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Chemical reactions are a complex process, as they involve interaction between several molecular
compounds. As a result, predicting the success of a reaction is a non-trivial task, which often re-
quires running several experiments in the lab. This process is is expensive, time consuming, and
inefficient. As a result, in recent years, researchers have explored the use of machine learning al-
gorithms to predict reaction success. These methods mainly rely on chemical properties of the
molecules involved in the reactions. Despite their promising success, none of existing methods
explored the use of structural properties of molecules in predicting reaction success. In this work,
we develop an Attributed Graph Neural Network model that integrates both structural properties
as well as chemical properties of molecules for predicting reaction success. Our model shows re-
markable performance on two hand-crafted datasets obtained from high-throughput experiments,
as well as one real-world dataset.

1 INTRODUCTION
Predicting the Performance of chemical reactions is a fundamental problem in organic chemistry.
The ability to predict whether a reaction will be successful or not can save significant time and effort
of organic chemists and expedite the process of generating chemical compounds. Existing methods
still depend on handcrafted reaction rules [2, 6] or heuristically extracted reaction templates [3, 10],
and therefore, are not well generalizable to unseen reactions. Another major challenge is the
availability of data on both failed and successful experiments. Existing research in the literature
has mainly focused on successful experiments (i.e., reactions with a high yield), thus making it
hard for a machine learning model to infer what makes a reaction successful. Recently, machine
learning models have been proposed to predict the reaction performance based on molecular
features [8, 11]. Ahneman et al. [1] advanced the field by proposing a regression model based on
the synthetic reaction data obtained from high-throughput experiments [1, 7? ]. However, these
methods only consider features such as molecular, atomic, and vibrational properties and do not
use any information about the complex structure of molecular graphs. We argue that in order
to solve this problem effectively, an intelligent AI system should have two key capabilities: (1)
Understanding the molecular graph structure of the input reactants to identify complex interactions
between reaction components, and (2) Incorporating domain knowledge of organic chemists in the
form of molecular, atomic, and vibrations characteristics of reactants to learn the rules that organic
chemists use for predicting reaction success. To this end, we propose an framework which combines
Attributed Graph Neural Network (AGNN) and chemical properties about reaction compounds
to predict reaction performance. The chemical properties are incorporated into the model both
directly (via the domain module) and indirectly (via attributed graphs of molecules).

2 MODEL DESIGN
2.1 Problem formulation
We define a chemical reaction as a combination of molecular graphs (𝐺𝑟 ,𝐺𝑙 ,𝐺𝑠 ,𝐺𝑏,𝐺𝑝 ), where
𝐺𝑟 , 𝐺𝑙 , 𝐺𝑠 , 𝐺𝑏 , and 𝐺𝑝 represent the reactant, ligand, solvent, base, and the products [5] graph,
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Fig. 1. Pd-catalysed Buchwald–Hartwig C-N cross coupling reaction

Fig. 2. Suzuki–Miyaura cross-coupling reaction

Fig. 3. Model Overview. (A) The Pd-catalyzed Buchwald-Hartwig reactionwhich is used as amodel
reaction for the yield prediction task. The bond changes in the highlighted components under the
Pd catalyst results in the generation of the final product. (B) For each reaction,we extract structural
features by aggregating atom and bond features over the neighborhoods. We concatenate struc-
tural features to the domain-features to obtain the final reaction features. We obtain two yield
scores by feeding structural features and domain-based features. We average these two scores to
generate the reaction yield predictions.

respectively. A molecular graph is described as 𝐺 = (𝑉 , 𝐸), where 𝑉 = 𝑎1, 𝑎2, · · · , 𝑎𝑛 is the set
of atoms and 𝐸 = 𝑏1, 𝑏2, · · · , 𝑏𝑚 is the set of associated bonds of varying types (single, double,
aromatic, etc.). Note that𝐺𝑟 normally consists of two or more connected components since reactants
contain multiple molecules. Given a reaction (𝐺𝑟 ,𝐺𝑙 ,𝐺𝑠 ,𝐺𝑏,𝐺𝑝 ), our objective is to predict the
reaction yield (i.e., reaction performance) based on molecular properties and interactions between
the molecular graphs of reactants. We treat this problem as a regression task. For this work, we
focus on Pd-catalyzed Buchwald-Hartwig reaction [1] (as shown in Figure 1 and Suzuki–Miyaura
reactions (as shown in Figure 2) because of their broad value in pharmaceutical synthesis. Below
we detail our model design.

2.2 Model Architecture
Our model incorporates the domain knowledge about molecular properties and the complex
interaction between molecular graphs using an attributed graph neural network (AGNN). An
overview of the model is shown in Figure 3. The top module represents the AGNN which learns the
structural features and the bottom module captures the chemical properties. We detail the process
of feature selection in subsection 4.1.
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MolecularGraphNeuralNetworks.WeproposeAGNN for capturing the complex interactions
between molecular components. GNNs have been shown to be very successful in capturing the
higher-order interactions between neighboring components of a graph [12]. During a reaction,
particular components of two molecules interact with each other, resulting in changes in atoms
and bonds. Under favorable experimental conditions (temperature, pressure) these interactions
transfer the reactants into the final product. Predicting the efficiency of these complex interactions
relies on understating the substructures that are likely to interact.
We use Weisfeiler-Lehman Network (WLN) ?? for the GNN component to capture these sub-

structural features. We then apply attention mechanism to capture the global context and improve
model performance.
For each reaction, we extract structural features by aggregating atom and bond features over

the higher-order neighborhoods by passing the molecules through the GNN and attention layer.
We concatenate structural features to the domain-features to obtain the final reaction features. We
obtain two yield scores from the structural features and domain-based features, and then feed the
two scores to a linear layer to generate the final reaction yield predictions. Our model is in part
inspired by [4]. However, in this work we focus on prediction reaction yield by combining both
structural graph-based features as well as chemical properties.

3 DATA
3.1 Buchwald–Hartwig reactions
We use two datasets that contain a collection of Buchwald–Hartwig reactions:

3.1.1 B-H. reactions from Ahneman et al.[1]. Obtained from high-throughput experiments (HTE)
on Pd-catalysed Buchwald– Hartwig C-N cross coupling reactions. This dataset contains 4140
reactions covering 15 aryl and heteroaryl halides, 4 Buchwald ligands, 3 bases, and 23 isoxazole
additives.

3.1.2 B-H. reactions fromAstraZeneca. TheAstraZeneca dataset used in this work is an unpublished
dataset containing 1000 Buchwald-Hartwig reactions generated by AstraZeneca from the Electronic
Laboratory Notebooks (ELN). Compared with the well-designed HTE datasets, the AstraZeneca
dataset from industrial ELN can be regarded as a real-world dataset that requires extensive curation.
The reaction components has been extracted from the original data table and then classified into
categories such as aryl halides, amines, ligands, and metals. After the data curation, the dataset
consists of 757 reactions with 535 amines, aryl and heteroaryl halides, 24 ligands, 15 bases, and 15
solvent system.

3.2 Suzuki–Miyaura reactions
The Suzuki-Miyaura reaction dataset [7] include 5760 Suzuki-Miyaura reactions which was gen-
erated using both nanomole-scale reaction screening and micromole-scale synthesis in a highly
automated flow system [7]. In this dataset a wide range of reaction variables in a Suzuki-Miyaura
reaction was tested, including 12 ligands, 11 substrates, 8 base system and 4 solvent systems.

4 EXPERIMENTS
4.1 Feature Selection
For the chemical properties, we collect features from two main sources. The first source are the
set of descriptors available in the RDKit library. The second source are the features from DFT
calculation using Gaussian 16 with B3LYP(6-31G*,6-311G*) basis set. The rest of features include the
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surface area generate from pymol, pKaH of the base, solvent dielectric component from compound
database. The following set shows the chemical features used for model training:

Molecular features: molecular volume, surface area, ovality, molecular weight, HOMO/LUMO
Energy, electronegativity, hardness, and dipole moment.

Atomic features: Electrostatic charge and NMR shift
Reaction features: Temperature, Reaction scale and volume for some of reactions
We combine the features from both sources and train the random forest model to select the

features that contribute to model performance. This model serves as a baseline and also helps
us reduce the number of the parameters used in our deep learning model. Note that, we do not
perform feature engineering on the structural features and they are automatically generated by the
GNN model.

4.2 Baselines
We compare our model with several state-of-the-art machine learning models. Below we provide a
brief description of each baseline:
(1) Ahneman et al.[1] Trains several conventional machine learning models on a selected set

of features that are only based on chemical properties of the reaction compounds. Since they
found random forests to perform the best among several other models (such as SVM, neural
networks, linear regression), we use this model as our first baseline.

(2) Schwaller et al. [9] This work treats reaction smiles as text and fine-tunes a pre-trained
language model to predict the reaction yield. For our experimental results, we directly quote
the performance of this model from [9].

(3) Random forest model. We also use a random forest model with all available chemical
features for feature selection. This model is different from [1] as it includes a much larger
subset of chemical properties.

We also isolate the GNN module in our model to measure the power of structural features for
predicting reaction yield.

For all the above models we report 𝑅2 as a measure of the regression performance.

4.3 Parameter selection
We performed a grid-search for each hyperparamter and to tuned them for each dataset separately.
For both datasets, batch size and initial learning rate are set to 40 and 0.01, respectively. Dropout is
also set to 0.04 for both datasets. For [1] data, we decay the learning rate with a 0.9 ratio if the loss
plateaus. We use a 1-hop neighborhood and set the size of all hidden layers to 100. For [7] data, we
decay the learning rate with a 0.5 ratio upon loss plateau. We use a 2-hop neighborhood and set
the size of hidden layers to 200. We also clip the gradient with a 0.8 ratio to avoid the exploding
gradient problem.

4.4 Results
4.5 Yield prediction
Our experimental results are described inTable 1. Starting with the random forest models, we notice
that Random forest-2 provides significantly better performance for Suzuki-Miyaura reactions while
Random forest-1 shows slightly better performance for Buchwald-Hartwig [1] data, although it
contains a much smaller feature set. This indicates that for Buchwald-Hartwig [1] data, feature
selection using [1] method plays a more important role in achieving a good final performance using
a random forest model.
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Data Set Suzuki-Miyaura [7] Buchwald-Hartwig [1] AstraZeneca

Random forest-1 0.797 ± 0.008 0.912 ± 0.008 0.273 ± 0.0372
Random forest-2 0.832 ± 0.004 0.892 ± 0.0098 0.295 ± 0.0371
Schwaller et al. [9] 0.81 ± 0.01 0.951 ± 0.005 —
YieldGNN - domain 0.899 ± 0.067 0.90 ± 0.0401 0.871 ± 0.0084
YieldGNN + domain 0.962 ± 0.013 0.970 ± 0.021 0.925 ± 0.0096

Table 1. Experimental results on the three reaction datasets.

Interestingly, for Suzuki-Miyaura reactions, the Random forest-2 outperforms the Schwaller et
al. [9] model, while for Buchwald-Hartwig [1] data Schwaller et al. [9] model provides better per-
formance. For both Suzuki-Miyaura reactions and Buchwald-Hartwig data [1], YieldGNN + domain
provides the best 𝑅2. However, YieldGNN - domain still provides a relatively good performance
compared to other baselines, despite having little knowledge about molecular properties. This
indicates that the molecular structure provides important information for predicting reaction yield.
We should also note that we were able to make incremental improvements in the GNN models

(with or without chemical properties). The first improvement happened as a result of adding the
attention layer to the GNN. These results improved for both datasets after adding the chemical prop-
erties (GNN+domain). The final major improvement –especially with Suzuki-Miyaura reactions–
happened after adding the solvent and base molecules to the pool of reaction molecules. Initially,
we only included the molecules of reactants, and that resulted in an 𝑅2 value very close to the
current value in Table 1. However, our model was struggling with the Suzuki-Miyaura data. After
adding solvent and base molecules, we were able to achieve an 𝑅2 value of 0.962 ± 0.01.

4.5.1 Performance on AstraZeneca data. Although this dataset also contain Buchwald-Hartwig
reactions, it is quite different from the other two dataset, as it is collected from ELNs. As a result,
there is a much larger variation in the reaction space for this data. Furthermore, reactions in this
dataset run at different volumes and temperatures, which adds several additional complexities to
the yield prediction problem for this data. Given this large reaction space, we have a lot fewer
training examples to learn how different factors are contributing to the reaction yield. Despite all
these factors, GNN+domain provides a significantly better results compared to the random forest
model.
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