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Abstract
The prediction of metabolism and biotransformation pathways
of xenobiotics is a highly desired tool in environmental and life
sciences. There are several systems that currently predict single
transformation steps or complete pathways as series of parallel
and subsequent steps. Their accuracy is often evaluated on the
level of a single transformation step. Such an approach cannot
account for some specific challenges that are related to the na-
ture of the biotransformation experiments. This is particularly
true for missing transformation products in the reference data
that occur only in low concentrations, e.g. transient intermedi-
ates or higher-generation metabolites. Furthermore, some rule-
based prediction systems evaluate accuracy only based on the
defined set of transformation rules. Therefore, the performance
of different models cannot be directly compared.

In this paper, we introduce a new evaluation framework that
extends the evaluation of biotransformation prediction to holis-
tically evaluating predicted pathways, taking into account mul-
tiple generations of metabolites. We introduce a procedure to
address transient intermediates and propose a weighted scoring
system that acknowledges the uncertainty of higher-generation
metabolites. We implemented this framework in enviPath and
demonstrate its strict performance metrics on predictions of in
vitro biotransformation and degradation of xenobiotics in soil.
Our approach is model-agnostic and can be transferred to other
prediction systems. It is also capable of revealing knowledge
gaps in terms of incompletely defined sets of transformation
rules.

1. Introduction
There have been rapidly growing data requirements for regu-
latory chemical risk assessment at the European (cf. REACH
[1]) and global level, as well as for the development of new
products with more benign profiles. This has lead to an in-
creased need for prediction methods of metabolism and micro-
bial biotransformation products, along with pathways of chem-
ical substances. Existing methods for the prediction of bio-
transformation products and pathways can be categorized as ei-
ther knowledge-based or machine learning-based approaches.
Each of the two approaches has its strengths and weaknesses.
Knowledge-based approaches take into account expert knowl-
edge on the basis of sets of transformation rules. There are a
number of popular knowledge-based systems:

• METEOR for the prediction of mammalian metabolism
[2].

• PathPred for predictions of enzyme-catalyzed metabolic
pathways [3].

• The EAWAG Pathway Prediction System (EAWAG-
PPS) for microbial biodegradation [4].

• OASIS for prediction of chemical toxicity that incorpo-
rates metabolism in processes including skin sensitiza-
tion, Ames mutagenicity, formation of micronuclei and
estrogen receptor binding affinity [5].

Biotransformer [6] and enviPath [7] additionally refine the
probability estimates of the rules on the basis of empirical data.

enviPath [7] is a database and prediction system for bio-
transformation of organic environmental contaminants. The
database provides the possibility to store experimentally ob-
served biotransformation pathways, as well as biotransforma-
tion rules derived from experimental observations recorded in
the literature. Machine Learning-based relative reasoning mod-
els can be built to predict probabilities of individual transfor-
mation reactions. They are constructed using sets of selected
biotransformation pathways and transformation rules as train-
ing data, such as the EAWAG-BBD [4] and EAWAG-SOIL [8]
packages. These models predict which of the transformation
rules that are applicable to a given compound will be observed
for that compound.

The performance of such models is determined by compar-
ing the predicted products for each compound, against the as-
sociated transformation products in the experimental validation
set. This approach does not take into account the position of the
compound/reaction in the pathway, and problems arise when:

• Multi-step reactions are represented as a single step in
the experimental data.

• Intermediate metabolites were not observed or not eluci-
dated.

• Transformation products were incorrectly assigned to the
wrong educt.

• Concentrations of downstream metabolites become too
low to be observed.

• Rule-based evaluation systems fail to address observed
transformations not covered by the transformation rules.

To address such issues, we propose to consider the pathway
holistically when evaluating predictions produced by models.

1.1. Biotransformation Pathway Comparison

Biotransfomation pathways are derived either from experimen-
tal studies or prediction systems. They are constructed from
compounds connected by reactions, and represent chemical
changes through transformations. Their structures can be rep-
resented as nodes and edges in graph objects. Figure 1 presents



the Benzyl Sulfide pathway from the EAWAG-BBD as an exam-
ple.

Figure 1: The pathway Benzyl Sulfide from the EAWAG-BBD
package.

Experimental biotransformation or metabolism studies usu-
ally report only transformation products that were formed in
high quantities, because lower concentration metabolites are
considered less relevant and are more difficult to analyze and
identify. Therefore, metabolites formed in low concentrations
are less likely to be reported. This becomes more relevant for
higher generation metabolites, because pathways typically di-
verge into multiple branches and transformations are not instan-
taneous but occur on different time scales. Both effects lead to
decreasing maximum concentrations with increasing depth in
the pathway. Thus, uncertainty about the actual formation of
unreported metabolites increases for higher generation metabo-
lites.

In this paper, we introduce a new Multi-Generation ap-
proach for evaluating pathways that addresses some of the prob-
lems of the Single-Generation approach. It explicitly includes
the compound positions in the graph. Instead of only evaluat-
ing the reactions for each of the compounds, entire pathways
are predicted and evaluated against experimentally derived val-
idation pathways. Compounds at higher depth in the pathway
bear higher uncertainty, as their likelihood of being missed in-
creases with decreasingly lower concentrations. Our new eval-
uation approach takes this into consideration by assigning re-
duced weights to compounds at higher depths.

Another motivation is the treatment of intermediate
metabolites in the pathway. These metabolites are quickly trans-
formed to downstream products and therefore exist only in very
low concentrations. As a consequence, they are often neglected
or not analyzed in experimental reference pathways. Single-
Generation evaluation approaches tend to incorrectly penalize
these intermediates. However, multi-generation approaches can
take them into consideration when the downstream products are
known. In our approach their prediction is not penalized during
the scoring process, and the depths of other downstream com-
pounds in the pathway are adjusted accordingly.

With our new evaluation approach we can evaluate whole
pathway predictions more realistically than before and indepen-
dent of the underlying set of transformation rules. The results

produced are more in line with the expectations of experimen-
talists and more comparable across models. This is because
some approaches restrict the evaluation on the set of defined
rules, basically ignoring the undefined transformation space.
This in turn enables further improvements of the prediction
models. Our methodology is a special case of graph analysis
that is particularly useful for (bio)degradation or metabolism
pathways and chemical reaction networks.

The main contribution of this paper are:

1. Use of conditional probabilities for depth considerations
in biotransformation pathway predictions.

2. A new scoring system that quantifies the agreement be-
tween two biotransformation pathways.

3. Consideration of compound position (pathway depth) in-
formation in evaluating pathway predictions.

4. Consideration of potential intermediate metabolites in
evaluating pathway predictions.

2. Background & Related Work
Biochemical Network Integrated Computational Explorer
(BNICE) [9] is a framework that generates all known reactions
for compounds. It makes use of the set of enzyme reaction rules
based on the enzyme commission (EC) classification system.
Metabolic pathways are generated by first determining func-
tional groups contained in the root compounds, and generate
associated products on ones that can be acted upon by the reac-
tion rules. The same process is repeated on each of the products
in successive generations. The iteration terminates when a limit
on the number of iterations has been reached, or when no new
compounds are created.

METEOR [2] contains options of knowledge based pre-
diction methods as well as machine learning approaches. The
knowledge based option utilizes a combination of Absolute and
Relative Reasoning in their predictions of reactions. The pro-
cess commences by applying biotransformation rules to the
starting compound, and this generate potential metabolites. The
absolute reasoning process then assigns a level of belief to each
biotransformation [10, 11].

Biotransformations that satisfy the absolute reasoning
threshold preset by the user are then ranked in the relative rea-
soning process. The process uses a relative reasoning thresh-
old to calculate the resulting relative hierarchy. Static Scores
and Site of Metabolism Scoring are other prediction options that
make use of machine learning techniques on experimental data.
The first utilizes an occurrence ratio – actual occurrences over
all possible occurrences. The latter further considers similar-
ity on additional chemical properties – attributes from gener-
ated fingerprints and molecular weights. The processes in each
of these options are repeated for all surviving biotransforma-
tions, until some preset stopping conditions are satisfied, such
as reaching the maximum depth.

PathPred [3] executes predictions by first searching for
compounds from the KEGG [12] COMPOUND database that
are similar to the chosen starting compound. The results
are then used as input to search through the KEGG REAC-
TION database for matching RDM transformation patterns
[13]. These patterns are defined as KEGG atom type changes
at the reaction center (R), the difference region (D), and the
matched region (M). Products of these matching reactant pairs
are then used as input, and this process is repeated until stop-
ping conditions are reached. The Jaccard coefficient between
the query and matched compounds of each reaction is used as



the reaction score to indicate its plausibility. The average of
all individual reaction scores in the pathway gives the pathway
score.

EAWAG-PPS (formerly UM-PPS) [4] performs pathway
prediction by first determining the functional groups in the start-
ing compound, and applies biotransformation rules to determine
the transformed products. Applying these rules iteratively to the
educts would lead to combinatorial explosion, and known path-
ways were used to determine biotransformation priorities [14].
User input is used at the end of each transformation prediction,
to determine whether prediction continues downstream of the
predicted compound(s). The predicted pathway grows as this
cycle is repeated.

Biotransformer [6] combines a rule or knowledge based ap-
proach in conjunction with a machine learning approach, to pre-
dict metabolic reactions for compounds. It makes use of exper-
imentally confirmed biotransformations derived from literature,
as well as precedence rules created based on reported obser-
vations. Many of them are from the EAWAG-PPS database.
The Biotransformer Metabolism Prediction Tool (BMPT) then
uses a set of random forest and ensemble prediction methods
to predict reactions. For example ones related to Cytochrome
P450 enzymes (CYP450). Additionally, it adds a filtering phase
of molecules. Metabolic pathways are built progressively with
likely predicted reactions from the starting compound, one re-
action at a time.

OASIS [5] predicts chemical toxicity by integrating
metabolism simulators into models assessing toxicity not only
of the parent chemical, but also its transformation products.
This has improved model performance significantly compared
to the traditional approach. Predictions were based predom-
inantly on the analysis of the structure and properties of the
toxicant and had difficulties modelling some endpoints. OA-
SIS incorporates metabolic logic in models which accounts for
enzyme interactions, channeling effects and depletion of highly
reactive intermediates. It simulates metabolism using a complex
mathematical model rather than a rule-based approach. The
metabolism simulator uses xenobiotic pathway data from Meta-
Path [15] as a reference and aims to reproduce the observed
pathways.

PathPred computes the Jaccard index on compounds in each
of the predicted reactions, and uses the average of all such val-
ues in a pathway as the overall score. Similar integrated scoring
systems that attempt to quantify the quality of predictions are
not found in other systems such as METEOR, BNICE and Bio-
transformer. Their prediction performances in published work
are obtained only via one off independent tests, without any-
thing integrated that indicates the quality of ongoing predic-
tions. OASIS details the prediction evaluation for metabolic
pathways in their work. They union the observed and predicted
pathways, and tally true/false positives/negatives by comparing
the metabolites. Only the first false positive in a sequence of
false positives would be penalized, because the rest are condi-
tioned from it. The system can also identify intermediates, and
an option is provided to either reward, penalize or ignore them.

Another related field is the prediction of graph networks
using machine learning techniques. Link predictions is a
core component in many of the different approaches, such as
analysing information directly from the graph. This includes
common neighbours [16], using metadata of the nodes from the
application domain [17], or making use of pre-existing informa-
tion on the connections between nodes in the graph [18]. There
are a lot of similar concepts between these approaches and the
work in this paper, and we will explore them further for appli-

cability in future work.
Graph Isomorphism is a domain where quantification of

similarity between graphs are studied in great detail. Many
techniques focus on properties such as orientation or structural
arrangements that share little relevancy with pathway objects.
However, there are also commonly used metrics such as Graph
Edit Distance (GED) [19], which can be useful in potential scor-
ing systems or comparing predicted and observed pathways.
Nevertheless, one has to keep in mind that for biotransforma-
tion studies, the resulting pathways are tentative manual as-
signments by experts. They do not always reflect the absolute
ground truth of the underlying reaction mechanism.

In summary, the work related to predicting biodegradation
pathways seem yet to have taken pathway structures into ac-
count. We present our work in this paper that aims to fill this
gap, along with a new approach that evaluates the predictions
accordingly.

3. Evaluation of Relative Reasoning Models
We extended the closely related Single-Generation evaluation
in enviPath and used it as a baseline for direct comparison.
This gives us a way to determine the improvement of the Multi-
Generation evaluation approach.

3.1. Relative Reasoning Models

Standard enviPath Relative Reasoning models [7] were used to
examine the new evaluation approach. They were built using a
chosen set of biotransformation pathways as training data. The
set of biotransformation rules consists of rules that were cre-
ated by experts. All compounds present in these pathways are
independently cross-referenced with the rules for their applica-
bility, producing effectively a quasi Boolean Matrix [20] that
describes their inter-relationships. The matrix would connect
the compounds and rules in a manner similar to:

r1 r2 r3 r4 r5
c1 1 1 1 1 1
c2 0 1 0 −1 1
c3 0 0 1 0 1
c4 −1 −1 0 1 1
c5 0 0 0 0 1

where rn and cn with n = 1...5 are rules and compounds
used in the training procedure. Values−1, 0 and 1 in the matrix
elements respectively represent Not applicable, Applicable but
not observed and Applicable and observed. A machine learning
approach will then be used to determine probabilities for each
of the applicable transformations. A threshold value set by the
user for the model will be used to convert the prediction matrix
elements to boolean values.

3.2. Single-Generation Evaluation

Relative Reasoning models are evaluated using the resulting
matrix. The matrix is used to generate predictions for appli-
cable transformation rules for compounds in the chosen test set.
These predictions are then compared to the applicable rules rep-
resented by the reactions observed in the reference data for each
of the compounds. Fluctuations may arise due to some random-
ization components in the calculations. Repetitively applying
this process in a holdout procedure will iron them out, providing
a more representative estimation of the prediction performance.



3.3. Multi-Generation Evaluation

Compounds in the first generations naturally carry higher confi-
dence in the experimental findings, compared to compounds oc-
curring at higher depth in the pathway. This is due to the amount
of test substance being divided into multiple reaction branches
and only formed slowly over time. Such resulting product com-
pounds would be in much lower concentrations, which are much
more difficult to confirm experimentally. Here, we introduce a
scoring system within our approach to account for increasing
uncertainty when comparing predicted and observed pathways.

This scoring system assigns rewards and penalties with
weights according to the generation of the respective com-
pounds. The resulting score for a pathway represents the agree-
ment between the predicted and observed pathways. The col-
lective scores determined for each of the pathways in the val-
idation set are used to compute conventional metrics such as
recall-precision curves. This new approach evaluates the path-
way as a whole across multiple generations of compounds. This
is in contrast to approaches in other works where predicted re-
actions in each single generation are evaluated independently.

The prediction quality of Relative Reasoning models de-
pends on the compatibility between the transformation rules
and the training set, as well as the test set. Rule sets with
low compatibility can lead to scenarios such as having no ap-
plicable rules to be applied to the target compound structure. In
the Single-Generation evaluation process, such scenarios would
result in all (if any) observed reactions from the educt being
ignored. However, if there are further reactions for the prod-
uct compound in the data, they would still be evaluated. Al-
ternatively, in the Multi-Generation evaluation approach, the
prediction would terminate at the initial educt and no further
scores will be rewarded besides false negatives for the observed
products. Figure 2 demonstrates this difference between the
two evaluation approaches with a simple example. The Multi-
Generation approach provides a better metric for the prediction
accuracy on the overall pathway level.

3.4. Pathway Prediction

We predict pathways in the test/validation set starting from their
root compound. Each of the possible reactions is determined us-
ing the supplied transformation rules, which can be represented
as a possible branch evolving from the educt. The conditional
probabilities approach reaction probabilities according to their
position in the pathway. This procedure takes into account the
relationships between the probabilities of prior/ upstream re-
actions with the current reaction. A depth-dependent adjusted
version of the preset threshold value is used in the pruning pro-
cess with the resulting conditional probability. This conditional
probability is defined by the product of the probability value
assigned to the current reaction, multiplied with values from all
of the upstream reactions. An example pathway beginning from
compound A is shown in Figure 3.

The example shows root compound A with probabilities
PB and PC , for reactions that transform A into compounds B
and C, respectively. A hypothetical probability threshold x of
value PB > x > PC is used in the example, to demonstrate the
scenario where compound C is predicted to be not observed.
The algorithm then continues to determine the possible reac-
tions for compound B, transforming to compounds D and E at
the second generation of the pathway, with respective probabil-
ities PD and PE .

These values are combined with PB using a conditional
probabilities approach, to obtain the conditional probabilities

A B C

Observed
Pathway

rA→B rB→C

A B
Not
Evaluated

Single-
Generation

B CTP +

A BFN CFN

− −
Multi-
Generation

X

X

Observed

Not
Observed

Reward

Penalty

Predicted

Not
Predicted

Figure 2: Graphical representation of a scenario, where a re-
action from an observed pathway is not described by any trans-
formation rule used for training. The observed pathway has
compound A transformed to B then to C, with the reaction
from B → C described by a transformation rule (rB→C ) but
none for A → B (rA→B). The Single-Generation evalua-
tion approach would only evaluate B → C (with a reward
+) and ignore A → B, since no applicable rule can be ap-
plied. The Multi-Generation evaluation approach would penal-
ize both compounds B and C (−) for not being predicted. The
additional penalty in the new approach reflects the knowledge
gap in the rule set used, whereas it is simply ignored in the
single-generation approach.

PB × PD and PB × PE . They are then tested against the
threshold value adjusted for reactions at second generation, at
x2. This part of the example demonstrates the scenario where
PB × PE > x2 > PB × PD , and compound D is predicted to
be not observed. This approach steers the pathway prediction
such that, branches with high probabilities will be longer, while
less likely branches will be cut earlier.

3.5. Pathway Scores and Model Performance

First, we determined a set of compounds that are present in both
the observed and predicted pathway by calculating the over-
all score between both. This set is used to further determine
a set of intermediate metabolites, and adjust the node depths
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Figure 3: Graphical representation of the prediction process for
an example pathway. PB and PC are probabilities of reactions
that would transform compound A to compounds B and C, re-
spectively. PD and PE are probabilities of reactions that would
transform compound B to compounds D and E, respectively. A
hypothetical probability threshold x is used to demonstrate how
compounds C and D are pruned from the pathway.

accordingly in the predicted pathway. With the intermediate
compounds ignored, the quantities TP , FP and FN are then
computed as follows:

• TP - Common compounds count as true positives, with
weights according to their depth in the observed path-
way.

• FP - Compounds that only exist in the predicted path-
way count as false positives, with weights according to
their depth in the predicted (adjusted) pathway.

• FN - Compounds that only exist in the observed path-
way count as false negatives, with weights according to
their depth in the observed pathway.

These definitions are used with the Weighting System and treat-
ment of intermediate metabolites.

3.5.1. Weighting System

We have constructed a simple mathematical model to compare
two pathways with multiple generations. In accordance to the
natural decrease in experimental certainty along the pathways
in the datasets, the compounds are assigned decreasing weights
as their generation/depth level increases. These weight values
start at 1

2
for compounds at generation/depth level one, and de-

crease by 50% for each increasing level. The weights are used
as multipliers to the conventional classification metrics such
as true/false positives/negatives. The multipliers are then used
to quantify the agreement between predicted and experimental
pathways. We use the Jaccard Index as metric for pathway
similarity. It is defined as:

Sim =

∑
(TP ×WD)∑

(TP ×WD) +
∑

(FP ×WD) +
∑

(FN ×WD)
(1)

where TP and FP are the weight-tallied True and False
positives, respectively, and FN represents the False negatives.

A BTP

DFP

CFN

+1/2

−1/4

−1/4

+X

−X

Observed

Not
Observed

Reward

Penalty

Predicted

Not
Predicted

Figure 4: Graphical representation of the pathway combined
from a prediction and an observed pathway in the comparison
process. True/false positives/negatives are determined in the
comparison, and weights are assigned according to their depths
for rewards and penalty calculations.

WD represents the weight multiplier that is dependent on the
depth of the metabolite in the pathway. This approach avoids
the infinite number of potential true negatives, and gives equal
weight to each pathway in the validation set independent of the
pathway length. For an example see Figure 4.

3.5.2. Intermediate Metabolites

Intermediate metabolites are compounds with enhanced reac-
tivity. They are quickly transformed to downstream metabo-
lites, and therefore exist only in very low concentrations. These
intermediates are sometimes included in the experimental data
and sometimes not. This depends on the choice of the author of
the experimental study report or the data package and the un-
derlying experimental evidence. If they are not included, the
transformation of the educt is reported to lead directly to the
downstream metabolite. While prediction of such an intermedi-
ate would be mechanistically correct, they might not be present
in the experimental data. Such a scenario would incorrectly in-
flate the count of false positives during the Single-Generation
evaluation, and would be even more detrimental in the Multi-
Generation evaluation procedure. The intermediate metabolite
would be penalized, along with all metabolites downstream to
it, as they would appear at an incorrect depth in the pathway.

In order to correctly accommodate the intermediate
metabolites in the evaluation procedure, we have designed a
process that accordingly adjusts the depth level of other com-
pounds. The process first determines a list of compounds that
are present in both the predicted and observed pathways. Then
it determines if any of them are immediately downstream to one
another in the observed pathway. The compound pairs that fit
this criteria are examined if additional compounds are between
them in the predicted pathway. Such compounds are hence
added to the list of intermediates. Such intermediate metabo-
lites might still be correctly predicted without the downstream
node from the observed pathway. However, the use of a cor-
rectly predicted downstream node is required to identify them
in a reliable manner and treat them properly. In other words, we



can correct the evaluation of intermediates if and only if they
have downstream products in the reference pathway that were
correctly predicted.

The list of intermediate compounds is used to adjust depth
levels in the predicted pathway accordingly. The shortest path
between each of the compounds in the pathway to the root com-
pound is determined using Breadth-first search (BFS), and the
list of in-between compounds is determined. The depth level
of the end compound is then decreased by the number of in-
termediate compounds that are in this list of in-between com-
pounds. The intermediate compounds are ignored by the Multi-
Generation evaluation scoring algorithm.

An evaluation example incorporating concepts from both
the Weighting System and the treatment of intermediate metabo-
lites is presented in Figure 5.

A C

Experiment 1/2

A BFP CTP

1/2 1/4Predicted

A B CTP

1/2Adjusted

X

X

Observed

Not
Observed

Reward

Penalty

Predicted

Not
Predicted

Figure 5: Graphical representation of the depth adjustment pro-
cess according to intermediate metabolites determined in the
predicted pathway. Compounds A and C are present in both
observed and predicted pathways, which allows compound B
to be identified as an intermediate metabolite. It can be ignored
and the depth-associated-weight for scoring can be adjusted ac-
cordingly for compound C.

The average of comparison scores from all pathways in
the validation set represents the accuracy of the model. The
precision and recall values are determined from the tallies of
true/false positives/negatives obtained. The process is repeated
over a range of threshold values to collect the precision and
recall values at each threshold, and in turn a representative
precision-recall curve is constructed.

4. Experiments
Several experiments are set up to examine the effectiveness of
the proposed evaluation approach compared to the conventional
approaches. They also test the validity of the mathematical
model used to measure similarity between predicted and ob-
served pathways.

4.1. Biotransformation Pathway Data

Several defined sets of biotransformation pathways were used
to run the designed experiments:

4.1.1. EAWAG-BBD

The set of biodegradation pathways contained in the EAWAG
Biocatalysis / Biodegradation Database package [4]. It con-
tains primarily xenobiotic chemical compounds and microbial
biocatalytic reactions. Information on such microbial enzyme-
catalyzed reactions carries great importance in the field of
biotechnology.

4.1.2. EAWAG-SOIL

The set of biodegradation pathways in the EAWAG-SOIL pack-
age [8] contains pesticide degradation pathways compiled from
laboratory soil degradation studies. These pesticides are regis-
tered in the EU, and their degradation pathways are freely ac-
cessible regulatory data.

From the EAWAG-SOIL package we selected diverse sub-
sets of pathways as training and test sets that evenly cover the
chemical space. This is done to obtain a representative set with-
out over-representation of certain compound clusters. The se-
lection is based on the Tanimoto similarities from Morgan2 fin-
gerprints [21]:

T (a, b) =
Nab

Na +Nb −Nab
(2)

where Na and Nb are the numbers of “1” bits present in
the fingerprints of compounds a and b, and Nab is the number
of “1” bits occurring in both fingerprints. The MaxMin algo-
rithm [22] was used to incrementally pick compounds with the
least similarity to the most similar compound from the already
selected set. We selected 80% of the EAWAG-SOIL pathways
to become the TRAIN-SOIL package for model training pur-
poses. The remaining 20% make up the TEST-SOIL package
which is to be used as a test set. We excluded pathways that are
not representative for typical organic chemistry, because their
root compounds are inorganic salts, too big, or contain heavy
metal elements.

4.2. Experiment Setup

We use the set of validated biotransformation rules from the
EAWAG-BBD package to build relative reasoning models with
compound structures from pathways inside the specified train-
ing package. Several experimental setups are designed to ex-
amine various aspects of the proposed evaluation approach. We
have set the probability threshold for reactions to a low value of
0.1 for all experiments, in order to efficiently capture the differ-
ence between the two evaluation approaches.

4.2.1. Train and evaluate

A procedure where the entire chosen list of compounds is used
to train a relative reasoning model once. Then we carry out the



evaluation on the nominated test set TEST-SOIL. This proce-
dure is performed on these pathway set combinations: TRAIN-
SOIL, EAWAG-BBD + TRAIN-SOIL.

4.2.2. 100-Holdout

This procedure uses a random process to select approximately
66% of the chosen molecules to train a relative reasoning
model. The model is then evaluated on the remaining 34% of
data. A list of compounds extracted from all selected path-
ways is used for selection for the Single-Generation evalua-
tion approach, and the list of pathways is used for the Multi-
Generation approach. The process is repeated 100 times, and
the results of each individual run is averaged. This approach
additionally allows an opportunity to also repeatedly examine
the model’s prediction ability on data that is new to the training
set. This procedure is performed on these pathway set combina-
tions: EAWAG-BBD, EAWAG-SOIL, TRAIN-SOIL, EAWAG-
BBD + EAWAG-SOIL, EAWAG-BBD + TRAIN-SOIL.

4.2.3. Validation Test

A procedure to strictly validate the accuracy of the proposed
mathematical approach that compares biotransformation path-
ways. Three sub-procedures are performed:

Full Pathway Evaluate each pathway against itself. The result
is expected to be 1.

Empty Pathway Evaluate each pathway against only its start-
ing compound. As the comparison of the pathway start-
ing compound is ignored in the scoring system, the result
is expected to be 0.

50% Full Pathways A random process is performed to remove
all but the starting compound in approximately 50% of a
cloned set of pathways. Each pathway in the original set
is evaluated against the associated one in the cloned set.
Results of some metrics such as Accuracy and Recall are
expected to be close to the ratio of unmodified pathways
in the cloned set.

5. Results
To determine the effectiveness and validity of our Multi-
Generation evaluation approach, results from the procedures
detailed in the Experiments section were gathered and ana-
lyzed. The results include Accuracy, Precision, Recall and Area
under the Precision-Recall Curve (AUPRC). Due to the nature
of the Multi-Generation evaluation approach, where pathways
have an infinite number of true negatives, the false positive rate
can not be computed. In the Single-Generation evaluation ap-
proach, the number of true negatives can be calculated from the
applicable transformation rules, which are neither predicted (i.e.
below the threshold) nor observed experimentally. The Area
under the Receiver Operating Characteristic curve (AUROC) is
hence only computable for the Single-Generation approach and
is provided as an indicator.

5.1. Validation Tests

Results of the validation tests performed on the EAWAG-BBD
compounds are presented in Table 1. As expected, the evalu-
ated full pathways from both packages achieve 1.0 for Accu-
racy, Precision and Recall, as there are only true positives and
no false positives or negatives. The expected values for evalu-
ated empty pathways from both packages are also 0 for all three

metrics, as there are only false positives or negatives without
any true positives. The “Half Full” pathways from both pack-
ages achieve 1.0 for Precision, and a value that is proportional
to the amount of empty pathways (see Table 2) for Accuracy
and Recall. The empty pathways will contribute with false neg-
atives while the full pathways will contribute to the true positive
score.

Table 1: Results of validation tests performed for Multi-
Generation Evaluation. The validation process was performed
on three different modified versions of the training data itself.

Pathway Accuracy Precision Recall
BBD SOIL BBD SOIL BBD SOIL

Full 1.0 1.0 1.0 1.0 1.0 1.0
Half Full 0.51 0.47 1.0 1.0 0.5 0.47
Empty 0 0 0 0 0 0

Table 2: Counts of the full and empty pathways in the validation
test process where a random 50% of pathways are emptied.

Count
Pathways BBD SOIL

Full 113 153
Empty 105 165
Ratio 0.52 0.48

5.2. Train and Evaluate

Relative reasoning models were trained with the TRAIN-SOIL
package and the combination of EAWAG-BBD + TRAIN-SOIL
packages. In both cases we evaluated the models on the TEST
SOIL package. Tables 3 and 4 show the results, and Figure 6
gives the associated Precision-Recall curves.

Table 3: Statistics of the Train and Evaluate experiments for
threshold 0.1

Accuracy Precision Recall
SG MG SG MG SG MG

BBD+TRAIN SOIL 0.53 0.09 0.34 0.1 0.66 0.36
TRAIN SOIL 0.6 0.15 0.4 0.21 0.71 0.38

Table 4: Statistics of the Train and Evaluate experiments for
the whole range of thresholds

AUPRC AUROC
SG MG SG

BBD+TRAIN SOIL 0.43 0.04 0.8
TRAIN SOIL 0.41 0.09 0.82

The numerical values of each metric are noticeably lower
for the Multi-Generation evaluation approach compared to the
Single-Generation approach. This has mainly two reasons:
First, the Single-Generation evaluation is based only on de-
fined transformation rules, whereas Multi-Generation evaluates
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Figure 6: Precision-Recall curves for the Train and Evaluate
experiments. We can see that the Multi-Generation evaluation
approach better reflects the compatibility between compound
structures and the transformation rules used to train the model.

all nodes in the reference pathway and thus penalizes incom-
plete sets of transformation rules. Second, a wrong prediction
in the Multi-Generation approach is more detrimental, because
all the downstream nodes from this branch will be wrong as
well. In other words, for a true positive to be tallied, all up-
stream nodes also have to be predicted correctly. Additionally, a
false positive will lead to even more false positives downstream.
These two reasons make the Multi-Generation approach a much
harder evaluation criterion.

Another point worth noting from the Multi-Generation
evaluation results is that the values for recall do not reach 1 (see
Precision-Recall curve, Figure 6). The gap between the max-
imum recall and the value of 1.0 is caused by transformations
in the reference pathways which are not covered by transforma-
tion rules and their downstream nodes. The products of such
reactions can therefore never be predicted correctly, no matter
how low the probability threshold is and will always count as
false negatives. Moreover, as discussed above, any downstream
nodes won’t be predicted either. In contrast, missing transfor-
mation rules have no effect on the Single-Generation perfor-
mance, since Single-Generation is only evaluated on the exist-
ing rules. Thus, the maximum recall value at probability thresh-
old zero can be used as an indicator for the completeness of the
rules for the test set.

The data in the TRAIN-SOIL package is naturally closer
to the evaluated TEST-SOIL package in terms of chemical and
biological properties compared to the EAWAG-BBD package.
Therefore, the relative reasoning model trained without the
EAWAG-BBD package is more compatible with the evaluation
data set. This can be observed in the statistics from the Single-
Generation evaluation approach. However, the difference is evi-
dently more obvious in the Multi-Generation evaluation results,
particularly in the Precision-Recall curve. The differences in the
areas under the Multi-Generation Precision-Recall curves are
evidently larger than the Single-Generation evaluation counter-
part.
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Figure 7: Precision-Recall curves for the 100-Holdout experi-
ments. The repeat-and-average component of this training ap-
proach quite effectively smooth out the kinks observed from the
Train and Evaluate experiments. The differences in the gap that
indicates the compatibility between the transformation rules
and the observed compound structures are also visible. The
expected relationships between threshold, precision and recall
are better reflected in the results.

5.3. 100-Holdout

Relative Reasoning models were trained with the EAWAG-
BBD package, EAWAG-SOIL package, TRAIN-SOIL package,
EAWAG-BBD + EAWAG-SOIL, and EAWAG-BBD + TRAIN-
SOIL packages. For all cases, we repeated a holdout evaluation
100 times. The results are presented in Tables 5 and 6, and the
associated Precision-Recall curves are presented in Figure 7.

Table 5: Statistics of the 100-Holdout experiments.

Packages Accuracy Precision Recall
SG MG SG MG SG MG

BBD 0.65 0.17 0.58 0.31 0.76 0.3
SOIL 0.65 0.13 0.42 0.21 0.67 0.27

TRAIN SOIL 0.65 0.13 0.42 0.22 0.66 0.25
BBD+SOIL 0.62 0.15 0.49 0.22 0.72 0.3

BBD+TRAIN SOIL 0.63 0.15 0.5 0.233 0.71 0.28

Table 6: Statistics of the 100-Holdout experiments.

Packages AUPRC AUROC
SG MG SG

BBD 0.64 0.12 0.87
SOIL 0.47 0.07 0.83

TRAIN SOIL 0.43 0.08 0.82
BBD+SOIL 0.56 0.09 0.85

BBD+TRAIN SOIL 0.57 0.09 0.85

Observations from the Train and Evaluate results are
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Figure 8: Precision-Recall curves from the Multi-Generation
results for the 100-Holdout experiments. The thresholds used
for the curve are derived from the distribution of probability
values from all reactions evaluated. The regular gaps between
data points on each line is a result of probability provided by
Meka [23], which are rounded to the nearest 0.05 step.

also notably present in these results from a more repetitive-
averaging process. The Precision-Recall curves are also notably
smoother from the averaging process, for results from both ap-
proaches. The curves from the Multi-Generations approach also
distinguish more clearly between results from only using the
EAWAG-BBD package and other configurations. This is par-
tially due to the fact that transformation rules from the EAWAG-
BBD package are used to train all of these relative reasoning
models. These rules were optimized for EAWAG-BBD but not
for the other packages for which they are less suitable. Also
note that soil is a more complex system. The outcome of such
an experiment is more difficult to predict [8] than for a pure
culture study from EAWAG-BBD.

Both Figure 6 and 7 indicate the Precision-Recall curves
from each of the evaluation approach occupy a different re-
gion in this phase space. Numerical values of Precision and
Recall from the Multi-Generation approach are less ideal by
conventional standards. This is due to the difference in na-
ture for an agreement to be registered in both approaches. The
Single-Generation approach is analogous to evaluating each in-
dividually predicted word written by a columnist. The multi-
generation approach on the other hand, is analogous to extend-
ing this to sentences and paragraphs. That is, correct predictions
in the former may be penalized in the latter for being in the
wrong place. Such a relationship between the two approaches
indicate that it is natural to expect this difference in resulting
numerical values between the two approaches. An enlarged ver-
sion of the Multi-Generation Precision-Recall curves from the
100-holdout experiments are presented in Figure 8.

6. Summary
In this paper, we presented a new Multi-Generation approach
for evaluating relative reasoning prediction models, that are

used to predict biodegradation pathways. It includes method-
ology as well as performance in specifically designed experi-
ments. The new approach evaluates predicted pathways with
multiple generations of compounds as a whole, in contrast to
considering each reaction independently. Our approach addi-
tionally takes into consideration the increased uncertainty of
observing compound at higher depths in the pathways. We also
propose an algorithm to account for intermediate metabolites,
which would otherwise be incorrectly penalized during evalua-
tion.

Our experiments show that the Multi-Generation evaluation
metrics are much harder criteria. On the other hand, they also
provide a more realistic view on the prediction quality of whole
pathways and the completeness of the transformation rules. It
also provides the possibility to directly compare the perfor-
mance of different model approaches independent of their un-
derlying transformation rules. Single-Generation evaluation on
the other hand is more useful for determining the predictivity
for individual (defined) transformation rules. Another applica-
tions include some steps during model development like hyper-
parameter optimization, for which computational efficiency is
important.

Overall, our experiments demonstrate that it is still a long
way until biotransformation prediction models can achieve top
accuracy. However, the Multi-Generation approach addresses
some of the challenges with pathway evaluation, and thus will
facilitate the development of better models in the future. We
plan to further improve our models by quantifying and improv-
ing the compatibility of the biotransformation rules and by in-
tegrating the new knowledge about likely intermediates into
model training.
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