incorporates two ESP values: one for the carbon 

undergoing substitution (ESP1), and a second for an atom adjacent to the reactive site (ESP2). 

Similarly, two substituent A-values for groups R1 and R2 account for steric effects on the oxidative 

addition rate. While the steric effect of groups ortho to the reactive C–X bond is intuitive, the 

effect of R2 for 2-halopyridine substrates is not initially obvious; however, our experimental results 

reveal the steric influence of R2 is approximately equal to that of R1 throughout the 2-halopyridine 

substrate set. As these two terms have very similar coefficients when treated separately during 

linear regression (Table S9), we opted to use the sum (A1 + A2) as a single descriptor. Finally, the 

IBSI enables a unified model that is suitable for both (hetero)aryl chlorides and bromides.  
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Figure 1. Design and performance of a general and quantitative reactivity map for oxidative 

addition to Pd(0).  (A) Simplified mechanism for Pd-catalyzed cross-coupling, highlighting 

oxidative addition as the rate and/or selectivity determining step. (B) Competition experiment 

approach to map relative rates of oxidative addition. (C) Molecular descriptors used to model 

oxidative addition reactivity as a function of substrate structure. (D) Multivariate linear regression 

model of ΔG‡
OA for 70 substrates in THF, including all data points in regression analysis. (E) 

Representative multivariate linear regression model generated using a 60/40 training/test split. (F) 

Reactivity scale for oxidative addition to Pd(PCy3)2 in THF with selected substrates, giving 

experimental (blue) and predicted (green) ΔG‡
OA values; experimental ΔG‡

OA for 2-bromo-5-

nitropyridine set to 0 kJ mol-1. 

 

-5

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

R
e

la
ti
v
e

 Δ
G
‡

(k
J
 m

o
l-1

),
 P

re
d

ic
te

d

Relative ΔG‡ (kJ mol-1), Experimental 

Ar-Cl (38)

Ar-Br (32)

R² = 0.8823, 0.9673, 0.9313
MAE = 2.77, 1.97, 2.40 kJ mol-1

ΔG‡
OA = -0.4048(ESP1) + 0.1041(ESP2) 

+ 0.7617(A1 + A2) + 205.6(IBSIC-X) 
- 8.39

-5

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

R
e

la
ti
v
e

 Δ
G
‡

(k
J
 m

o
l-1

),
 P

re
d

ic
te

d

Relative ΔG‡ (kJ mol-1), Experimental 

Training (42)

Test (28)

Q² = 0.9003
R² = 0.9301, 0.9213, 0.9258
MAE = 2.43, 2.57, 2.48 kJ mol-1

ΔG‡
OA = -0.4088(ESP1) + 0.1170(ESP2) 

+ 0.7037(A1 + A2) + 198.9(IBSIC-X) 
- 6.161

F

D E

C

BA



4 

 

We have evaluated the robustness of this linear model by regression analysis of five 

random training (60%) and test (40%) sets, and comparing the mean absolute errors (MAE) and 

predictive squared correlation coefficients (Q2);18 one example is shown in Figure 1E. All of these 

analyses give similar linear equations, and excellent agreement between predicted and 

experimental values in the test sets (Figures S61-64, Q2 range: 0.8681-0.9178; test set mean 

absolute error range: 2.57-2.91 kJ mol-1). We also partitioned the data into targeted training and 

test sets to evaluate out-of-sample prediction accuracy (Figures S65-68), again giving excellent 

agreement between predicted and experimental values (Q2 range: 0.8480-0.9391; test set mean 

absolute error range: 2.30-2.92 kJ mol-1). Furthermore, the linear regression model generated from 

oxidative addition reactions in toluene is very similar to the THF-based model, and the 

experimentally-determined ΔG‡
OA in both solvents have a strong linear correlation with one 

another (Figure S6). These observations indicate that the use of THF or toluene has minimal effect 

on relative oxidative addition rates within our data set. Our quantitative structure-reactivity map 

thus serves as an intrinsic oxidative addition reactivity scale for (hetero)aryl chlorides and 

bromides, accounting for sterics, electronics, and the strength of the C–X bond, with accurate 

predictions possible across a range of rates that spans more than 7 orders of magnitude (Figure 

1F). 

The generality and predictive power of this reactivity map is a direct result of its 

mechanistic foundation. Mechanisms for aryl halide oxidative addition to Pd(0) have been 

extensively studied both computationally19–22 and experimentally,23–27 and are generally proposed 

to proceed via initial coordination of the aromatic π-system to Pd (Figure 2A). Two bonding 

extremes can be envisioned for the π-complex intermediate, where the degree of polarization of 

the coordinated C=C or C=N bond in the substrate influences partial charge distribution in the π-

complex. From this intermediate, two types of oxidative addition transition state have been 

proposed: a 3-centered, relatively non-polar transition state involving simultaneous Pd–C and Pd–

X bond formation, and a polarized transition state with C–X heterolytic bond cleavage occurring 

alongside Pd–C bond formation; this latter pathway resembles the proposed mechanism for 

nucleophilic aromatic substitution (SNAr).24,27 

The specific molecular descriptors in our model provide mechanistic insights into several 

aspects of oxidative addition reactivity. ESP1 is related to the electrophilicity of the carbon 

undergoing oxidative addition, reflecting the degree of partial positive charge in the π-complex 

intermediate and transition state: a larger positive ESP1 leads to a smaller ΔG‡
OA and thus faster 

oxidative addition. In contrast, ESP2 reflects the degree of negative charge on the adjacent atom 

(C or N), where a larger negative ESP2 leads to a faster oxidative addition. Considered together, 

these ESP terms indicate that a more polarized C=C or C=N bond in the substrate leads to faster 

oxidative addition. It follows from this analysis that the ESP at Pd in the intermediate and/or 

transition state should also affect the oxidative addition rate, with a larger positive ESPPd 

correlating with faster oxidative addition. We have confirmed this by determining ESPPd for a set 

of 11 calculated π-complex intermediates and 6 transition states (Figures S40-56). Remarkably, 

there is a linear correlation between ESPPd for the π-complexes and ΔG‡
OA (Figures 2B, S57), 

revealing the significant effect that substrate-catalyst bonding has on the electronic structure of Pd. 

While the influence of ancillary ligands is often invoked to explain organometallic reactivity, the 

substrate itself clearly has a profound impact on the reactivity of the metal center.  
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Figure 2. Mechanistic aspects of oxidative addition are revealed by reactivity mapping with 

molecular descriptors. (A) General mechanism for oxidative addition to LnPd(0), with π-complex 

intermediate preceding either Pd insertion into C–X bond, or an SNAr-like displacement of X-. (B) 

ESPPd for calculated π-complex intermediate structures correlates with oxidative addition rates; 

structures for 7 of 11 examples shown. (C) Calculated structures of π-complex intermediates reveal 

how steric strain induced by R1 and R2 (here, –CF3 groups) in 2-halopyridines affect oxidative 

addition reactivity in equal proportions. 
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Analyzing how the substrate binds to the catalyst also sheds light on the observed equal 

weights of the steric A-values for R1 and R2 in affecting ΔG‡
OA for the 2-halopyridine substrate 

series. Larger substituents in these positions destabilize the π-complex intermediate and oxidative 

addition transition state through steric repulsion between the bound substrate and the ancillary 

phosphine ligands. Because the Pd center coordinates to the C=N bond, substituents adjacent to 

either C or N will occupy roughly equivalent positions with respect to the phosphines. Comparing 

the calculated structures of the π-complex intermediates for 2-chloropyridine to its 3- and 6-

trifluoromethyl substituted analogues illustrates this feature of the substrate-catalyst interaction 

(Figure 2C). Importantly, this mechanistic insight into equal steric effects for R1 and R2 flows 

directly from our quantitative reactivity map. 

To test our hypothesis that this oxidative addition reactivity map will be generally 

applicable in cross-coupling catalysis, we applied our ΔG‡
OA predictions to two case studies. The 

first test case involves modeling the initial rates of Sonogashira coupling reactions, which are 

drawn from published data sets containing 410 individual rates (29 substrates and 17 catalysts, 

Figure 3A).28,29 We first predicted ΔG‡
OA for each of the 29 aryl bromides based on the equation 

from Figure 1D; while 9 of these substrates are included in our experimental oxidative addition 

data set, the other 20 are out-of-sample predictions. Remarkably, these predicted ΔG‡
OA values are 

linearly-correlated with the corresponding ln k values for all 17 investigated phosphine ligands 

(Figure S69-70); three of these – for P(nBu)3, PCy3, and P(tBu)3 – are shown in Figure 3B. These 

correlations hold despite the fact that the Sonogashira reactions are conducted under different 

conditions (higher temperature, different solvent) than our oxidative addition experiments, and the 

fact that our predicted ΔG‡
OA is derived from a model using only PCy3. Thus, ΔG‡

OA can be applied 

to quantitatively predict the outcome of catalytic reactions for out-of-sample substrates, out-of-

sample reaction conditions, and even out-of-sample catalysts. 

To further test the generality of ΔG‡
OA in predicting reaction rates, we assembled a single 

and unified linear model that accurately predicts ln k for the entire 410 Sonogashira reaction data 

set. Combining ΔG‡
OA with two calculated descriptors for the free phosphines – the average ESP 

at phosphorus, and the percent buried volume (%Vburr) at phosphorus30 – we obtain excellent linear 

fit and predictive power with initial rates spanning 10 orders of magnitude (Figure 3C). These 

phosphine descriptors outperform the analogous descriptors calculated for the corresponding mono 

or bis(phosphine) Pd(0) complexes (Figure S71-72). The training and test sets used to build this 

model are from a random 60/40 split of substrate set #1, which focuses on electronic effects (Fig 

3A). To challenge the model, we reserved substrate set #2, which focuses on steric effects, as an 

external validation set. Despite the fact that the training set contains no substrates with ortho-

substituents, and therefore no information about steric effects on reaction rate, the model is still 

able to predict ln k for substrate set #2 with a mean absolute error of 0.729 (Q2 = 0.8009). Only 

two reactions are identified as significant outliers (MAE > 2): 2,4,6-triisopropylphenylbromide 

with P(tBu)3 and PAd2(tBu), representing the most sterically-hindered substrate with the two 

largest ligands. The robustness of this model in the face of significantly different out-of-sample 

predictions stems directly from the generality of the reactivity map. The substrate molecular 

properties – electronics, sterics, and C–X bond strengths – are all encoded within the predicted 

ΔG‡
OA values by virtue of our diverse oxidative addition training set.  

Improved prediction accuracy can be achieved by breaking the 410-member data set into 

two subsets based on phosphine ligand size. One set includes reactions using 13 phosphines with 

a %Vburr < 75, and the other includes the 4 largest phosphines (%Vburr > 75). For the small 
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phosphine set, a slight reweighting of the three descriptors leads to smaller MAEs for training, test, 

and external data sets (Figure 3D). For the large phosphines, we used a 70/30 training/test split 

due to the smaller number of data points. We also determined that a simpler, two-descriptor model 

is superior, with only ΔG‡
OA and %Vburr needed to make accurate predictions (Figure 3D). This 

partition into small and large phosphine sets is consistent with prior studies that describe a change 

in mechanism, where oxidative addition occurs from either bis(phosphine) or mono(phosphine) 

Pd(0) intermediates.31,32 Notably, the predicted ΔG‡
OA is effective in both cases. 

 

Figure 3. Translating oxidative addition predictions to successful quantitative models of 

catalytic reactivity. (A) General reaction scheme and chemical space explored for 410 

Sonogashira reactions, with two distinct substrate sets; initial rates determined previously 28,29. (B) 

Univariate linear correlations between predicted ΔG‡
OA for oxidative addition to Pd(PCy3)2 and ln 

k for Sonogashira coupling with three phosphine ligands; out-of-model substrates represent ArBr 

molecules not included in oxidative addition training set. (C) Unified three-descriptor model for 

predicting Sonogashira ln k for the entire set of 410 reactions (29 substrates, 17 ligands), with data 

partitioned into training (60% of substrate set #1), test (40% of substrate set #1), and external 

validation (substrate set #2). (D) Subset of the model focusing on 13 “small” phosphines with 

%Vburr < 75, with three descriptors. (E) Subset of the model focusing on 4 “large” phosphines with 

%Vburr > 75, with only two descriptors required. 
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Our second case study tests the use of ΔG‡
OA in predicting site selectivity for cross-

coupling when multiple reactive positions are present (Figure 4). Previous approaches to this 

problem include NMR spectroscopic analysis,33 the distortion-interaction transition state model,34 

and qualitative arguments based on empirical observations;13,35 however, none of these methods is 

able to rapidly and accurately predict site selectivity for a new substrate based only on its structure. 

In our case, each of the descriptors in the ΔG‡
OA prediction model are easy to obtain for each 

halogenated site within a molecule; therefore, one can determine the most reactive site in a 

substrate (or combination of substrates) simply by finding the lowest predicted ΔG‡
OA. Assessing 

a series of multihalogenated heterocycles with reported experimental selectivities35 reveals that 

these ΔG‡
OA predictions are correct across a diverse range of substrates, including many 

heterocycle classes (isoquinolines, diazines, 5-membered rings) not included in our initial training 

set (Figure 4A). These predictions also correctly identify when a C–Cl position is more reactive 

than a C–Br position in the same molecule, and vice versa.  

Because these predictions are based on relative ΔG‡
OA, they are also quantitative. A large 

ΔΔG‡
OA indicates very high selectivity for one site over another, while a small ΔΔG‡

OA indicates 

poor or potentially tunable selectivity. Three specific examples of this are given in Figure 4B. For 

Suzuki-Miyaura coupling of methyl 2,6-dichloronicotinate, our model predicts ΔΔG‡
OA = 5.6 kJ 

mol-1, favoring C6 by ~10:1 at room temperature. The observed selectivity using Pd(PPh3)4 as a 

catalyst at 65 °C is 5:1 C6 to C3, corresponding to ΔΔG‡ = 4.5 kJ mol-1.36 For 3,6-dichloro-4-

methoxypyridazine, our model predicts ΔΔG‡
OA = 1.0 kJ mol-1, favoring C6 by only ~3:1 (though 

this difference is smaller than the model MAE). The observed selectivity using Pd(PPh3)4 as a 

catalyst at 100 °C is 3:1 C6 to C3, corresponding to ΔΔG‡ = 3.4 kJ mol-1.37 Finally, the predicted 

ΔΔG‡
OA for 2-chloro-5-bromopyridine is 0.2 kJ mol-1, indicating effectively no intrinsic 

selectivity. We confirmed this by carrying out an oxidative addition reaction between this substrate 

and Pd(PCy3)2, which gives a 1:1 mixture of C2 and C5-derived Pd(II) products. Notably, previous 

studies of Buchwald-Hartwig amination site selectivity with this substrate reveal ligand-controlled 

reactivity at either C2 or C5.38,39 The realization of tunable selectivity in this case is likely aided 

by the similar reactivity of these two positions, as revealed by our reactivity map. 

As an additional demonstration of how ΔG‡
OA could be used in synthetic planning, we have 

applied these predictions to the reported synthesis of an advanced intermediate toward 

Dragmacidin D (Figure 4C).40 This sequence relies on two regioselective cross-coupling reactions 

when multiple Ar–Br positions are present. Predicted ΔG‡
OA values for each of these sites is 

consistent with the observed selectivity. Thus, applying ΔG‡
OA predictions to hypothetical 

synthetic sequences could be used to plan a selective route and/or prioritize different potential 

routes prior to commencing experimental investigations.  

As we expand this quantitative reactivity map to incorporate additional sets of reaction 

conditions and catalysts, we anticipate it will not only continue to shed new light on the 

mechanistic aspects of cross-coupling, but also find widespread use in refining and augmenting 

computer-aided synthesis design and automated reaction discovery/optimization. We also 

anticipate that this approach of building predictive reactivity models based on individual steps in 

catalytic mechanisms will lead to more accurate and more general predictions that can be applied 

to many catalytic transformations. 
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Figure 4. Site selectivity predictions for cross-coupling reactions. (A) Predicted and observed 

selectivities for multihalogenated heterocycles undergoing Suzuki-Miyaura cross-coupling 

reactions. (B) Selectivity predictions for dihalogenated heterocycles with small ΔΔG‡
OA between 

the two sites, and observed product ratios consistent with predictions. (C) Application of 

selectivity predictions to reported synthesis of the core structure of Dragmacidin D.40 
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