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Abstract
The prediction of metabolism and biotransformation pathways
of xenobiotics is a highly desired tool in environmental and life
sciences. Several systems predict single transformation steps or
complete pathways as series of parallel and subsequent steps.
Their performance is commonly evaluated on the level of a sin-
gle transformation step. Such an approach cannot account for
some specific challenges that are caused by specific properties
of biotransformation experiments. That is, missing transforma-
tion products in the reference data that occur only in low con-
centrations, e.g. transient intermediates or higher-generation
metabolites. Furthermore, some rule-based prediction systems
evaluate the performance only based on the defined set of trans-
formation rules. Therefore, the performance of these models
cannot be directly compared. In this paper, we introduce a
new evaluation framework that extends the evaluation of bio-
transformation prediction from single transformations to whole
pathways, taking into account multiple generations of metabo-
lites. We introduce a procedure to address transient intermedi-
ates and propose a weighted scoring system that acknowledges
the uncertainty of higher-generation metabolites. We imple-
mented this framework in enviPath and demonstrate its strict
performance metrics on predictions of in vitro biotransforma-
tion and degradation of xenobiotics in soil. Our approach is
model-agnostic and can be transferred to other prediction sys-
tems. It is also capable of revealing knowledge gaps in terms of
incompletely defined sets of transformation rules.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Data requirements for environmental risk assessments of chem-
icals are rapidly increasing, for example in regulatory processes
at the European (cf. REACH [1]) and global level, but also for
the development of new chemical products with more benign
profiles. This includes increasing knowledge about transfor-
mation products of these chemicals in the environment and in-
creases the need for prediction methods of metabolism and mi-
crobial biotransformation, along with the transformation path-
ways.

Conceptually, biotransformation pathways represent the
chemical changes a given starting compound (referred to as
root compound in the remainder of the text) undergoes upon
biotransformation. They are constructed from compounds (i.e.
molecular structures) connected by reactions. The pathway
structure can be represented as nodes and edges in a graph. Fig-
ure 1 shows the Benzyl Sulfide pathway from EAWAG-BBD as

Figure 1: The pathway Benzyl Sulfidey from the EAWAG-BBD
package. Further details of the pathway are available at en-
viPath [2].

an example.
Existing methods for the prediction of biotransformation

products and pathways can be categorized as either knowledge-
based, machine learning-based, or hybrid. Each of the two for-
mer approaches has its strengths and weaknesses. Knowledge-
based approaches use expert knowledge on the basis of sets of
transformation rules, in general leading to a combinatorial ex-
plosion caused by the overly general nature of the rules. Ma-
chine learning-based approaches predict pathways solely based
on existing data, the performance being limited by the lack of
large data sets.

Hybrid methods, such as machine learning-based relative
reasoning models [3, 4, 5] predict probabilities of individual
transformation reactions by combining knowledge- and ma-
chine learning-based approaches. They are constructed using
sets of biotransformation pathways and transformation rules as
training data, such as the EAWAG-BBD [6] and EAWAG-SOIL
[7] packages. These models predict which of the transformation
rules that are applicable to a given compound will be correct for
that compound.

Biotransformation or metabolism studies from laboratory
experiments or environmental observations are the basis for
both training and evaluating these models and usually report



only transformation products that were formed in high quanti-
ties. This is because low concentration metabolites are consid-
ered less relevant and are more difficult to analyze and identify.
Therefore, metabolites formed in low concentrations are less
likely to be reported. This becomes more relevant for higher
generation metabolites, because pathways typically diverge into
multiple branches and transformations occur on different time
scales. Both effects lead to decreasing maximum concentra-
tions with increasing depth in the pathway. Thus, uncertainty
about the actual formation of unreported metabolites increases
for higher generation metabolites.

The performance of prediction models is typically deter-
mined by comparing the predicted transformations for each in-
dividual compound against the associated transformation prod-
ucts in the experimental reference pathway. This approach does
not take into account the position of the compound or reaction
in the pathway. Problems arise when:

• Multi-step reactions are represented as a single step in
the experimental data.

• Intermediate metabolites are not observed or not eluci-
dated.

• Transformation products are incorrectly assigned to the
wrong educt.

• Concentrations of downstream metabolites become too
low to be observed.

• Rule-based evaluation systems fail to address observed
transformations not covered by the transformation rules.

In this paper, we address these shortcomings by introduc-
ing a new Multi-Generation evaluation approach that addresses
some of the problems of the state-of-the-art Single-Generation
evaluation approach. Multi-Generation evaluation explicitly in-
cludes the compound positions in the graph. Instead of only
comparing the reactions for each compound independently, en-
tire predicted pathways are compared to experimentally derived
validation pathways. Predictions at higher depth get reduced
weights to account for the increased uncertainty due to higher
likelihood of minor transformation products not being reported
in the experimental reference pathway.

The new evaluation approach further introduces a way to
treat intermediate metabolites in the predicted pathway. These
metabolites are quickly transformed to downstream products
and therefore exist only in very low concentrations. As a conse-
quence, they are often neglected or not analyzed in experimental
reference pathways. Single-Generation evaluation approaches
tend to incorrectly penalize prediction of these intermediates.
However, the new Multi-Generation approach can take them
into consideration when the downstream products are known.
Their prediction is not penalized during the scoring process, and
the depths of other downstream compounds in the pathway are
adjusted accordingly.

With our new evaluation approach we evaluate whole path-
way predictions more realistically than before, independent of
the underlying set of transformation rules, more in line with the
expectations of experimentalists, and more comparable across
models. Therefore, we propose to consider the pathway holisti-
cally upon evaluation of predictive performance.

Overall, our main contributions are: 1. A new scoring sys-
tem that quantifies the agreement between two biotransforma-
tion pathways. 2. Consideration of compound position (path-
way depth) information in the evaluation of pathway predic-
tions via scoring weights. 3. Consideration of intermediate
metabolites in the evaluation of pathway predictions. 4. Use of

conditional probabilities for depth considerations in predicted
biotransformation pathways. This will enable further improve-
ments of the prediction models in future work. Our methodol-
ogy is a special case of graph analysis that is particularly useful
for (bio)degradation or metabolic pathways and chemical reac-
tion networks.

1.1. Background & Related Work

In this section, we will first give an overview of state-of-the-art
prediction systems for biodegradation pathways and their meth-
ods. Then we will summarize related work to our proposed
evaluation of prediction systems for biodegradation pathways.

1.1.1. Biodegradation

Biochemical Network Integrated Computational Explorer
(BNICE) [8] is a framework that generates all known reactions
for compounds. It uses the set of enzyme reaction rules based
on the enzyme commission (EC) classification system. BNICE
generates metabolic pathways by first determining functional
groups contained in the root compound, and then generates as-
sociated products if the reaction rules are applicable. The pro-
cess is repeated on each of the products in successive genera-
tions. The iteration terminates when a threshold is reached, or
when no new compounds are created.

METEOR [9] provides the option of knowledge based pre-
diction methods as well as machine learning approaches. The
knowledge based option utilizes a combination of Absolute and
Relative Reasoning in their predictions of reactions. The pro-
cess commences by applying biotransformation rules to the
starting compound, and these generate potential metabolites.
The absolute reasoning process then assigns a level of belief
to each biotransformation [10, 11]. Biotransformations that sat-
isfy the absolute reasoning threshold preset by the user are then
ranked in the relative reasoning process. The process uses a
relative reasoning threshold to calculate the resulting relative
hierarchy. Static Scores and Site of Metabolism Scoring are
other prediction options that make use of machine learning tech-
niques. The first utilizes an occurrence ratio – actual occur-
rences over all possible occurrences. The latter further consid-
ers similarity on additional chemical properties – attributes from
generated fingerprints and molecular weights. The processes in
each of these options are repeated for all surviving biotrans-
formations, until some preset stopping conditions are satisfied,
such as reaching the maximum depth.

PathPred [12] executes predictions by first searching for
compounds from the KEGG [13] COMPOUND database that
are similar to the chosen starting compound. The results
are then used as input to search through the KEGG REAC-
TION database for matching RDM transformation patterns
[14]. These patterns are defined as KEGG atom type changes
at the reaction center (R), the difference region (D), and the
matched region (M). Products of these matching reactant pairs
are then used as input, and this process is repeated until stop-
ping conditions are reached. The Jaccard coefficient between
the query and matched compounds of each reaction is used as
the reaction score to indicate its plausibility. The average of
all individual reaction scores in the pathway gives the pathway
score.

EAWAG-PPS (formerly UM-PPS) [6] performs pathway
prediction by first determining the functional groups in the start-
ing compound, and applies biotransformation rules to determine
the transformed products. Applying these rules iteratively to the
educts would lead to combinatorial explosion, and known path-



ways were used to determine biotransformation priorities [15].
User input is used at the end of each transformation prediction,
to determine whether prediction continues downstream of the
predicted compound(s). The predicted pathway grows as this
cycle is repeated.

Biotransformer [16] combines a rule or knowledge based
approach in conjunction with a machine learning approach, to
predict metabolic reactions for compounds. It makes use of
experimentally confirmed biotransformations derived from the
literature, as well as precedence rules that were derived from
reported observations. Many of them are from the EAWAG-
PPS database. The Biotransformer Metabolism Prediction Tool
(BMPT) then uses a set of random forest and ensemble predic-
tion methods to predict reactions, for example related to Cy-
tochrome P450 enzymes (CYP450) and Phase II metabolism.
For the latter, a simple rule-based filter is applied to eliminate
the most trivial non-candidates for a few chemical classes with
known metabolism. Metabolic pathways are predicted progres-
sively starting from the root compound, one reaction at a time.

OASIS TIMES [17] predicts chemical toxicity by integrat-
ing metabolism simulators into models assessing toxicity of
both the transformation educts and products. This has im-
proved model performance significantly compared to traditional
approaches that don’t consider metabolic transformation prod-
ucts. The incorporated metabolic logic accounts for enzyme
interactions, channeling effects and depletion of highly reac-
tive intermediates. The metabolism simulator aims to correctly
reproduce experimentally observed metabolites, and uses xeno-
biotic pathway data from MetaPath [18] as a reference and aims
to reproduce the observed pathways. However, it simulates
metabolism using a complex mathematical model rather than
a rule-based approach.

1.1.2. Pathway Evaluation and Comparison

Integrated scoring systems that attempt to quantify the quality
of predictions are not always found in the systems mentioned
above. PathPred [12] computes the Jaccard index on com-
pounds in each of the predicted reactions, and uses the aver-
age of all such values in a pathway as the overall score. OA-
SIS TIMES [17] takes the union of the observed and predicted
pathways to tally true/false positives/negatives by comparing
the metabolites. Only the first false positive in a sequence of
false positives would be penalized, because the rest are con-
ditioned from it. The system can also identify intermediates,
and either reward, penalize or ignore them, based on a user-
defined parameter. Prediction performances in published work
for systems such as METEOR, BNICE and Biotransformer are
obtained only from independent tests, without integrated op-
tions to evaluate the quality of predictions on new test sets.

A related field is the prediction of graph networks using ma-
chine learning techniques. Link prediction is a core component
in many of the different approaches, such as analyzing informa-
tion directly from the graph. This includes common neighbors
[19], using metadata of the nodes from the application domain
[20], or making use of pre-existing information on the connec-
tions between nodes in the graph [21]. There are similar con-
cepts in these approaches and the work in this paper, and we
will explore them further for applicability in future work.

Research in Graph Isomorphism addresses the quantifica-
tion of similarity between graphs. Many techniques focus on
properties such as orientation or structural arrangements that
share little relevancy with biotransformation pathways. How-
ever, common metrics such as Graph Edit Distance [22] can be

useful in potential scoring systems or comparing predicted and
observed pathways. Nevertheless, in biotransformation studies,
the resulting pathways are tentative manual assignments by ex-
perts. They do not always reflect the absolute ground truth of
the underlying reaction mechanism.

In summary, the work related to predicting biodegradation
pathways so far does not take pathway structures into account.
Our work in this paper aims to fill this gap by introducing a new
approach that evaluates the predictions accordingly.

2. Methods and Experiments
In this section, we will first summarize the prediction and eval-
uation of models in enviPath [5], and then introduce our new
Multi-Generation evaluation that overcomes the limitations of
the current approach.

2.1. Single-Generation Evaluation

The standard enviPath Relative Reasoning models [5, 3, 4, 15]
use a chosen set of biotransformation pathways as training data.
The set of biotransformation rules consists of rules that were
curated by experts. All compounds in the training pathways
are independently cross-referenced with the rules for their ap-
plicability, producing effectively a quasi Boolean Matrix [23]
that describes their inter-relationships. The matrix connects the
compounds and rules in a manner similar to:

r1 r2 r3 r4 r5
c1 1 1 1 1 1
c2 0 1 0 −1 1
c3 0 0 1 0 1
c4 −1 −1 0 1 1
c5 0 0 0 0 1

with rules rn and compounds cn with n = [1, ...5] in the
training. The values in the matrix elements represent Not ap-
plicable (-1), Applicable but not observed (0) and Applicable
and observed (1). A machine learning model is trained on this
matrix and then later used to predict probabilities for the com-
bination of a new compound and the set of transformation rules.

In the Single-Generation evaluation, the predictions are
then compared on the level of single reactions to the ground
truth. That is, the known transformations are matched to the
predictions for each rule and translated into true positives, true
negatives, false positives, or false negatives. These counts then
are translated to standard performance measures such as accu-
racy, recall, or precision. Multi-label approaches are used to ag-
gregate the single transformation rule performance to one mea-
sure for the whole model. A detailed overview of the training
and evaluation process is given in previous work [3].

2.2. Multi-Generation Evaluation

In contrast to the procedure outlined above, our Multi-
Generation approach does not operate on the transformations
of each individual compound, but first predicts a whole path-
way (see next section) and then operates on the compounds as
nodes in the graph. This leads to a couple of additional aspects
that require consideration. Please note, however, that the under-
lying prediction model is identical in both approaches.

As discussed before, compounds in the first generation nat-
urally carry higher confidence in the experimental findings,
compared to transformations occurring at higher depth in the



pathway. This is due to the amount of test substance being di-
vided into multiple reaction branches and only slow conversion
over time. Thus, concentrations of higher-generation products
are lower, which makes them more difficult to confirm experi-
mentally and less likely to be reported. We therefore introduce
a scoring system within our approach to account for the increas-
ing uncertainty when comparing predicted and observed path-
ways.

This scoring system assigns rewards and penalties with
weights according to the generation of the respective com-
pounds. The resulting score for a pathway represents the agree-
ment between the predicted and observed pathways. The col-
lective scores for each of the pathways in the validation set are
used to compute conventional metrics such as recall-precision
curves. This new approach evaluates the pathway as a whole
across multiple generations of compounds. This is in contrast to
approaches in previous work where predicted reactions in each
single generation are evaluated independently.

The prediction quality of Relative Reasoning models de-
pends on the compatibility between the transformation rules and
the training set, as well as the test set. Rule sets with low com-
patibility can lead to problematic scenarios, e.g. where no appli-
cable rules can be applied to the target compound structure. In
the Single-Generation evaluation process, such scenarios would
result in all (if any) observed reactions from the educt being ig-
nored. However, if there are further reactions for the product
compound in the data, they would still be evaluated. Alterna-
tively, in the Multi-Generation evaluation approach, the predic-
tion would terminate at the initial educt and no further scores
will be rewarded besides false negatives for the observed prod-
ucts.

Figure 2 demonstrates this difference between the two eval-
uation approaches with a simple example, an experiment that
begins with compound A. The observed pathway has com-
pound A transformed to B then to C, with the reaction from
B → C described by a transformation rule (rB→C ) but none
for A → B (rA→B). The Single-Generation evaluation ap-
proach would only evaluate B → C (with a reward +) and
ignore A→ B, since no rule can be applied.

The Multi-Generation evaluation approach assigns penal-
ties to both compounds B and C for not being predicted in the
pathway. Although the model assigns a high probability to re-
action B → C, the missing transformation rule for reaction
A → B prevents any progression along that path. This puts
strong emphasis on the knowledge gap in the set of transforma-
tion rules and provides a more realistic evaluation metric for the
prediction accuracy on the overall pathway level.

2.2.1. Multi-Generation Pathway Construction

We predict pathways in the test or validation set starting from
their root compound. Each of the possible reactions is pre-
dicted using the supplied transformation rules, which can be
represented as a possible branch evolving from the educt. We
then calculate conditional probabilities for reactions according
to their position in the pathway.

This procedure takes into account the relationships between
the probabilities of upstream reactions with the current reaction.
We adjust the preset threshold value dependent on the depth and
use it in the pruning process with the resulting conditional prob-
ability. This conditional probability is defined by the product of
the probability value assigned to the current reaction, multiplied
with values from all of the upstream reactions. An example
pathway beginning from compound A is shown in Figure 3.

A B C

Observed
Pathway

rA→B rB→C

A B
Not
Evaluated

Single-
Generation

B CTP +

A BFN CFN

− −
Multi-
Generation

X

X

Reward

Penalty

Predicted

Not
Predicted

Figure 2: A scenario where a reaction from an observed path-
way is not described by any transformation rule used for train-
ing. The observed pathway has compound A transformed to
B then to C, with the reaction from B → C described by a
transformation rule (rB→C ) but none for A → B (rA→B).
The Single-Generation evaluation approach would only eval-
uate B → C (with a reward +) and ignore A → B, since
no rule can be applied. The Multi-Generation evaluation ap-
proach would penalize both compounds B and C (−) for not
being predicted.

The example shows root compound A with probabilities
PB and PC , for reactions that transform A into compounds
B and C, respectively. A probability threshold x of value
PB > x > PC is used in the example, to demonstrate the sce-
nario where compound C is predicted to be not observed. The
algorithm then continues to determine the possible reactions for
compound B, transforming to compounds D and E at the sec-
ond generation of the pathway, with respective probabilities PD

and PE .
These values are multiplied with PB , generating con-

ditional probabilities, to obtain the conditional probabilities
PB × PD and PB × PE . They are then tested against the
threshold value adjusted for reactions at second generation, at
x2. This part of the example demonstrates the scenario where
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Figure 3: The prediction process for an example pathway. PB

and PC are probabilities of reactions that would transform
compound A to compounds B and C, respectively. PD and PE

are probabilities of reactions that would transform compound
B to compounds D and E, respectively. A hypothetical proba-
bility threshold x is used to demonstrate how compounds C and
D are pruned from the pathway.

PB × PE > x2 > PB × PD , and compound D is predicted
to be not observed. This steers the pathway prediction such that
branches with high probabilities will be longer, while less likely
branches will be cut earlier. Note that while this will change the
predictions of a model, this does not introduce a new prediction
approach but rather changes the way we use the prediction in
the evaluation and application.

2.2.2. Performance Calculation

We calculate the pathway prediction performance based on
standard true/false positive/negative counts, with the notable
difference that we apply a weighting system and account for
intermediates as described below. The quantities TP , FP and
FN are computed as follows:

• TP - Compounds present in both predicted and observed
pathways count as true positives, with weights according
to their depth in the observed pathway.

• FP - Compounds that only exist in the predicted path-
way but not the observed count as false positives, with
weights according to their depth in the predicted (ad-
justed) pathway.

• FN - Compounds that only exist in the observed path-
way count as false negatives, with weights according to
their depth in the observed pathway.

These definitions are used with the following Weighting System
and treatment of intermediate metabolites.

2.2.3. Weighting System

We propose a mathematical model to compare two pathways
with multiple generations. In accordance to the natural de-
crease in experimental certainty along the pathways, the com-
pounds are assigned decreasing weights as their generation or
depth level increases. These weight values start at 1

2
for com-

pounds at generation or depth level one, and decrease by 50%

A BTP

DFP

CFN

+1/2

−1/4

−1/4

+X

−X

Observed

Not
Observed

Reward

Penalty

Predicted

Not
Predicted

Figure 4: A pathway combined from a prediction and an ob-
served pathway in the comparison process. True/false posi-
tives/negatives are determined in the comparison, and weights
are assigned according to their depths for rewards and penalty
calculations.

for each increasing level. The weights are used as multipliers to
conventional classification metrics such as counts of true/false
positives/negatives. The multipliers are then used to quantify
the agreement between predicted and experimental pathways.
We use the Jaccard Index as metric for pathway similarity. It is
defined as:

Sim =

∑
(TP × WD)∑

(TP × WD) +
∑

(FP × WD) +
∑

(FN × WD)

where TP and FP are the True and False positives, re-
spectively, and FN represents the False negatives. WD rep-
resents the weight multiplier that is dependent on the depth of
the metabolite in the pathway. For an example see Figure 4.
This metric avoids the infinite number of potential true nega-
tives1, and gives equal weight to each pathway in the validation
set independent of the pathway length. The average score from
all pathways in the validation set represents the accuracy of the
model.

2.2.4. Intermediate Metabolites

Intermediate metabolites are compounds with enhanced reactiv-
ity. They are quickly transformed to downstream metabolites,
and therefore exist only in very low concentrations. These inter-
mediates are sometimes included in the experimental data and
sometimes not. This depends on the choice of the author of
the experimental study report or the data package and the un-
derlying experimental evidence. If they are not included, the
transformation of the educt is reported to lead directly to the
downstream metabolite. While prediction of such an intermedi-
ate would be mechanistically correct, they might not be present
in the available data. Such a scenario would incorrectly in-
flate the count of false positives during the Single-Generation

1As the observed data is based on experiments where we can only
be sure of observed compounds, we can never know for sure if a not
observed compound is a truly negative or just not observed yet.



evaluation, and would be even more detrimental in the Multi-
Generation evaluation procedure. The intermediate metabolite
would be penalized, along with all metabolites downstream to
it, as they would appear at an incorrect depth in the pathway.

In order to correctly accommodate the intermediate
metabolites in the evaluation procedure, we have designed a
process that adjusts the depth level of the downstream com-
pounds accordingly. The process first determines a list of com-
pounds that are present in both the predicted and observed path-
ways. Then it checks if any of them are immediately down-
stream to one another in the observed pathway. The compound
pairs which fit this criterion are examined to test if additional
compounds are between them in the predicted pathway. These
compounds are then added to the list of intermediates. Such in-
termediate metabolites might still be correctly predicted with-
out the downstream node from the observed pathway. However,
the use of a correctly predicted downstream nodes is required
to identify them in a reliable manner and treat them properly.
In other words, we can correct the evaluation of intermediates
if and only if they have downstream products in the reference
pathway that were correctly predicted.

The list of intermediate compounds is used to adjust depth
levels in the predicted pathway accordingly. The shortest path
between each of the compounds in the pathway and the root
compound is determined using a Breadth-first search. The list
of in-between compounds is determined and the depth level
of the end compound is then decreased by the number of in-
termediate compounds that are in this list of in-between com-
pounds. The intermediate compounds are ignored by the Multi-
Generation evaluation scoring algorithm.

Figure 5 shows an evaluation example incorporating con-
cepts from both the Weighting System and the treatment of in-
termediate metabolites.

2.3. Experimental Setup

We carried out several experiments to assess the proposed eval-
uation approach. We used a combination of pathway data se-
lection as well as several experiment designs to evaluate the
validity and difference in performance compared to the Single-
Generation evaluation approach.

2.3.1. Biotransformation Pathway Data

Several sets of biotransformation pathways were used in this
work:

EAWAG-BBD The set of biodegradation pathways con-
tained in the EAWAG Biocatalysis / Biodegradation Database
package [6] contains primarily xenobiotic chemical compounds
and microbial biocatalytic reactions. Information on such mi-
crobial enzyme-catalyzed reactions carries great importance in
the fields of biotechnology and environmental research.

EAWAG-SOIL The set of biodegradation pathways in the
EAWAG-SOIL package [7] contains pesticide degradation path-
ways compiled from laboratory soil degradation studies. These
pesticides are registered in the EU, and their degradation path-
ways are freely accessible regulatory data.

From the EAWAG-SOIL package we selected diverse sub-
sets of pathways as training and test sets that evenly cover the
chemical space. This is done to obtain a representative set with-
out over-representation of certain compound clusters. The se-
lection is based on the Tanimoto similarities from Morgan2 fin-
gerprints [24]:

A C

Experiment 1/2

A BFP CTP

1/2 1/4Predicted

A B CTP

1/2Adjusted

X

X

Observed

Not
Observed

Reward

Penalty

Predicted

Not
Predicted

Figure 5: The depth adjustment process according to interme-
diate metabolites determined in the predicted pathway. Com-
pounds A and C are present in both observed and predicted
pathways, which allows compound B to be identified as an
intermediate metabolite. It can be ignored and the depth-
associated weight for scoring can be adjusted accordingly for
compound C.

T (a, b) =
Nab

Na +Nb −Nab

where Na and Nb are the numbers of 1 bits present in the
fingerprints of compounds a and b, and Nab is the number of
1 bits occurring in both fingerprints. We used the MaxMin al-
gorithm [25] to incrementally pick compounds with the least
similarity to the most similar compound from the already se-
lected set. We selected 80% of the EAWAG-SOIL pathways to
become the TRAIN-SOIL package for model training purposes.
The remaining 20% make up the TEST-SOIL package which is
to be used as a test set. We excluded pathways that are not rep-
resentative for typical organic chemistry, i.e. when their root
compounds are inorganic salts, much larger than the rest, or
contain heavy metal elements.

2.3.2. Experiment Designs

We use the set of validated biotransformation rules from the
EAWAG-BBD package to build relative reasoning models with
compound structures from pathways inside specified training



packages. We have set the probability threshold for reactions
to a low value of 0.1 for all experiments, in order to efficiently
capture differences between the two evaluation approaches. The
following are the experiment designs used for examination, and
data sets for both evaluation approaches:

Validation Test A procedure to strictly validate the accuracy
of the proposed mathematical approach that compares biotrans-
formation pathways. Three sub-procedures are performed:

• Full Pathway Evaluate each pathway against itself. The
result is expected to be 1.

• Empty Pathway Evaluate each pathway against only its
starting compound. As the comparison of the pathway
starting compound is ignored in the scoring system, the
result is expected to be 0.

• Half Full Pathways A random process is performed to
remove all but the starting compound in approximately
50% of a cloned set of pathways. Each pathway in the
original set is evaluated against the associated one in the
cloned set. Results of some metrics such as Accuracy
and Recall are expected to be close to the ratio of un-
modified pathways in the cloned set.

Evaluation with Test Sets A procedure where the entire cho-
sen list of compounds is used to train a relative reasoning model
once. Then we carry out the evaluation on the nominated test set
TEST-SOIL. This procedure is performed on these pathway set
combinations: TRAIN-SOIL, EAWAG-BBD + TRAIN-SOIL.

Evaluation with Holdout This procedure uses a random
process to select approximately 66% of the chosen molecules
to train a relative reasoning model. The model is then eval-
uated on the remaining 34% of the data. A list of com-
pounds extracted from all selected pathways is used for selec-
tion for the Single-Generation evaluation approach, and the list
of pathways is used for the Multi-Generation approach. The
process is repeated 100 times, and the results of each indi-
vidual run are averaged. This approach additionally allows
an opportunity to also repeatedly examine the model’s pre-
diction ability on data that is new to the training set. This
procedure is performed on these pathway set combinations:
EAWAG-BBD, EAWAG-SOIL, TRAIN-SOIL, EAWAG-BBD
+ EAWAG-SOIL, EAWAG-BBD + TRAIN-SOIL.

3. Results and Discussion
To assess the effectiveness and validity of our Multi-Generation
evaluation approach, we summarize the results from the pro-
cedures detailed in the Experiments section in the following.
We calculated Accuracy, Precision, Recall and Area under the
Precision-Recall Curve (AUPRC). Due to the nature of the
Multi-Generation evaluation approach, where pathways poten-
tially have an infinite number of true negatives, the false posi-
tive rate cannot be computed. In the Single-Generation evalu-
ation approach, the number of true negatives can be calculated
from the applicable transformation rules, which are neither pre-
dicted (i.e. below the threshold) nor observed experimentally.
The Area under the Receiver Operating Characteristic curve
(AUROC) is hence only available for the Single-Generation ap-
proach and is provided as an indicator.

3.1. Illustrative Evaluation of an Example Pathway

We demonstrate the main differences between the two evalu-
ation approaches on an illustrative example using the 1,1,1-
Trichloroethane pathway from the EAWAG-BBD package (Fig-
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Figure 6: The pathway for 1,1,1-Trichloroethane as given in the
EAWAG-BBD package (a), and the corresponding branch of the
predicted pathway (b).

ure 6). For simplicity and better readability, we removed false
positive predictions in Figure 6 and the evaluation below, which
would distract from the main points of this demonstration.
Please note, however, that five of these false positives are men-
tioned in the textual description [26] of the pathway as minor
products or are reported in the literature (trichloroacetic acid,
dichloroacetic acid, ethane, 2-chloroethanol, acetic acid), which
highlights the difficulty related to the incompleteness of such
minor products in the reference data. The Multi-Generation ap-
proach mitigates the problem by reduced scoring weights for
metabolites at higher depth in the pathway or zero weight for
transient intermediate metabolites. Our example demonstrates
the impact of not recognizing such intermediate metabolites.
It is indicated in the metadata of the observed pathway that
the final metabolite acetaldehyde (6) is formed indirectly from
chloroethane (4) via intermediates. Indeed, there is no trans-
formation rule in EAWAG-BBD for this transformation. There-
fore, the model predicts acetaldehyde only via ethanol (5) or
2-chloroethanol (not shown) as intermediate steps.

In this scenario, the Single-Generation evaluation approach
will return three true positives: two reactions from the root node
leading to products 2 and 3, and one subsequent reaction from
3 to 4. The predicted reaction from chloroethane (4) to ethanol
(5) is counted as false positive. The reported transformation
from chloroethane (4) to acetaldehyde (6) is not evaluated at
all, because there is no corresponding transformation rule in
the underlying set of rules. This example demonstrates that the
Single-Generation evaluation does not adequately address the
likely intermediate and the final product acetaldehyde. The re-
sulting accuracy for this example is 0.75, although the predicted



Table 1: Evaluation metrics for the illustrative example 1,1,1-
Trichloroethane from the EAWAG-BBD package.

Evaluation Approach Accuracy Precision Recall
SG 0.75 0.75 1.0
MG 1.0 1.0 1.0

Table 2: Results of validation tests performed for Multi-
Generation Evaluation. The validation process was performed
on three different modified versions of the training data itself.

Pathways Accuracy Precision Recall
BBD SOIL BBD SOIL BBD SOIL

Full 1.0 1.0 1.0 1.0 1.0 1.0
Half Full 0.51 0.47 1.0 1.0 0.5 0.47
Empty 0 0 0 0 0 0

pathway can be considered correct.
The Multi-Generation evaluation approach will return two

true positives with weight 1
2

(2 and 3 at depth = 1), one TP
with weight 1

4
(4 at depth = 2) and one TP with weight 1

8
(6

at depth adjusted from 4 to 3). The intermediate metabolite
ethanol (5) gets zero weight and does not influence the final
score. The resulting Multi-Generation accuracy for this exam-
ple is 1. The comparison of the evaluation metrics from both
approaches is summarized in Table 1. Please note that both ap-
proaches would yield lower accuracy, if the disregarded false
positives would have been included in the example. Thus, ulti-
mately the Multi-Generation accuracy would be lower (but bet-
ter reflect the reality) than the SG accuracy, because it penalizes
also the false positives predicted downstream of primary false
positives as discussed below.

3.2. Validation Tests

Results of the validation tests performed on the EAWAG-BBD
compounds are presented in Table 2. As expected, the evalu-
ated full pathways from both packages achieve 1.0 for Accu-
racy, Precision and Recall, as there are only true positives and
no false positives or negatives. The expected values for evalu-
ated empty pathways from both packages are also 0 for all three
metrics, as there are only false positives without any true pos-
itives. The “Half Full” pathways from both packages achieve
1.0 for Precision, and a value that is proportional to the amount
of empty pathways (see Table 3) for Accuracy and Recall. The
empty pathways will contribute with false negatives while the
full pathways will contribute to the true positive score.

3.3. Evaluation with Test Sets

Relative reasoning models were trained with the TRAIN-SOIL
package and the combination of EAWAG-BBD + TRAIN-SOIL
packages. In both cases we evaluated the models on the TEST

Table 3: Counts of the full and empty pathways in the validation
test process where a random 50% of pathways are emptied.

Pathways Count
BBD SOIL

Full 113 153
Empty 105 165
Ratio 0.52 0.48

Table 4: Statistics of the Evaluation with Test Sets experiments
for threshold 0.1.

Packages Accuracy Precision Recall
SG MG SG MG SG MG

BBD+TRAIN SOIL 0.53 0.09 0.34 0.1 0.66 0.36
TRAIN SOIL 0.6 0.15 0.4 0.21 0.71 0.38

Table 5: Statistics of the Evaluation with Test Sets experiments
for the whole range of thresholds.

Packages AUPRC AUROC
SG MG SG

BBD+TRAIN SOIL 0.43 0.04 0.8
TRAIN SOIL 0.41 0.09 0.82

SOIL package. Tables 4 and 5 show the results, and Figure 7
gives the associated Precision-Recall curves.

The numerical values of each metric are noticeably lower
for the Multi-Generation evaluation approach compared to the
Single-Generation approach. This has two main reasons: First,
the Single-Generation evaluation is based only on defined trans-
formation rules, whereas Multi-Generation evaluates all nodes
in the reference pathway and thus penalizes the incompleteness
of the transformation rules. Second, a wrong prediction in the
Multi-Generation approach is more detrimental, because all the
downstream nodes from this branch will be wrong as well. In
other words, for a true positive to be tallied, all upstream nodes
also have to be predicted correctly. Additionally, a false positive
will lead to even more false positives downstream. These two
reasons make the Multi-Generation approach a much harder
evaluation criterion, and thus the lower numerical values do not
simply imply a worse result.

Another point worth noting from the Multi-Generation
evaluation results is that the values for recall do not reach one
(see Precision-Recall curve, Figure 7). The gap between the
maximum recall and the value of 1.0 is caused by transfor-
mations in the reference pathways which are not covered by
transformation rules and their downstream nodes. The prod-
ucts of such reactions can therefore never be predicted cor-
rectly, no matter how low the probability threshold is and will
always count as false negatives. Moreover, as discussed above,
any downstream nodes won’t be predicted either. In con-
trast, missing transformation rules have no effect on the Single-
Generation performance, since Single-Generation is only eval-
uated on the existing rules. Thus, the maximum recall value at
probability threshold zero can be used as an indicator for the
completeness of the rules for the test set.

Furthermore, the results show that the precision values for
both approaches do not reach 1, which means the number of
false positives does not go down to 0, no matter how high
the probability threshold is set. This is expected and implies
that there are always products predicted with a high probabil-
ity that are not correct. Given that the transformation rules are
extremely general and can easily be triggered, the role of the
machine learning models is to limit this. These results simply
show that they do not predict perfectly, which will be hard to
achieve with the available data.

The data in the TRAIN-SOIL package is naturally more
representative for the evaluated TEST-SOIL package in terms
of chemical and biological properties compared to the EAWAG-
BBD package. While the EAWAG-BBD+TRAIN-SOIL config-
uration will provide better predictions for a broader chemical
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Figure 7: Precision-Recall curves for the Evaluation with Test
Sets experiments. As the data in the TRAIN-SOIL package is
more representative for the evaluated TEST-SOIL package in
terms of chemical and biological properties compared to the
EAWAG-BBD package, the relative reasoning model trained
without the EAWAG-BBD package is more compatible with the
evaluation data set. We can see that the Multi-Generation eval-
uation approach better reflects the compatibility between com-
pound structures and the transformation rules used to train the
model.

Table 6: Statistics of the Evaluation with Holdout experiments.

Packages Accuracy Precision Recall
SG MG SG MG SG MG

BBD 0.65 0.17 0.58 0.31 0.76 0.3
SOIL 0.65 0.13 0.42 0.21 0.67 0.27

TRAIN SOIL 0.65 0.13 0.42 0.22 0.66 0.25
BBD+SOIL 0.62 0.15 0.49 0.22 0.72 0.3

BBD+TRAIN SOIL 0.63 0.15 0.5 0.233 0.71 0.28

and biological space, the model trained with only the TRAIN-
SOIL package will perform better on data that share greater
chemical similarity. Therefore, the relative reasoning model
trained without the EAWAG-BBD package is more compatible
with the evaluation data set. This can be observed in the statis-
tics from the Single-Generation evaluation approach. How-
ever, the difference is evidently more obvious in the Multi-
Generation evaluation results, particularly in the Precision-
Recall curve. The differences in the areas under the Multi-
Generation Precision-Recall curves are evidently larger than the
Single-Generation evaluation counterpart.

3.4. Evaluation with Holdout

We trained Relative Reasoning models with the EAWAG-
BBD package, EAWAG-SOIL package, TRAIN-SOIL package,
EAWAG-BBD + EAWAG-SOIL, and EAWAG-BBD + TRAIN-
SOIL packages. For all cases, we repeated a holdout evaluation
100 times. Tables 6 and 7 give the results, and Figure 8 shows
the associated Precision-Recall curves. A zoom-in to the Multi-
Generation Precision-Recall curves from the Evaluation with
Holdout experiments is presented in Figure 9.

Observations from the Evaluation with Test Sets results are
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Figure 8: Precision-Recall curves for the Evaluation with Hold-
out experiments. The repeat-and-average component of this
training approach quite effectively smooth out the kinks ob-
served from the Evaluation with Test Sets experiments. The
differences in the gap that indicates the compatibility between
the transformation rules and the observed compound struc-
tures are more visible in the Multi-Generation results. While
the lower numerical values simply reflect a different measur-
ing standard in this new approach, the expected relationships
between threshold, precision and recall are preserved.
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Figure 9: Precision-Recall curves from the Multi-Generation
results for the Evaluation with Holdout experiments. The
thresholds used for the curve are derived from the distribution
of probability values from all reactions evaluated. Note that
this plot is extracted from Figure 8 to show the differences of
the Multi-Generation performances.



Table 7: Statistics of the Evaluation with Holdout experiments.

Packages AUPRC AUROC
SG MG SG

BBD 0.64 0.12 0.87
SOIL 0.47 0.07 0.83

TRAIN SOIL 0.43 0.08 0.82
BBD+SOIL 0.56 0.09 0.85

BBD+TRAIN SOIL 0.57 0.09 0.85

also notably present in these results from a more repetitive av-
eraging process. The Precision-Recall curves are also notably
smoother from the averaging process. The curves from the
Multi-Generations approach also distinguish more clearly be-
tween results from only using the EAWAG-BBD package and
other configurations. This is partially due to the fact that trans-
formation rules from the EAWAG-BBD package are used to
train all of these relative reasoning models. These rules were
optimized for EAWAG-BBD but not for the other packages for
which they are less suitable. Also note that soil is a much more
complex system compared to the typical in vitro culture studies,
which EAWAG-BBD is mainly comprised of. The outcome of
a degradation experiment in soil is more difficult to predict. [7]

Figure 7 and 8 indicate that the Precision-Recall curves
from each of the evaluation approaches occupy a different re-
gion in this space. Numerical values of Precision and Recall
from the Multi-Generation approach seem less ideal. However,
it must be emphasized that this is not due to worse predictions
(same prediction model), but from a more holistic evaluation,
taking into account additional aspects on the pathway level.

In analogy to language processing, the Single-Generation
approach is analogous to evaluating each predicted word written
by a columnist individually. The Multi-Generation approach on
the other hand, is analogous to extending this to sentences and
paragraphs. That is, correct predictions in the former may be
penalized in the latter for being in the wrong place. Such a re-
lationship between the two approaches indicate that it is natural
to expect this difference in resulting numerical values between
the two approaches.

4. Conclusion
In this paper, we present a new Multi-Generation approach for
evaluating relative reasoning prediction models, that are used to
predict biodegradation pathways. It includes methodology as
well as performance in specifically designed experiments. The
new approach evaluates predicted pathways with multiple gen-
erations of compounds holistically, in contrast to considering
each reaction independently. Our approach additionally takes
into consideration the increased uncertainty of observing com-
pounds at higher depths in the pathways. We also propose an
algorithm to account for intermediate metabolites, which would
otherwise be incorrectly penalized during evaluation.

Our experiments show that the Multi-Generation evaluation
metrics are much harder criteria. They provide a more realis-
tic view on the prediction quality of whole pathways and re-
veal the incompleteness of the underlying transformation rules.
With our new approach we can now start to compare the pre-
dictivity of different models on an objective basis in a model-
agnostic way, i.e. independent from the model architecture and
the set of transformation rules. Furthermore, we have demon-
strated that our approach is more suitable to address two impor-
tant characteristics of biotransformation pathway data: missing

minor products in the reference data and intermediate metabo-
lites. Single-Generation evaluation on the other hand might still
be useful for determining the predictivity for individual (de-
fined) transformation rules or for computationally demanding
steps like hyper-parameter optimization.

Overall, our experiments demonstrate that it is still a long
way until biotransformation prediction models can achieve top
accuracy for complete pathways. However, with the Multi-
Generation approach we improved our toolbox for the evalu-
ation and comparison of pathway prediction models, which will
facilitate the development of better models. In future work, we
will use this approach to improve the compatibility of the bio-
transformation rules. Additionally, we will integrate the new
knowledge about likely intermediates into model training.

5. List of Abbreviations
AUPRC - Area Under Precision-Recall Curve
AUROC - Area Under Receiver Operating Characteristic
Curve
BBD - Biocatalysis/Biodegradation Database
BMPT - Biotransformer Metabolism Prediction Tool
BNICE - Biochemical Network Integrated Computational
Explorer
CYP450 - Cytochrome P450
EAWAG - Swiss Federal Institute of Aquatic Science and
Technology (Eidgenössische Anstalt für Wasserversorgung,
Abwasserreinigung und Gewässerschutz)
EC - Enzyme Commission
FN - False Negative
FP - False Positive
KEGG - Kyoto Encyclopedia of Genes and Genomes
METEOR - Name of a knowledge-based expert system for
toxicity and metabolism prediction
OASIS - Name of the company that manages the TIMES
software
PPS - Pathway Prediction System
RDM - Reaction center, the Difference region and the Matched
region of the KEGG atom type changes
REACH - Registration, Evaluation, Authorization and Restric-
tion of Chemicals (European Union Regulation)
TIMES - Name of the software from the Laboratory of
Mathematical Chemistry Burgas for simulation of chemical
metabolism
TN - True Negative
TP - True Positive
UM - University of Minnesota
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