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Abstract

Molecular dynamics (MD) simulations have become a standard tool to correlate the
structure and function of biomolecules, and significant advances have been made in
the study of proteins and their complexes. A major drawback of conventional MD
simulations is the difficulty and cost of obtaining converged results, especially when
exploring potential energy surfaces containing considerable energy barriers. This
limits the wide use of MD calculations to determine the thermodynamic properties of
biomolecular processes. Indeed, this is true when considering the conformational
entropy of such processes, which is ultimately critical in assessing the simulations’
convergence. Alternatively, a wide range of Structure-Based Models (SBMs) has
been used in the literature to unravel the basic mechanisms of biomolecular
dynamics. These models introduce simplifications that focus on the relevant aspects
of the physical process under study. Because of this, SBMs incorporate the need to
modify force field definition and parameters to target specific biophysical simulations.
Here we introduce SBMOpenMM, a Python library to build force fields for SBMs, that
uses the OpenMM framework to create and run SBM simulations. The code is
flexible, user-friendly, and profits from the high customizability and performance
provided by the OpenMM platform.

Background

Proteins are structurally fluctuating macromolecular systems that perform the vast
majority of functions of biological cells. Protein dynamics have different timescale
manifestations related to various physical events, ranging from fast local flexibility to
slower collective motions.1 The movements of protein atoms ultimately govern the
kinetics and thermodynamics of folding, binding, catalysis, among other biochemical
activities.2–4

Molecular dynamics (MD) has become an essential tool for the computational study
of biological polymers. Detailed physical observations can be directly obtained that
otherwise are not directly accessible by traditional wet-lab experimental studies.
Nonetheless, the computational cost for running MD simulations still hinders its
application for many relevant processes with significant activation barriers. Many
efforts have been devoted to enhance conformational space sampling by improving
searching algorithms,5 simplifying force fields (for a recent review, see reference 6),
and accelerating algorithm execution through code optimization and parallelization.7
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Among several MD techniques, dating back to the pioneering work of Warshel and
Levitt,8,9 Structure-Based Models (SBMs) emerged as a simplified methodology for
studying protein folding dynamics.10,11 SBMs are based on simplifying assumptions
rooted in energy landscape theory for protein folding that capture essential physical
aspects of natural proteins and bridge the gap between physical complexity and
computational efficiency. These simplifications allow us to obtain a reasonable kinetic
and equilibrium characterization of protein systems to be studied within the
framework of statistical mechanics.

SBMs idealize the energy landscape based on two main ideas. First, natural proteins
have evolved to avoid kinetic traps along the folding coordinate; this prevents the
formation of long-lived folding intermediaries containing non-native interactions that
could frustrate the folding reaction. Secondly, protein evolution has maximized the
energy gap between the natively folded state and other competing configurations;
these focused simplifications increase the number of protein molecules that populate
the native basin and remove the excess of kinetic frustration.12,13 SBMs exploit these
facts by focusing on the native structure geometry and contact information, exploring
a conformational landscape entirely based on the native topology constraints. In this
way, one can separate energetic from topological contributions, showing that
essential features of protein folding are mainly encoded by the organization of the
folded state.14 Following the same concept, SBM simulations have also been used to
study protein-protein binding mechanisms or ligand-induced conformational
changes. Additionally, multi-basin SBM potentials have served to study other
complex mechanisms in protein dynamics, such as folding to competing native
configurations, conformational shifts, domain swapping, knotting, or drastic structural
rearrangements between functional and dysfunctional conformations. For a review
on SBM applications, see reference 15, and for a review on the evolution of SBM
models and their varied types of implementations for specific biophysical problems,
see reference 16.

Easy customization of force field terms and parameters is typically a challenge for
molecular simulation packages. Because SBM is an ongoing practical and
meaningful research methodology, it would greatly benefit from a fast, accessible,
flexible, and easy-to-set-up implementation that facilitates simulation and force field
experimentation. To this end, we have developed SBMOpenMM, a Python library, to
set up custom SBMs using the OpenMM toolkit framework for MD simulations.17 The
Python code is flexible, user-friendly, and profits from the high customizability and
performance provided by the OpenMM platform. We hope this will foster further
research in the field in an open-source collaborative manner.

We validated the library by comparing SBMOpenMM energies to ones derived from
the Gromacs implementation of the SMOG force field for identical protein
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conformations. Additionally, we run a test with several simulations to show that
derived dynamic profiles match experimental crystallographic temperature factors.
Finally, we exemplify its use by simulating the two-step folding process of an
87-residue protein.

Implementation

The SBMOpenMM software addresses the problem of compiling custom force fields
for studying protein systems using SBM simulations. Currently, the program has
built-in default models from popular SBM implementations, including single- and
multi-basin approaches. However, the program structure serves as a base to
construct further SBM implementations by providing an open-source library in which
new force field terms can be easily added and adapted to tackle different biophysical
questions.

SBMOpenMM uses two files as input: a Protein Data Bank (PDB) format file for the
protein structure and a contact file for specifying the native contact interactions (see
Section SI I.A for detail on how to obtain this file). The topology and the set of
bonded interactions are defined from the structure’s connectivity. These include
definitions of atoms participating in bonds, angles, and proper, improper, and planar
torsions, together with their equilibrium distances. Likewise, nonbonded interactions
are defined from the atomic pairs listed in the contact file, and their equilibrium
distances are calculated from the input structure. This connectivity information,
together with the set of force constant parameters, is used by the library to construct
the relevant forces and system objects, directly employed by the OpenMM MD
engine to start a simulation.17

The SBMOpenMM library contains methods to define the SBM force field
composition and set default or custom models and parameters. To this end, the
Python library is composed of three major classes (see also Figure S1):

➔ geometry

➔ system

➔ models

The first class, geometry, contains methods for calculating geometrical parameters
of the input structure, including equilibrium distances of contacts, bonds, angles, and
torsional degrees of freedom.

The system class contains all the SBM system definitions, including the connectivity,
initial coordinates, force field parameters, and the OpenMM force objects. Several

4

https://paperpile.com/c/QeiJGZ/Yyqgt


attributes and methods inside this class allow customizing the forces and parameters
in the SBM force field before creating an OpenMM system object.

Finally, the models class automatizes the generation of default SBMOpenMM
system-class objects containing the default force field parameters to create
coarse-grained or all-atom (AA) SBMs, or their corresponding multi-basin versions,
ready to be simulated with the OpenMM engine.17 This class works as a container of
current pre-defined SBMs, and it is the place for future SBM implementations.

A simple Python code to run a default AA SBM simulation with OpenMM is:

import sbmOpenMM

from simtk.openmm.app import *

from simtk.openmm import *

from simtk.unit import *

sbmAA = sbmOpenMM.models.getAllAtomModel(pdb_file, contact_file)

integrator = LangevinIntegrator(temperature*kelvin, 1.0/picosecond,

0.002*picoseconds)

simulation = Simulation(sbmAA.topology, sbmAA.system, integrator)

simulation.context.setPositions(sbmAA.positions)

simulation.reporters.append(DCDReporter('AAModel_traj.dcd', 10000))

sbmReporter = sbmOpenMM.reporter.sbmReporter('AAModel_energy.data',

100, step=True,

potentialEnergy=True,

temperature=True,

sbmObject=sbmAA)

simulation.reporters.append(sbmReporter)

simulation.step(n_steps)

Here, the sbmAA object, created with SBMOpenMM, contains the SBM “topology,”
“system,” and “positions” attributes that are to be passed to the OpenMM library.17

After the sbmAA object is created, the usual steps for running simulations with
OpenMM follow. First, an OpenMM integrator object is created and loaded into an
OpenMM simulation object. Here, we pass the topology and OpenMM system

attributes contained in the sbmAA object. Then, the initial positions in the sbmAA

object are passed to the simulation OpenMM context attribute. In the example, to
write simulation data into files, we define two reporter classes; a trajectory reporter
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(an OpenMM DCDReporter class) and a state data reporter (StateDataReporter
class) for storing energies and other simulation parameters. The sbmReporter is an
inherited class of the OpenMM StateDataReporter that allows communicating the
SBM energies if an SBM object (here sbmAA) is passed to it with the sbmObject

option. Finally, the last line in the code will advance the simulation for n_steps

number of steps, thus starting the MD simulation.

Similarly, for creating a coarse-grained alpha-carbon (CA) SBM, the SBM system

class definition changes to:

sbmCA = sbmOpenMM.models.getCAModel(pdb_file, contact_file)

The general workflow for setting up a custom SBM simulation with SBMOpenMM is
shown in Figure 1 (for details, see Section S-I). Detailed steps for setting a custom
SBM force field are given in Section S-II.A in the Supplementary material. Also, for a
description of other pre-defined models in the models class, see section S-II.B.

Figure 1. Workflow to set up a simulation with SBMOpenMM. Only a PDB and a contact file are
needed for running SBM simulations. The library contains automated methods to set up the geometric
and force field parameters and generate the force objects that will act during the simulation. When all
the parameters and forces are ready, SBMOpenMM generates an OpenMM system class object for
running MD simulations. Most of these steps can be user-customized, including forces; however, to
make a faster deployment of models, default SBMs can be called directly from the model class.
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The dumpStructure() method inside the SBM system class can be used to
generate PDB format files containing only the atoms in the SBM system during the
trajectory:

sbmCA.dumpStructure(‘ca_output_file.pdb’)

The dumpForceFieldData and loadForcefieldFromFile methods inside the
SBM system class can be used to track or manually modify force field parameters.
These methods can also be helpful when importing other SBMs into this library.

The implemented force equations have been validated by showing that the energies
produced by them are essentially the same as those produced by other SBM
implementation software when using the same force field parameters (see Figure S2
in the SI-III section).

For further examples and additional information on creating and customizing SBM
force fields with SBMOpenMM, please refer to the supplementary information and
the hosting website’s documentation and tutorials (see Data availability section).

Exploring SBM simulations for diverse protein
systems
To examine the dynamic information produced by the SBMOpenMM library, we
tested the code in a dataset of 110 single-chain protein structures (Table S1). The
dataset is structurally diverse, representing a range of protein sizes and topologies
(Figure S2). Several simulations were carried out to estimate the temperatures at
which the folding transitions (Tf) occur. Dynamic profiles (calculated as
root-mean-square fluctuations) at different relative temperatures were compared to
the corresponding crystallographic temperature factors to determine correlation
values (Figure S3). At temperatures lower than the Tf, average correlations are high
(0.66); however, they start to decrease significantly at temperatures above 0.85Tf. At
temperatures above the Tf, the systems are mainly unfolded (Figure S4), and
correlations decrease significantly (see Section S-III for details on the simulations,
dataset compilation, and further discussion). This result shows that SBMOpenMM
can produce dynamic profiles with good correlations to experimental information for
studying folded configurations and consistent behavior for studying folded to
unfolded transitions in protein systems.

Example of use

7



To portray the SBMOpenMM library’s usage, we ran folding simulations for the
monomeric structure of the FoxP1 DNA-binding domain.18 Figure 2 shows five out of
the fifteen folding/unfolding equilibrium replicas ran for this system, using an AA
SBM at the folding temperature of the system (see Sections SI-III.C and SI-IV.A for
details, including the rest of the replicas). The native contacts employed to define the
SBM were calculated using the shadow contact algorithm.19 The code for running the
simulations is identical to the one shown in the Implementation section above. The
simulations show different numbers of folding/unfolding transitions, ranging from one
to eight, indicating independence on the course of the phase space sampled among
them (Figure 2 and S1).

Figure 2. FoxP AA SBM folding simulations. Five of the fifteen SBM replicas at the folding
temperature of the SBM system are shown. Each plot shows the evolution of the root-mean-square
deviation (RMSD) to the native structure in nanometers. High and low RMSD values represent the
time spent by the trajectory at the unfolded and folded configurations, respectively.

We analyzed the simulated trajectories using the Markov-State Model (MSM)
framework implemented in the PyEMMA package20 (for details on MSM construction
and validation, see Section SI-IV.B). The system free energy was projected onto the
two slowest time-lagged independent component analysis (TICA) dimensions21

(Figure 3B). The simulation reproduces the experimental folding mechanism of
FoxP1 as a two-state folder.22

To follow the unfolding mechanism progression, we estimated the probability of
contact formation at the folded, transition-state (TS), and unfolded regions (Figure
3C). While the folded configuration retains most of the native contacts, it shows
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diminished interactions for the contacts made by the N- and C-terminal residues
(Figure 3C, left matrix “b” triangle). Most native contacts are already lost at the TS;
however, contacts made between strands 1, 2, and 3 hold the structure and are the
last to be broken (Figure 3C, right matrix “c” triangle).

Figure 3. Analysis of the FoxP1 SBM folding simulation. (A) Tertiary structure and topological
arrangement of the FoxP1 domain. Loops in this topology diagram are not in scale with their
sequence length. (B) Free energy profile projected onto the two slowest time-lagged independent
component analysis (TICA) coordinates (IC1 and IC2) based on native contact distances. FoxP1
folds in a two-state mechanism, clearly visible as two characteristic minima; the folded state (left) and
the unfolded state (right). (C) FoxP1 tertiary structure per-residue contact map (a); and contact
formation probability at the folded state (b), transition state (c), and unfolded state (d) for the SBM
folding simulation.
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Discussion
Due to the drastic reduction of the number of computed interactions (i.e., non-native
and explicit solvent interactions are not taken into account), SBM simulations
converge extraordinarily fast compared to standard MD, allowing, for example,
simulating the folding of a small protein in equilibrium conditions by using only
modern personal computer hardware, but also allowing to explore other biomolecular
processes involving considerable energy barriers. Even though SBMs simplifications
can overlook relevant pathways that include non-native interactions or explicit
solvent definitions, an idealized study can serve many purposes before moving to
more complex and definitely more expensive representations.

SBMs are used to understand the topological restrictions that a specific fold imposes
on the protein's dynamical behavior. By later, including different or additional force
field terms, deviations from this idealized model can be attributed to the specific
physical parameters incorporated in the simulation. To this end, we have presented
in this article a high-level language (Python) implementation of SBMs using OpenMM
as the engine for molecular dynamic simulations. Our tool provides a platform to
deploy implementations of SBMs, facilitating the programmatic development of force
fields within an efficient and community-based molecular simulation package.

We have portrayed the use of the SBMOpenMM library in a study of the protein
folding of a small-protein system, from the conformational sampling to the calculation
of the free-energy surface and its kinetic hierarchization using a Markov state model
analysis. SBMs can serve as an initial step before moving into simulations employing
state-of-the-art MD force fields following adaptive sampling techniques to study
complex biomolecular phenomena.23 In such approaches, relevant conformations,
carefully extracted from the simplified simulation, can be used as seeds to optimize
the phase-space sampling by more costly simulations, making SBM a relevant and
practical tool to conduct complex theoretical research in protein biophysics.9,24

Data and Software Availability
The SBMOpenMM library is publicly available at
https://github.com/CompBiochBiophLab/sbm-openmm under MIT license. The
package is written in Python 3, and its dependencies include OpenMM 7.0
(http://openmm.org/) and NumPy 1.15 (https://numpy.org/) or above. The
simulations’ analysis was carried out using the MDTraj 1.9 (https://mdtraj.org/) and
PyEMMA 2.5 (http://emma-project.org/) packages, while graphics were generated
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with Matplotlib 3.3 (https://matplotlib.org/) and Seaborn 0.11
(https://seaborn.pydata.org/) Python libraries.

Associated Content
Supporting Information Available: The supporting file contains a more detailed
explanation of how the folding SBM molecular dynamics of FoxP1 were run and how
the Markov State Model Analysis was carried out. The structure, force field
parameters, and simulated data for this system are available in a public repository
(https://doi.org/10.34810/data31). The supporting file also contains validations and a
description of the implemented force objects in the SBMOpenMM library and the
available default SBMs.
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