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Abstract: 

 Natural product total synthesis inspires strategy development in chemical synthesis. In the 1960s, 

Corey and coworkers demonstrated a visionary preparation of the terpenoid longifolene, using “strategic 

bond analysis” to craft a synthesis route. This approach proposes that efficient synthesis routes to bridged, 

polycyclic, structures should be formulated to introduce the bulk of the target’s topological complexity at 

a late stage. In subsequent decades, similar strategies have proved general for the syntheses of a wide variety 

of bridged, polycyclic molecules. Here, we demonstrate that an orthogonal strategy, which utilizes a 

topologically complex bicyclo[2.2.1] starting material accessed through a scaffold rearrangement of (S)-

carvone, leads to a remarkably short synthesis of the longifolene-related terpenoid longiborneol. We also 

employ a variety of late-stage C–H functionalization tactics in divergent syntheses of many longiborneol 

congeners. Our strategy should prove effective for the preparation of other topologically complex natural 

products that contain the bicyclo[2.2.1] framework. 

MAIN TEXT: 

The field of natural product total synthesis has long served as a testing ground for new methods and 

strategies for chemical synthesis. Among the many classes of natural product targets, chemists continue to 

be especially fascinated by bridged, polycyclic terpenoids, in part due to the distinct synthesis challenges 

posed by their topologically complex frameworks.1 Longifolene (1, Fig. 1a) is emblematic of this class. In 

their seminal synthesis of 1,2,3 Corey and coworkers demonstrated that a method for retrosynthetic analysis 

termed “strategic bond analysis” could effectively identify synthesis routes to these terpenoids.4 For bridged 

polycyclic targets, this analysis begins with network analysis, which identifies the maximally bridged ring 

(MBR) in the molecule’s framework. Retrosynthetic disconnection of each bond in the MBR is then 

considered, in order to determine disconnections that lead to the simplest, most synthetically accessible 

intermediates.4 Corey’s analysis of longifolene resulted in a visionary 15 step synthesis of longifolene, via  



 

Fig. 1 | Retrosynthetic approaches to longifolene and longiborneol. a, Corey and coworkers to 
longifolene,3,4 b, Ihara and coworkers to longiborneol,10,11 c, Our approach to longiborneol and congeners. 
(Note: A comprehensive analysis of the reported syntheses of longiborneol and longifolene is provided in 
the Supplementary Information.) 

fused bicycle 2.2,3 Because strategic bond analysis seeks to minimize topological complexity in the 

retrosynthetic direction, it implies that the most efficient synthesis of a bridged, polycyclic molecule would 

introduce target-relevant topological complexity at a late stage. This type of approach has been applied to 

other syntheses of 15 and to the construction of a variety of structurally complex natural products.6,7,8 For 

example, the shortest synthesis of the related natural product longiborneol9 (3, Fig. 1b)—16 steps from 

commercial precursors—by Ihara and coworkers constructs the [2.2.1]bicyclic framework at a late stage, 

using a formal [4+2]cycloaddition.10,11 

We envisioned an orthogonal strategy that could yield an even shorter synthesis of longiborneol and 

provide access to a wide range of related natural products. Instead of utilizing primary retrosynthetic 

disconnections that minimize the topological complexity of intermediates, we instead sought an easily 

obtained starting material that retained as much of the target molecule’s topological complexity as possible 

a  Corey et al. (1964): 15-step synthesis

b  Ihara et al. (2000): 16-step synthesis

c  Our strategy
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(Fig. 1c). Through this lens, functionalized camphor derivatives appeared to be ideal synthetic precursors 

to longiborneol, a stark contrast to cyclopentane derivatives, such as 4, and the fused bicycles prompted by 

strategic bond analysis. If effective, a “functionalized camphor” strategy could also prove valuable for total 

syntheses of a variety of natural products, such as those shown in Fig. 2a, featuring the bicyclo[2.2.1] 

bornane sub-skeleton. 

“Chiral pool” terpenes1 have classically been used to prepare molecules with which they share 

skeletal characteristics. It is, therefore, intuitive to imagine synthesizing these functionalized camphor 

derivatives from camphor. However, such strategies can present challenges. For example, Kuo and Money 

employed 8-bromocamphor to prepare longiborneol,12 but reported that its preparation from camphor (in 

three steps) was capricious and somewhat low yielding.13 An alternative approach is to employ a different 

chiral pool terpene in scaffold remodeling—concise, selective series of C–C bond forming and C–C 

cleaving reactions that enable diverse carboskeletons to be accessed from a single starting material. This 

strategy allows chiral pool feedstocks to be applied to synthesis targets onto which they cannot be intuitively 

superimposed. We have previously shown that scaffold remodeling of (S)-carvone can be used to access 

functionalized camphor derivatives,14 but the sequence has not been employed in complex molecule 

synthesis, prior to this report. 

While a synthesis of longiborneol provided an opportunity to test the “functionalized camphor” 

strategy described above, syntheses of its various oxidized congeners (e.g., 5–14, Fig. 2b)15,16,17,18 presented 

an additional opportunity to probe the effectiveness of modern C–H functionalization methods in late-stage 

diversification. In recent years, the use of such reactions to introduce myriad oxygenation patterns on 

complex molecules has been of intense interest to synthetic chemists.19,20,21,22 Determining the positional 

selectivities of these methods on intricate hydrocarbon frameworks is pivotal to their further development  

 



 

Fig. 2 | Structurally similar natural products and retrosynthesis of longiborneol. a, Natural products 
that contain the bornane skeleton. b, Our retrosynthesis of the longiborneol family of natural products. [O], 
oxidation. 

and application. Therefore, we saw the implementation of a divergent synthesis of many longiborneol 

congeners as a valuable contribution to this effort. 

Herein, we report a unified synthesis of nine longiborneol congeners from 8-hydroxycamphor (18). 

This key synthetic intermediate is accessed from carvone using a scaffold rearrangement process consisting 

of three reproducible steps.14 An unusual, metal-mediated hydrogen atom transfer (MHAT)23 initiated 

cyclization enabled rapid construction of the longiborneol skeleton around this camphor-based structural 

nucleus. Using this approach, longiborneol (3) was prepared in nine total steps from carvone –– the shortest 

route to date.11,12,24,25 Additionally, we leveraged a common intermediate to prepare longifolene, using a 

rearrangement of the longiborneol scaffold, as well as a variety of oxygenated longiborneols, through late-

stage oxidation tactics. 

Our retrosynthesis of 3 sought to address not only this target but the collection of longiborneol-

related natural products (classified by oxidation level) illustrated in Fig. 2b. We envisioned that the 
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disparate oxygenation patterns of these targets could be installed by exploiting strategically positioned 

alkene, ketone, and hydroxy groups for C–H functionalizations at a late stage. Therefore, all the targets 

would ultimately arise from common intermediate 15. Disconnection of the C6–C7 bond of 15 led back to 

16. To accomplish this transformation in the forward sense, we sought a cyclization method that would 

effect concomitant formation of the C6–C7 bond and the C6 quaternary center. We posited that this could 

be achieved by polarity-reversal enol alkylation. Specifically, we recognized that metal-hydride hydrogen 

atom transfer (MHAT) chemistry could be used to generate a nucleophilic, tertiary radical from the terminal 

alkene (see 16).23 This radical could then add into an electrophilic enol derivative. Disconnection of the 

C3–C4 bond in 16 traced back to 8-hydroxycamphor and alkyl halide 17. We envisioned coupling these 

two fragments using a Wittig reaction.26 We have previously shown that 18 can be readily prepared from 

(S)-carvone (19) using a scaffold remodeling strategy.14 

Results: 

Our synthesis (Fig. 3a) commenced with epoxidation of (S)-carvone, followed by Ti(III)-mediated 

reductive cyclization of the epoxy-carvone to give cyclobutanol 20 in excellent yield as a 1.5:1 mixture of 

epimers at C7.27 A Brønsted acid-mediated semipinacol rearrangement28 of 20, carried out using a 

modification of the conditions from our previous report,14 yielded 8-hydroxycamphor, which was then 

oxidized to the corresponding aldehyde (21). Selective Wittig olefination of aldehyde 21, using the 

phosphonium ylide derived from 22,29 furnished skipped-diene 16, which contains all the carbon atoms of 

longiborneol and its structurally related congeners. 

In order to implement the MHAT-initiated cyclization, we needed to identify a suitable olefin 

coupling partner—ideally one derived from the carbonyl group at C8. There are many examples of polarity-

matched additions of electrophilic radicals to a variety of O-functionalized enol acceptors.30,31,32 However, 

in our case, the planned radical donor and acceptor presented a polarity mismatch. Specifically, the  



 

Fig. 3 | Total synthesis of longiborneol. a, Total synthesis of longiborneol. b, Polarity considerations in 
radical additions to enol derivatives. TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl; PIDA, 
(diacetoxyiodo)benzene; nBuLi, n-butyllithium. 

proposed addition would be kinetically unfavorable because the radical donor-acceptor pair would not 

effectively stabilize a polarized transition state.33 For this reason, additions of nucleophilic radicals to enol-

derived acceptors are quite uncommon, and tend to be limited in scope with regard to the enol derivative 

(Fig. 3b).31,32,34,35 In addition, enol derivatives are known to be competent H-atom acceptors in MHAT 

reactions.36 We rationalized that these reactivity and selectivity challenges could be mitigated by using an 

electron poor enol-derivative. Following extensive investigation, we identified a vinyl phenylsulfonate 

group as the optimal acceptor coupling partner. The vinyl phenylsulfonate group was easily installed, in 

high yield (see 23), by treating the corresponding ketone with sodium bis(trimethylsilyl)amide (NaHMDS) 

and benzenesulfonic anhydride. Subjecting 23 to optimized Fe-HAT conditions,37,38,39 including critical 

buffering agents, smoothly effected cyclization to 15 in a remarkable 85% yield. A possible mechanism is 

illustrated in Fig. 3a. There exists a single report of addition of cyclohexyl and cyclopentyl radicals 

(generated by H-atom abstraction from the parent alkanes) into 1-phenyl vinyl triflate.32 However, the 

cyclization of 23 to 15 is, to our knowledge, the first example of addition of a nucleophilic radical generated 

through MHAT into a vinyl sulfonate. 
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Hydrogenation of the disubstituted alkene in 15 gave longicamphor (24). A subsequent 

diastereoselective reduction of the ketone in 24, using dissolving metal conditions, furnished longiborneol 

(9 total steps and 33% overall yield from (S)-carvone). Each step has been performed on gram scale, and 

over a gram of longiborneol has been synthesized in a single pass. 

Our synthesis of 15 set the stage for the preparation of many oxygenated longiborneol congeners. 

Because C3 and C5 are activated by the alkene group, 3-hydroxylongiborneol (9) and 5-

hydroxylongiborneol (10) were envisioned to arise from 15 by a formal hydration and allylic oxidation, 

respectively (Fig. 4a). Indeed, a regio- and diastereoselective Mukaiyama hydration40 of the C3–C4 double 

bond of 15 effectively installed a hydroxy group at C3. Subsequent dissolving metal reduction of the C8 

carbonyl delivered 3-hydroxylongiborneol. Alternatively, SeO2-mediated allylic oxidation of 15 

diastereoselectively installed a hydroxy group at C5. At that stage, reduction of the alkene and C8 ketone 

groups yielded 5-hydroxylongiborneol. 

We next sought to synthesize either 14-hydroxylongiborneol (11) or 15-hydroxylongiborneol (12) 

by effecting a Suárez reaction on iso-longiborneol (27).41 However, our attempts led only to degradation of 

the starting material––possibly due to a kinetically favored β-scission of the strained [2.2.1]bicycle.42 

Because of the lack of other functional groups proximal to C14 or C15 in our late-stage intermediates, and 

a paucity of methods for undirected functionalization of primary C–H bonds, we turned to a relay oxidation 

strategy (Fig. 4b).43,44 Specifically, we envisioned that oxygenation at C5, in intermediates similar to those 

employed in our synthesis of 5-hydroxylongiborneol, could direct subsequent hydroxylation at C14 or C15. 

For this purpose, oxime 25 was synthesized from 15 in a six-step sequence (see the Supplementary 

Information).  Sanford palladium-catalyzed C–H acetoxylation45,46 initially led to bis-acetoxylation at both 

C14 and C15 in the major product. While this reaction product was unproductive, it indicated that 

suppression of bis-acetoxylation would enable syntheses of both 14- and 15-hydroxylongiborneols. We  



 

Fig. 4 | Syntheses of oxygenated longiborneol congeners. C–H oxidation strategies and final synthetic 
routes for: a, 3-hydroxylongiborneol and 5-hydroxylongiborneol, b, 12-hydroxylongiborneol, c, 14-
hydroxylongiborneol and 15-hydroxylongiborneol, d, culmorone and culmorin, e, 5-hydroxyculmorin. f, 
Synthesis of longifolene from longiborneol. acac, acetylacetonate; DMAP, 4-dimethylaminopyridine; DG, 
directing group; Me4Phen, 3,4,7,8-tetramethyl-1,10-phenanthroline; DMP, Dess–Martin periodinane; 
TFDO, trifluoromethyl-methyldioxirane. 

found that this shift in product distribution could be achieved by utilizing a substoichiometric loading of 

the PIDA oxidant (0.9 equiv) and significantly lowering the reaction temperature (100 °C à 40 °C) 
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compared to the initially reported conditions.46 Thus, we were able to obtain synthetically useful yields of 

acetoxylated intermediate 26 as a 2:1 mixture of epimers at C6. Reductive oxime cleavage and hydrolysis 

of the resulting imine, tosyl hydrazone formation, and LiAlH4-mediated Caglioti reaction47 completed 

syntheses of 14-hydroxylongiborneol and 15-hydroxylongiborneol through our C5®C14/C15 relay 

hydroxylation. 

We hypothesized that 12-hydroxylongiborneol (13) could be prepared by directed C–H 

functionalization from C8 to C12 (Fig. 4c), perhaps by using an oxime derived from 15 in a directed C(sp3)–

H acetoxylation.45,46 However, our attempts to condense oxyamines with 15 were uniformly unsuccessful–

–likely due to steric hindrance around the ketone group. Instead, we turned our attention to the directed C–

H silylations discovered by Hartwig and coworkers.48,49 Use of longiborneol as the starting material led to 

none of the desired silacycle. On the other hand, iso-longiborneol (27), synthesized by LiAlH4 reduction of 

longicamphor, proved a more competent substrate. Treatment of 27 with chlorodimethyl silane yielded a 

dimethyl (hydrido)silyl ether, which, following iridium-catalyzed C–H silylation, provided silacycle 28. 

Tamao–Fleming oxidation50,51 of 28 yielded iso-12-hydroxylongiborneol (S7, not shown). Oxidation of the 

hydroxy groups in S7 followed by dissolving-metal reduction of the resulting carbonyls yielded 12-

hydroxylongiborneol. 

Given that C11 is distal from all potential directing groups that could easily be derived from 15, we 

turned to undirected C–H oxidations to prepare culmorone (8) and culmorin (14). We anticipated that 

undirected oxidation of the longiborneol scaffold with metal-oxo52 or dioxirane53 reagents would result 

primarily in oxidation at C4, due to its steric accessibility and distance from electron-withdrawing groups 

(Fig. 4d).  However, we also expected competing C11 oxygenation, given that it is the only other methylene 

group that is not neopentyl. Following extensive experimentation, we identified 

methyl(trifluoromethyl)dioxirane (TFDO) as the most effective reagent for undirected C–H oxidation of 



acetyl-longiborneol (S8, not shown). C4 oxidation accounted for the major product (29, 16% yield, 24% 

BRSM) and C11 oxidation (30) was also observed. In addition, C3 (6% yield; see the Supplementary 

Information) and C5 (see Supplementary Information) oxidation products as well as several unidentified 

side-products were also observed. While efforts to further optimize this sequence have thus far proven 

unsuccessful, a direct synthesis of culmorone was achieved upon cleavage of the acetyl group of 30. 

Dissolving metal reduction of culmorone gave culmorin. Armed with a new understanding of the selectivity 

of the TFDO-mediated C–H oxidation of the longiborneol scaffold, we sought to employ it in syntheses of 

additional congeners. 

 Even though undirected C–H functionalization of acetyl-longiborneol was poorly selective, we 

anticipated that installation of additional electron-withdrawing groups on the seven-membered ring would 

slow the rate of oxidation at C3, C4, and C5 (Fig. 4e).53 In line with this expectation, TFDO-mediated C–

H oxidation of bis-acetylated 5-hydroxylongiborneol (31) resulted in a more selective oxidation at C11 (as 

observed by NMR analysis), leading to an efficient preparation of 5-hydroxyculmorin (5), following 

dissolving-metal reduction of the crude mixture, in 38% yield over 2 steps. 

 Finally, during the course of our C–H functionalization studies, we also observed the rearrangement 

of the longiborneol scaffold to other natural product frameworks. For example, treating longiborneol with 

methylsulfamoyl chloride furnished longifolene as the sole product in good yield (Fig. 4f). A related 

rearrangement is known via Wagner–Meerwein shift of the iso-longiborneol-derived mesylate.13 Our total 

synthesis of longifolene proceeds in 10 linear steps from commercial precursors and is the shortest to date. 

 The total syntheses presented here rest on a scaffold rearrangement of carvone (Fig. 5), a versatile 

tactic that can provide the diverse camphor derivatives required to pursue similar synthesis strategies 

towards other complex molecules (see Fig. 2a). For example, we have previously reported the preparation 

of 18, 35, 36 and 37 from carvone in three steps.14 Additionally, we have now shown that oxygenation of  



 

Fig. 5 | Camphor derivatives accessible by scaffold remodeling of (S)-carvone. 

hydroxylated pinene derivative 20 (accessed from carvone), prior to the semipinacol rearrangement, 

ultimately affords functionalized camphor derivatives 38 and 39 (see the Supplementary Information). In 

this way, camphor derivatives bearing functionality at every unactivated, non-quaternary carbon can be 

prepared using scaffold remodeling tactics. 

Discussion: 

In summary, we leveraged a scaffold rearrangement strategy to efficiently access a topologically 

complex core structure of the longiborneol scaffold, 8-hydroxycamphor, which was used to complete a 

short total synthesis of longiborneol. A variety of late-stage C–H functionalization tactics were employed 

to complete syntheses of eight additional oxygenated congeners. While the strategy used here directly 

contrasts traditional strategic approaches (i.e., strategic bond analysis) that prompt construction of the 

longiborneol [2.2.1]bicycle toward the end of the synthesis, it nonetheless led to the shortest synthesis of 

longiborneol and set the stage for the preparation of myriad congeners. In total, we prepared longiborneol 

congeners featuring oxygenation at C3, C5, C11, C12, C14, and C15 using methods including allylic 

oxidation, undirected dioxirane C–H oxidation, oxysilane-directed C–H silylation, and oxime-directed C–

H acetoxylation on the complex sesquiterpene skeleton. Analogous strategies should prove effective for the 

preparation of a variety of natural products (Fig. 2a) from functionalized camphor intermediates. While 

scaffold remodeling is a robust strategy for the production of such derivatives, we also continue to 



investigate functionalizations of camphor itself, which would provide more direct access to these versatile 

starting materials for synthesis. 
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