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The position-dependent diffusion coefficient alongwith free
energy profile are important parameters needed to study
mass transport in heterogeneous systems such as biologi-
cal and polymer membranes, and molecular dynamics (MD)
calculation is a popular tool to obtain them. Among many
methodologies, the Marrink–Berendsen (MB) method is of-
ten employed to calculate the position-dependent diffusion
coefficient, inwhich the autocorrelation function of the force
on a fixedmolecule is related to the friction on themolecule.
However, the diffusion coefficient is shown to be affected
by the period of the removal of the center-of-mass veloc-
ity, τv0, which is necessary when performing MD calcula-
tions using the Ewald method for Coulombic interaction.
We have clarified theoretically in this study how this oper-
ation affects the diffusion coefficient calculated by the MB
method, and the theoretical predictions are proven by MD
calculations. Therefore, we succeeded in providing guid-
ance on how to select an appropriate τv0 value in estimat-
ing the position-dependent diffusion coefficient by the MB

Abbreviations: COM, Center of mass; FACF, Force autocorrelation function; MB, Marrink–Berendsen; MD, Molecular Dynamics; WR, Woolf–Roux.
*Equally contributing authors.
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method. This guideline is applicable also to theWoolf–Roux
method.
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1 | INTRODUCTION25

Mass transport phenomena in heterogeneous systems are important issues in various fields, and much research has26

been conducted in this area to date. For example, in the field of biological chemistry, understanding the permeation27

of drugs into viruses1 and through membranes2–4 at the molecular level plays an important role in appropriate ra-28

tional drug design. In the field of materials sciences such as in the separation of molecules using reverse osmosis29

membranes5,6 and the study of the transport process of protons, oxygen, and hydrogen in a polymer electrolyte30

membrane7–9, it is important to understand the relationship between the mechanism molecular transport and the31

microscopic details of the materials.32

The position-dependent diffusion coefficient, along with the free energy profile, is an important physical quantity33

utilized in studies of the mass transport phenomena of heterogeneous systems using molecular dynamics (MD) calcu-34

lations. Because of its importance, many methods10–19 have been proposed to obtain the position-dependent diffu-35

sion coefficient. Two of us and other coworkers have also previously proposed a method for obtaining the position-36

dependent diffusion coefficient with high accuracy in any heterogeneous system20. Among the methods proposed so37

far, theMarrink–Berendsen (MB) method is one of the best-knownmethods used to calculate the position-dependent38

diffusion coefficient21–26.39

Despite systematic underestimation27,20, the method is widely used these days because the position-dependent40

diffusion coefficient can be calculated easily by the MB method with existing MD calculation packages. In the MB41

method, the center of mass (COM) of the molecule is constrained to a certain position, and the diffusion coefficient42

can be obtained by the force autocorrelation function (FACF) of the COM of the molecule.43

In this paper, we demonstrate the critical role of momentum removal in obtaining the position-dependent dif-44

fusion coefficient by methods involving position constraints, such as the MB method. In MD calculations that use45

the Ewald method28,29 for calculating the long-range Coulombic interaction, the momentum of the MD system is46

reduced to zero with a certain time interval, τv0, to prevent the MD system from diffusing. We demonstrate that this47

operation affects the diffusion coefficient calculated by the MB method when constraining the diffusing molecules48

to absolute coordinates. In this paper, we propose a theoretical equation comparing FACFs with and without the49

COM momentum removal. The theoretical equation was then examined to find the diffusion coefficient of methane50

in water. It was also found that τv0 dependence varies with the size of the system in the MD calculation. The theory51

we propose in this paper plays an important role in obtaining the position-dependent diffusion coefficient in three-52

dimensional heterogeneous systems using the MB method. The WR method with spring restraint on absolute values53

is also discussed.54
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2 | THEORY55

The change in FACF, 〈F(0) · F(t ) 〉, with changing τv0 is explained qualitatively in terms of themomentum conservation56

within the whole simulation cell. Suppose that a solute molecule of infinite dilution feels force from the surrounding57

solvent in the +z direction at t = 0. The force between the solute and the solvent means the momentum exchange58

between them, and the momentum in the −z direction is then transferred from the solute to the solvent. The momen-59

tum given by the solvent is further transported to the bulk solvent with time through solvent–solvent interactions. In60

the MD simulation cell of finite size, however, the momentum in the −z direction cannot dissipate due to the momen-61

tum conservation, and the momentum is instead distributed uniformly over the whole simulation cell after sufficient62

time, which means the solvent flows in the −z direction. The fixed solute in the solvent flow in the −z direction then63

feels frictional force in the −z direction, leading to a negative correlation between F(0) and F(t ) . A shift of the COM64

velocity of the solvent eliminates the negative correlation, and its operation frequency, 1/τv0, affects the strength of65

the negative correlation at longer time durations. The physics concepts outlined above are described quantitatively66

hereafter in this section using projection operator formalism.67

The system under consideration is composed of a solute (X) and a finite number of solvent molecules (S), which68

are contained in a cell with periodic boundary conditions. The solute is fixed at a given spatial position and no other69

external force operates on the solvent. A shift of the COM velocity of the solvent is not performed.70

The COM velocity of the solvent, vCM , is defined as follows:71

vCM ≡ 1

MS

∑
i ∈S

mi vi , (1)
MS ≡

∑
i ∈S

mi . (2)

Here, the summations run over all the solvent molecules, and the mass and the velocity of the i -th solvent molecule72

are described asmi and vi, respectively. The projection operator onto vCM is defined as P, and the projection operator73

to the orthogonal space is given by Q ≡ 1 − P.74

An identity below holds for the time propagation operator as3075

e iLt Q = e iQLQt +
∫ t

0
dτe iL(t−τ ) PiLe iQLQτ , (3)

where L stands for the Liouvillian operator. Equation (3) is then multiplied by the force on the solute, FX , from the76

left to yield77

e iLtFX = e iQLQtFX − MS

3kBT

∫ t

0
dτ

[
e iL(t−τ )vCM ]

×
〈
{iLvCM } · {e iQLQτFX }〉

. (4)
The Boltzmann constant and the absolute temperature are denoted here as kB andT , respectively.78

The momentum conservation of the whole system relates FX and vCM as79

FX +MS {iLvCM } = 0, (5)
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which is substituted into Eq. (4) to give80

e iLtFX = e iQLQtFX +
1

3kBT

∫ t

0
dτ

[
e iL(t−τ )vCM ]

×
〈
{iLFX } · {e iQLQτFX }〉

. (6)

We change the notations here as follows:81

FX (t ) ≡ e iLtFX , (7)
RX (t ) ≡ e iQLQtFX , (8)

vCM (t ) ≡ e iLt vCM , (9)
γ (t ) ≡ 1

3kBT
〈RX (0) · RX (t ) 〉 . (10)

Equation (6) is then rewritten with these notations as82

FX (t ) = RX (t ) +
∫ t

0
dτγ (t − τ)vCM (τ) . (11)

In Eq. (11), the total force acting on the solute at time t , FX (t ) , is divided into the sum of random force, RX (t ) , and83

the drag force by the flow of the solvent.84

The statistical average of Eq. (11) after the multiplication of FX (0) = RX (0) gives85

〈FX (0) · FX (t ) 〉 = 〈RX (0) · RX (t ) 〉 +
∫ t

0
dτγ (t − τ)

× 〈FX (0) · vCM (τ) 〉 . (12)
The time correlation function in the integral, 〈FX (0) · vCM (τ) 〉, is further related to FACF as86

〈FX (0) · FX (t ) 〉 +MS
d

d t
〈FX (0) · vCM (t ) 〉 = 0 (13)

by virtue of Eq. (5).87

The MB method is used to evaluate approximately the time correlation function of the random force acting on a88

freely moving solute as that of the total force on the spatially fixed one11. The time correlation function of the random89

force is then converted into the time-dependent friction coefficient through Eq. (10), and the position-dependent90

diffusion coefficient can then be determined. According to Eq. (12), however, the time correlation function of the91

total force, 〈FX (0) · FX (t ) 〉, contains the correlation with the drag force, in addition to the time correlation function92

of the random force, 〈RX (0) · RX (t ) 〉. What we actually want to determine is the latter correlation function, and we93

need to somehow eliminate the second term of Eq. (12).94

The time development of the random force is governed by the projected Liouvillian, QLQ, instead of the normal95

one, L. Since the dynamics of the random force are determined by that of the positions and the momenta of the96

solvent molecules, {ri , pi }, the effects of the replacement of the Liouvillian can be analyzed through their dynamics.97
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The time dependence of ri and pi through QLQ is explicitly written as follows:98

i QLQri =
1

mi
pi − 1

MS

∑
j ∈S

pj , (14)
i QLQpi = Fi − mi

MS

∑
j ∈S

Fj , (15)

where Fi stands for the force acting on the solvent molecule i . In Eqs. (14) and (15), the first terms of the right-hand99

sides give the ordinary time dependence through L, and the second terms mean the shift of the COM velocity. There-100

fore, the dynamics given by the projected Liouvillian, QLQ, corresponds to the time propagation of MD simulation in101

which the shift of the COM velocity is performed at every step. It is thus expected that a smaller τv0 leads to a better102

diffusion coefficient in the implementation of the MB method in MD simulation.103

The long-time limiting behaviors of 〈FX (0) · FX (t ) 〉 can be analyzed based on Eqs. (12) and (13). First, the integral104

of Eq. (13) from t = 0 to∞ gives105 ∫ ∞

0
d t 〈FX (0) · FX (t ) 〉

= MS [ 〈FX (0) · vCM (0) 〉 − 〈FX (0) · vCM (∞) 〉] . (16)
The first term of the right-hand side vanishes so long as FX does not depend on the velocity of the solvent explicitly.106

The second term is also zero because the correlation is lost after the infinite time interval. Therefore, the integral of107

〈FX (0) · FX (t ) 〉 on the left-hand side is equal to zero. It should be noted that the discussion above does not apply to108

an infinite-size system where MS diverges.109

The time derivative of Eq. (12), combined with Eq. (13) yields110

d

d t
〈FX (0) · FX (t ) 〉 = d

d t
〈RX (0) · RX (t ) 〉

− 1

MS

∫ t

0
dτγ (t − τ) 〈FX (0) · FX (τ) 〉 . (17)

Provided that the relaxation of γ (t ) is relatively fast, Eq. (17) can be approximated in the time scale longer than the111

relaxation time of γ (t ) as112

d

d t
〈FX (0) · FX (t ) 〉

' − 1

MS

[∫ ∞

0
dτγ (τ)

]
〈FX (0) · FX (t ) 〉 . (18)

It means that 〈FX (0) · FX (t ) 〉 decays exponentially as113

〈FX (0) · FX (t ) 〉 ∝ e− t
τF F , (19)

with the time constant given by114

τF F =
MS∫ ∞

0
dτγ (τ)

. (20)
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3 | METHOD115

3.1 | Molecular dynamics calculation116

The effect of the frequency of the shift of the COM velocity on the time correlation function was investigated by117

performing simulations with different τv0 values. Here, τv0 denotes the interval between the removals of the COM118

velocity during MD simulations. System-size dependence was also investigated by studying two methane solutions119

of different sizes. The smaller system was composed of a methane molecule and 1053 water molecules and was120

simulated with τv0 set at 1 fs, 0.1 ps, 10 ps, and ∞. As to the larger system consisting of a methane molecule and121

8424 water molecules, τv0 was set at 0.1 ps, 10 ps, and∞. Since the time step of the MD simulation was set at 1 fs as122

described below, the simulation with τv0 = 1 fs corresponds to a faithful realization of the dynamics as defined by Eqs.123

14 and 15, whereby RX (t ) can be directly and accurately evaluated. Moreover, simulations with τv0 = ∞ correspond124

to the dynamics defined by the Liouvillian operator. These simulations enable the measurement of FX (t ) . Hereafter,125

the FACF obtained by MD with τv0 is denoted by C simFF (t ; τv0) ≡ 〈Fsim (t ; τv0) · Fsim (0; τv0)〉 to explicitly express the126

dependence on τv0.127

After routine equilibration, each of the production runs was performed in the NVT ensemble for 50 ns with a128

time step of 1 fs. The temperature was controlled by a Nosé–Hoover thermostat31,32 at 300 K with a time constant129

of 100 fs. The effect of the thermostat on the resultant diffusion constant has been shown to be negligible in these130

conditions20 for various methods, thus allowing us to get the position-dependent diffusion constant. The total force131

acting on the COM of the methane molecule was sampled every 1 fs. The electrostatic potential was calculated by132

the particle mesh Ewald method with a short-range cutoff length of 1.2 nm. The van der Waals interaction was cut133

off at 1.2 nm and the cutoff correction applied. All simulations were performed using GROMACS 201933, which134

was modified to constrain the methane molecule. The water molecules were modeled by the SPC model34 and the135

methane molecule was modeled by OPLS-UA35.136

3.2 | Analysis137

We demonstrated numerically the satisfaction of Eq. 12 and thereby the theoretical framework described in the afore-138

mentioned section. To achieve this, we evaluated 〈FX (0) · FX (t ) 〉 and 〈RX (0) · RX (t ) 〉. Given these time correla-139

tion functions, the integrand on the right hand-side of Eq. 12 can be obtained via Eqs. 10 and 13. In particular,140

〈FX (0) · vCM (τ) 〉 was obtained by integrating 〈FX (0) · FX (t ) 〉 from zero to τ (see Eq. 13). The time correlation141

function 〈FX (0) · FX (t ) 〉 was evaluated as 〈Fsim (t ;∞) · Fsim (0;∞)〉 or the force autocorrelation function obtained142

from the trajectories with τv0 = ∞, as these trajectories are the realization of dynamics of the Liouvillian opera-143

tor. As regards the smaller system, 〈RX (0) · RX (t ) 〉 was calculated from the trajectory with τv0 = 1 fs, which is144

a faithful realization of the dynamics defined by Eqs. 14 and 15. In other words, 〈RX (0) · RX (t ) 〉 was calculated145

by 〈Fsim (t ; 1 fs) · Fsim (0; 1 fs)〉. For the larger system, 〈RX (0) · RX (t ) 〉 was substituted by the FACF obtained for146

τv0 = 0.1 ps, 〈Fsim (t ; 0.1 ps) · Fsim (0; 0.1 ps)〉, which was found to approximate well the dynamics defined by Eqs. 14147

and 15, as described in the following section. In these calculations, the numerical integration was performed using148

the trapezoidal formula.149
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4 | RESULTS AND DISCUSSION150

4.1 | Smaller system151
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F IGURE 1 Time correlation function of the force on the methane molecule at τv0 = 1 fs (green), 0.1 ps (red), 10
ps (yellow), and ∞ (blue) in the smaller system. The inset shows a magnified view for 0 ≤ t ≤ 50 ps.

Figure 1 shows time correlation functions of the force on the methane molecule at τv0 = 1 fs, 0.1 ps, 10 ps, and152

∞ in the smaller system. This graph shows that the time correlation function for τv0 ≤ 0.1 ps converged to zero153

immediately. On the other hand, a negative correlation appears for τv0 ≥ 10 ps. Considering that the absence of the154

negative tail for the systems of τv0 = 1 fs and 0.1 ps can be ascribed to the fast decay of the tail, the larger τv0 is, the155

more slowly the negative correlation relaxes. The negative correlation for τv0 = 10 ps disappears at approximately 10156

ps. This means that the effect of the momentum given by the solute to the solvent disappears due to the shift in the157

COM velocity at times longer than τv0. The MB method calculates the diffusion coefficient by158

D =
3(kBT )2∫ ∞

0
〈∆FX (0) · ∆FX (t ) 〉 dt . (21)

Here, ∆ is appended to FX (t ) to describe explicitly the deviation from the mean force, however, ∆ can be omitted159

in homogeneous systems as considered in this work. Equation 21 indicates that the diffusion coefficient is inversely160

proportional to the integrated value of FACF. Therefore, the fact that the shape of the time correlation function in161

Fig. 1 differs depending on τv0 means that the calculated diffusion coefficient also differs depending on τv0.162

Figure 2 shows the running integrals of the time correlation functions of the force at τv0 = 1 fs, 0.1 ps, 10 ps,163

and ∞ in the smaller system. When the time correlation function of the force converges to zero, the integrated164

value converges to a certain value. By substituting this converged value into Eq. 21, the diffusion coefficient can be165

estimated, and Fig. 2 clearly shows that the converged values differ depending on τv0. As mentioned in Section 2, the166

integral converges to the correct value when the COM velocity of the system is removed at every step. Therefore,167

the converged integral value at τv0 = 1 fs is correct. For τv0 ≤ 0.1 ps, the running integral converged to the same168

value as that at τv0 = 1 fs. This means that τv0 = 0.1 ps would be sufficiently small to give accurate results for the size169
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F IGURE 2 Running integrals of the time correlation function of the force on the methane molecule at τv0 = 1 fs
(green), 0.1 ps (red), 10 ps (yellow), and∞ (blue) in the smaller system. The curve calculated by the right-hand side of
Eq. 12 is shown by the blue dashed line.

of the system in this MD calculation. As τv0 increases, the converged value became smaller and smaller, and τv0 = ∞170

converges to 0, which is consistent with Eq. 16. The physical explanation is that the momentum given by the solute171

to the solvent is finally returned to the solute, because τv0 = ∞ means the absence of a momentum sink other than172

the solute itself. Moreover, comparing the functional form of the calculation result until it converges to zero with the173

result from the theoretical equation (Eq. 12), the curve at τv0 = ∞ is consistent with the curve obtained from the174

theoretical equation. Therefore, the numerical calculations support the validity of our theory. In other words, the175

theory elucidates that the diffusion coefficient from the MB method depends on the period (τv0) in which the COM176

velocity is removed during MD simulations. The theory thus captures the physical mechanism by which the choice of177

τv0 affects the FACFs through the modification of the correlation functions.178

4.2 | Larger system179

Time correlation functions of the force on the methane molecule and their running integrals are shown in Figs. 3 and180

4, respectively, at τv0 = 0.1 ps, 10 ps, and ∞ in the larger system. Figure 3 shows that the negative correlation is181

weaker than that of the smaller system. As the MD system size increases, the momentum of the system is distributed182

over a larger space, and the COM velocity of the solvent generated by the momentum given by the solute becomes183

smaller. Therefore, the dependence on τv0 becomes smaller as the system size of the MD calculations increases. For184

τv0 = ∞, the negative correlation is weaker than that in the smaller system, but its relaxation becomes slower, as185

shown in Figure 4. Eq. 16 predicts theoretically that the running integral at τv0 = ∞ should converge to zero for any186

finite systems, but unlike the smaller system, here the convergence was not complete even at 100 ps. The reason187

for this slow relaxation is that the larger the system, the longer it takes for the momentum to return. The agreement188

between the MD simulation and the theoretical prediction of Eq. 12 is excellent, also in the larger system, Fig. 4,189

which further supports our theoretical discussion. Figure 4 shows that, for the larger system, the result with τv0 = 10190

ps was close to the correct value (τv0 = 0.1 ps). Therefore, the larger the system size, the larger τv0 can be set.191

According to Eq. 20, the τF F of the small and large systems were 19.1 and 174.7 ps, respectively. Eq. 19 is plotted192
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using these τF F and regarding the amplitude as an adjustable parameter. In addition, the running integrals of the time193

correlation functions of the force on COM of the methane molecule in the larger and smaller systems are shown again194

in Fig. 5 to make their difference clearly visible. It can be seen that Eq. 18 reproduces the decay well at τv0 = ∞ for195

both the smaller and larger systems. τF F is a reference quantity for determining τv0, and the larger the τF F , the larger196

the value of τv0 can be set. The larger the size of the system, the larger the value of τF F , which shows that τv0 can be197

larger for larger systems. We mentioned in Section 4.2 that τv0 = 0.1 ps, which is one two-hundredths of τF F , is small198

enough to calculate D in the smaller system with sufficient accuracy. It is thus sufficient to set τv0 to 1/200th of τF F199

even for a small system with fast decay. In the larger system, the result of τv0 = 10 ps, which is about 1/20th of τF F200

of the system, is close to that of τv0 = 0.1 ps. Therefore, it is safe to set τv0 to at most 1/200th of τF F for any system201

larger than the smaller system.202

For τv0 ≥ 10 ps, the integral was larger for the larger system than that for the smaller one, indicating that the203

larger the size of the system, the longer the time part was affected, as discussed previously. However, at τv0 = 0.1204

ps, the integral of the smaller system was larger than that of the larger system. This is not an effect of the shift of205

the COM velocity, but that of the hydrodynamic interaction between the solutes in adjacent cells in the periodic206

boundary system. Due to the effects of hydrodynamic interaction, the diffusion coefficient, DMD, calculated from the207

MD calculation of the finite system with periodic boundary conditions, is shifted from the true diffusion coefficient208

D0 of the system of infinite size as shown in the following equation36:209

DMD = D0 −
2.83729kBT

6πµL
(22)

where µ and L are the viscosity coefficient and the length of the MD cell, respectively. This equation states that210

the smaller the cell size, the smaller DMD becomes. Since the integral value of the time correlation function of the211

force is the reciprocal of DMD (see Eq. 21), it becomes larger for smaller systems. Using the experimental viscosity212

coefficient of water at 25 ◦C (µ = 0.0009 Pa·s) and Eq. 22, the difference in the integrated values of the time correlation213

functions of the force between the larger and the smaller systems was calculated to be 1 × 10−10 m2 · s−1. On the214

other hand, the difference found from our calculation, shown in Fig.5, is 2 × 10−10 m2 · s−1. So, the estimates from215
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the theoretical equations of fluid mechanics and our calculation are in good agreement, considering the error guessed216

from the fluctuation of the running integral.217

4.3 | Relevance to NVE ensemble and other thermostats218

The formalized theory perfectly fitswith theNVE ensemble, and thus the COMvelocity shift is needed to eliminate the219

unwanted negative correlation between F(0) and F(t ) . However, the shift decreases the total energy when applied220

to the NVE simulations and therefore the simulations cannot reach thermal equilibrium. Furthermore, this decrease221

can cause a drop in the temperature and thus the diffusion constant can be underestimated. It should be carefully222

confirmed that the drift of the total energy or temperature is so marginal that the potential systematic error is satis-223

factorily small in application to NVE simulations. Given this potential artifact that is intrinsic to the NVE simulations,224

the coupling of a thermostat should be a practical choice, especially for long simulations, although disturbance from225

a thermostat to the original dynamics needs to be carefully considered. We have performed NVT simulations using a226

Nosé–Hoover thermostat in this work, and demonstrated that the discussion based on the NVE ensemble holds. We227

next discuss the applicability of the COMvelocity shift to thermostats other than theNosé–Hoover thermostat. Other228

widely used thermostats include the Gaussian constraint37–40, velocity rescaling41, and a Langevin thermostat29.229

A COM velocity shift is necessary for the thermostats that retain linear momentum conservation, such as the230

Gaussian constraint37–40 and velocity rescaling41, because the unwanted negative correlation between F(0) and231

F(t ) arises ultimately from the momentum conservation (Eq. 5) in a finite system as described above. Furthermore,232

we have demonstrated numerically the necessity of the COM velocity shift for the Nosé–Hoover thermostat, which233

also retains the momentum conservation. When it comes to thermostats that break the momentum conservation,234

including the Langevin thermostat, we need to give more subtle consideration as follows.235

When applying the Langevin thermostat, the coupling time constant τLT (τLT ≡ 1/γ, where γ is the damping236

coefficient of the thermostat) needs to be considered, as the thermostat works also as the momentum sink with this237

time constant τLT. If the coupling is sufficiently strong, i.e., τLT � τFF, the diminishing behavior of the running integral238

of 〈FX (t ) · FX (0) 〉 should not be observed, because the COMmomentum drops quickly. Nevertheless, because such239

a strong coupling might disturb the short-term dynamics as well, the potential artifact in the diffusion constant should240

be considered carefully. If the coupling is weak such that τLT � τFF, the running integral of 〈FX (t ) · FX (0) 〉 should241

diminish, as the momentum drops too slowly. In this case, the COM velocity shift should be performed frequently242

enough such that τv0 � τFF, even with this thermostat.243

4.4 | Discussion on how to constrain the solute244

4.4.1 | Harmonic constraint245

The method proposed by Woolf and Roux (WR method) is another popular method for evaluating the position-246

dependent diffusion coefficient12. In the WR method, the solute is constrained around a position of interest by a247

harmonic potential, and the spring constant of the potential, k , is an adjustable parameter. We hereafter discuss how248

the COM velocity shift of the solvent affects the diffusion coefficient when the solute is constrained to absolute co-249

ordinates in the WR method. For simplicity, we consider a homogeneous system where no potential of mean force is250

induced on the solute by the solvent. When the system size is infinite, the dynamics of the solute in the WR method251
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is described by the generalized Langevin equation as252

¤rX (t ) = vX (t ), (23)
mX ¤vX (t ) = FX (t ), (24)

FX (t ) = RX (t ) −
∫ t

0
dτγ (t − τ)vX (τ) − k rX (t ) . (25)

Here, the mass, position, and velocity of the solute are denoted as mX , rX (t ) , and vX (t ) , respectively, and the solute253

is assumed to be constrained to the origin. The equations above are solved to yield the time correlation function of254

the position as255 ∫ ∞

0
d t 〈rX (0) · rX (t ) 〉 =

γ̃0
k

〈
|rX (0) |2〉 , (26)

γ̃0 ≡
∫ ∞

0
d tγ (t ) . (27)

Substituting the relationship between the fluctuation of the position and k as256 〈
|rX (0) |2〉 = 3kBT

k
, (28)

the diffusion coefficient is determined by the equation as follows:257

D =
kBT

γ̃0
=

〈
|rX (0) |2〉2

3
∫ ∞
0
d t 〈rX (0) · rX (t ) 〉 . (29)

Next we consider the finite-size system, to which the shift of the COM velocity of the solvent is applied with a258

time interval of τv0. Then, Eqs. 23 and 24 are intact, and Eq. 25 is modified as259

FX (t ) = RX (t ) −
∫ t

0
dτγ (t − τ) (vX (τ) − vCM (τ)) − k rX (t ), (30)

MS ¤vCM (t ) = − [FX (t ) + k rX (t ) ] − γsMSvCM (t ) . (31)
Here, the shift of the COM velocity is approximated as the damping with a time constant of τv0 = 1/γs . The time260

correlation function of the position is then obtained from Eqs. 23, 24, 30, and 31 as261

〈rX (0) · rX (t ) 〉 = γ̃0

k
(
1 +

γ̃0
MS γs

) 〈
|rX (0) |2〉 . (32)

Comparing Eqs. 26 and 32, it is shown that the WR method gives the correct value of the diffusion coefficient under262

the condition as263

τv0 = 1

γs
<<

MS

γ̃0
, (33)

which is the same condition as the MB method.264

It is rather surprising that the condition Eq. 33 does not contain k . One may consider that τv0 can be smaller265

with decreasing k , because the diffusion coefficient from the WR method reduces to that from the mean square266
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displacement of the unconstrained solute, for which the shift of the COM velocity is unnecessary. However, Eq. 33267

means that the removal of the COM velocity is indispensable in the WR method, irrespective of the strength of the268

constraining potential. The result above indicates that the COM velocity of the solvent should be removed with269

sufficient frequency when the solute is constrained to absolute coordinates, irrespective of how the constraint is270

performed.271

4.4.2 | Constraint by relative coordinates272

Instead of constraining to absolute coordinates, it is also common to constrain the relative coordinates of two sub-273

stances in order to calculate the position-dependent diffusion coefficients in heterogeneous systems. For example,274

membrane permeation42 or substrate adsorption43 of small molecules, and the transport across a transmembrane275

channel of ions44 are all discussed in terms of potential mean force (PMF) and the position-dependent relative diffu-276

sion coefficient between two substances such as a membrane and a molecule.277

In this case, external forces do not work, and only internal forces do. Therefore, the two terms on the left side278

of Eq. 6 are both zero. Momentum does not flow toward the solvent, and the error discussed in this paper does not279

occur. Therefore, τv0 can be determined solely by considering its original purpose to compensate the numerical errors280

in the Ewald calculation.281

5 | CONCLUSION282

It was shown theoretically that the position-dependent diffusion coefficient obtained using the MB method depends283

on τv0. For systems as small as 1000 molecules, the FACF integrals converge well at τv0 ≤ 0.1 ps, indicating that the284

diffusion coefficient can be obtained with good accuracy. However, at τv0 ≥ 10 ps, the integral converges to a value285

different from the correct one. The larger was τv0, the smaller the converged value of the FACF integral became. The286

converged value was zero at τv0 = ∞, which has good consistency with the theoretical prediction, thereby supporting287

the validity of our theory.288

For a system as large as 8000 molecules, the converged value of the FACF integral was close to the correct one289

even when τv0 was as large as 10 ps. In addition, the convergence of the integrated value became slower at τv0 = ∞.290

This result is also consistent with our theoretical prediction, and shows that our theory is applicable, irrespective of291

the system size. These calculations demonstrate the necessity of choosing τv0 according to the size of the system292

when calculating the position-dependent diffusion coefficient by theMBmethod usingMD calculation with the Ewald293

method. From the point of view of the speed of MD calculation, removing the COM velocity of the system requires294

full communication between nodes of parallel computers, which slows down the calculation speed. Therefore, τv0 is295

preferred to be as large as possible, but 0.1 ps is probably sufficient for ordinary systems.296
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GRAPHICAL ABSTRACT357

The position-dependent diffusion coefficient is beneficial for studyingmass trans-358

port with molecular dynamics calculations. In the Marrink–Berendsen method,359

this coefficient can be obtained from the integral of force autocorrelation func-360

tion of a fixed molecule at an absolute position. However, the integrated val-361

ues evaluated so in a finite system diminishes due to momentum flows arising362

from momentum conservation, and the diffusion coefficient diverges unphysi-363

cally. We rigorously demonstrate that frequent removals of total momentum364

eliminate this flaw.365


