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Abstract 17 

The exposome reflects the many exposures to various factors across the life-course that can 18 
affect health. Sensitive techniques like metabolomics can reveal the underlying molecular basis 19 
linking exposures to disease and generate hypotheses for future quantitative toxicological 20 
studies. Current applications of metabolomics are primarily to identify metabolic changes linking 21 
a  single exposure and a health outcome(s); there is no general framework for multiple 22 
exposures. Here, we explore the concept of ‘molecular gatekeepers’—key metabolites that link 23 
single or multiple exposure biomarkers with correlated clusters of endogenous metabolites—to 24 
inform health-relevant biological targets. We performed untargeted metabolomics on plasma 25 
from 152 adolescent girls participating in the Growing Up Healthy Study in New York City, using 26 
liquid chromatography-high resolution mass spectrometry (LC-HRMS). We then performed 27 
network analysis to link metabolites to environmental biomarkers including five trace elements 28 
(Cd, Mn, Pb, Se, and Hg) and five perfluorinated chemicals (PFCs; n-PFOS, Sm-PFOS, n-29 
PFOA, PFHxS, PFNA) previously measured in the same samples. We defined any metabolite 30 
associated with at least one environmental biomarker and correlated with at least one other 31 
metabolite (Spearman rho > 0.9) as a ‘molecular gatekeeper’. Associations of gatekeepers with 32 
health outcomes (e.g., body mass index, age at menarche) were tested with linear models. After 33 
removing redundant peaks, 964 (positive mode) and 1784 (negative mode) metabolite features 34 
were used for network analysis. Of 95 and 138 metabolites, respectively, associated with at 35 
least one exposure, 28 and 43 were molecular gatekeepers. Further, 36 
lysophosphatidylcholine(16:0) and taurodeoxycholate were correlated with both n-PFOA and n-37 
PFOS, suggesting a shared dysregulation from multiple xenobiotic exposures. One annotated 38 
gatekeeper, sphingomyelin(d18:2/14:0), was significantly associated with age at menarche; yet, 39 
no direct association was detected between any exposure biomarkers and age at menarche. 40 
Thus, molecular gatekeepers may provide a general data analysis framework to discover 41 
molecular linkages between exposure biomarkers and health outcomes that may otherwise be 42 
obscured by complex interactions in direct measurements. This framework may aid in identifying 43 
vulnerable biological pathways for future exposome research. 44 
 45 
Keywords: exposome, metabolomics, network analysis, perfluorinated chemicals, trace metals, 46 
mixtures 47 
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Introduction 49 

 50 
Exposomics centers on characterizing how various exposures, (e.g., trace metals, persistent 51 
and non-persistent organics, and psycho-social factors, across the human life-course can affect 52 
health1. For example, exposure to lead is associated with a broad range of adverse health 53 
outcomes in both adults and children2, but the biological pathways linking lead exposure to such 54 
outcomes are not fully understood. Indeed, toxicology studies of lead exposure in animals 55 
implicate liver toxicity3, but there is limited epidemiologic evidence to support such 56 
associations4. Such inconsistencies may reflect that interactions between exposures can act 57 
antagonistically or synergistically to impart influences on health. This complexity introduces 58 
challenges in uncovering relationships between the exposome and health. 59 
 60 
Sensitive technologies may provide an avenue to resolve this complexity. In particular, 61 
metabolomics approaches enable unbiased measurement of thousands of metabolites to 62 
identify changes in the metabolome profile as a result of exposures or disease processes5. 63 
Metabolites are also connected by biological pathways6 and biochemical reactions7 that 64 
themselves can be associated with specific health conditions or diseases8. Further, exogenous 65 
exposures influence health outcomes via interaction with endogenous metabolites9. As such, 66 
the metabolome may mediate the health outcomes resulting from exposures. Yet, analytical 67 
triangulation among exposures, metabolites, and health outcomes is complex. For example, 68 
metabolite profiles have been reduced to latent variables using principal component analysis10,11 69 
for statistical testing. However, biological interpretation of the metabolites summarized within 70 
latent variables is challenging. Other approaches to reduce dimensionality include using 71 
biological pathway information12. These provide an easily interpreted biological link between 72 
exposures and health outcomes, but are limited to established pathways from databases. While 73 
the network-based approach, xMWAS, focuses on pairwise correlation among different omics 74 
datasets13, this analysis does not consider the inner correlation network within the single omics 75 
dataset. 76 
 77 
To overcome some of these limitations, here we explore the concept of ‘molecular 78 
gatekeepers’—key metabolites that link single or multiple exposure biomarkers with other 79 
endogenous metabolites. We posit that metabolites that are highly correlated with other 80 
metabolites contain more biological information than those metabolites that are isolated. As 81 
such, molecular gatekeepers that link highly correlated metabolites and exposure biomarkers 82 
may be particularly important targets for future toxicological studies and for uncovering the role 83 
of the exposome on health. We sought to validate this concept using network analysis between 84 
untargeted metabolomics and ten environmental biomarkers to identify molecular gatekeepers. 85 
Our findings suggest this method as a potential new approach to inform future exposomic and 86 
toxicological studies. 87 

Methods 88 

Study participants 89 
Girls ages 6–8 years were enrolled at the Icahn School of Medicine at Mount Sinai in the 90 
Growing Up Healthy Study from 2004-2007 as described in previous studies. Participants 91 
provided assent and parents/guardians provided written consent. The study was approved by 92 
the Mount Sinai IRB. In addition to age, inclusion criteria required that girls have no underlying 93 
endocrine medical conditions and be of Black or Hispanic race/ethnicity. Blood samples were 94 



collected from enrolled participants during subsequent annual visits at ages 7–16 years. During 95 
the examination visits, trained and certified staff members obtained standardized 96 
anthropometric measurements, including height and weight. BMI was expressed as age- sex-97 
specific percentile based on the CDC algorithm, as described14. Age at menarche was 98 
ascertained through an algorithm combining parental information and self-report15. The current 99 
analysis includes 152 girls with data on exposure biomarkers, outcome, and potential 100 
confounding variables (Table 1). 101 
 102 
Table 1. Descriptive characteristics of the Growing Up Healthy Study girls in the current study 103 
(N=152). 104 
Characteristic Category N (%) Mean (+-SD) Range 

Race/ethnicity Black 50 (33) - - 

 Hispanic 100 (66) - - 

 White 2 (1) - - 

Age at blood 
collection (yr) 

- - 5.9(3.2) [1,12] 

BMI percentilea - - 71.5(29.4) [1.6,99.9] 

BMI groupa high 76 (50) - - 

 low 76 (50) - - 

Age at 
menarche 

- - 11.7(1.2) [9.1,14.9] 

a:BMI sex- and age-specific. BMI group is dichotomized at the median (85.1%) 105 
 106 

Exposure biomarker measurements 107 
Samples were previously analyzed at the National Center for Environmental Health at the CDC 108 
using on-line solid phase extraction-HPLC-isotope dilution-tandem mass spectrometry (LC-109 
MS)16 for plasma perfluorinated chemicals (PFCs; n-PFOS, n-perfluorooctane sulfonate; n-110 
PFOA, n-perfluorooctanoate; Sm-PFOS, monomethyl branched isomers of PFOS; PFHxS, 111 
perfluorohexane sulfonate; PFNA, perfluorononanoate) or using inductively coupled plasma 112 
mass spectrometry for whole blood trace elements (BCD, Cadmium; BMN, Manganese; BPB, 113 
Lead; BSE, Selenium; THG, Mercury). The CDC laboratory is certified by the Health Care 114 
Financing Administration to comply with the requirements set forth in the Clinical Laboratory 115 
Improvement Act of 1988 and is recertified biannually17. Spearman rhos among blood levels of 116 
trace metals and PFCs were all less than 0.9. Limit of detection for all PFCs was 0.1 µg/L while 117 
the limits of detection for the trace elements analytes were 0.1µg/L(BCD), 0.99 µg/L (BMN), 118 
0.07 µg/dL(BPB), 0.28 µg/L(THG), and 24.48 µg/L(BSE). 119 

Untargeted analysis 120 
Plasma samples stored at -80oC were thawed on ice and vortexed, and 50-uL aliquots were 121 
transferred to a microcentrifuge tube. 150 uL of methanol containing internal standards were 122 
added, and the sample was vortexed and incubated at -80oC for 30 min.  Samples were 123 



centrifuged, and the supernatant dried using a Savant SC250EXP SpeedVac concentrator at 124 
35oC for 90 minutes, and stored at -80oC until analysis. Before LC-HRMS analysis, dried 125 
extracts were reconstituted either in 100% methanol  or in acetonitrile:water (8:2, v/v). An 126 
additional 10-uL aliquot from each sample was combined for use as a pooled quality control 127 
sample (‘pooled QC’) and processed similarly. Following the same protocol the matrix blank 128 
(replacing the plasma with water) and multiple pooled QCs were extracted. Samples were 129 
analyzed using reverse-phase (RP) and hydrophilic interaction liquid (ZH) chromatography 130 
connected to HRMS in negative (RPN) and positive mode (ZHP), respectively, as described 131 
elsewhere18. Samples were analyzed in a randomized order with pooled QCs injected routinely 132 
throughout the run. 133 

Data pre-processing 134 
For untargeted data in positive and negative mode, raw instrument data was converted into 135 
mzxml format19 and analyzed using R programming platform (version 4.0.3). The xcms 136 
package20 was used to generate a feature table with optimized parameters by the IPO 137 
package21. Features with relative standard deviation (RSD%) across the pooled QC samples 138 
smaller than 30% and fold change greater than 3 in blank samples were retained for further 139 
analysis. The GlobalStd algorithm22 was used to reduce the redundant features such as 140 
isotopologue or adducts. Remaining peaks were further filtered by considering the base peak in 141 
the cluster with Pearson’s correlation coefficients larger than 0.9 within GlobalStd retention time 142 
bins. Then, the peak lists (2058 and 989 peaks in RPN and ZHP, respectively) were refined to 143 
merge the peaks within 5s and mass accuracy within 5 ppm, resulting in a final detection of 144 
1784 and 964 independent peaks in RPN and ZHP, respectively, for downstream analysis. 145 
Metabolite annotations were performed by MS/MS spectrum matching to Metlin23, GNPS24, MS-146 
DIAL25, and local databases with default settings. 147 

Statistical and analysis 148 
Analysis was performed on the ZHP and RPN data separately. Correlation between 149 
independent peaks was determined using a Spearman’s rho > 0.9 threshold to distinguish 150 
potential pathway networks. For hypothesis testing, linear models using the empirical Bayes 151 
procedures26 were firstly built between the 10 exposure biomarker concentrations and the log2-152 
transformed intensity of independent peaks to identify significant exposure-metabolite 153 
relationships (p-value < 0.05 after FDR control Benjamini–Hochberg [BH] correction). Data 154 
visualization to show the intersections between exposure biomarkers and independent peaks 155 
was performed by UpSet plot27. Associations between log2-transformed intensity of “molecular 156 
gatekeeper” or exposure biomarkers and girls’ BMI percentile (continuous), BMI groups 157 
(high/low based on median value of BMI percentage), and age at menarche (years) were 158 
determined using linear models or logistic regression (for BMI groups) with or without 159 
adjustment for age at blood collection, race/ethnicity and/or BMI percentage. Data processing R 160 
script is shared as supporting information, and a R implementation to discover gatekeepers 161 
between exposome and metabolome is available as the enet package at 162 
https://github.com/yufree/enet.  163 

Results 164 

“Molecular gatekeepers” are defined as metabolites that are 1) significantly associated with at 165 
least one exposure biomarker and 2) are correlated with at least one other metabolite. Such 166 
metabolites represent a potential role in bridging an exposure to other metabolites and possible 167 
downstream biological dysregulation. Therefore, as a workflow, we firstly determined the 168 



metabolites that were significantly associated with exposure biomarkers. Then, we determined 169 
the metabolites that were correlated with other metabolites. Finally, we selected the metabolites 170 
that were found in both sets as gatekeepers.  171 

Metabolite—exposure associations 172 
For ZHP, there were 964 independent peaks following filtering. Of these(m/z range 71-1092, 173 
retention time range 47s-1139s), 95 metabolites were significantly associated with one 174 
exposure biomarker and 20 were significantly associated with multiple exposure biomarkers (2–175 
3 exposures, see Figure 1). For RPN, there were 1784 independent peaks. Of these(m/z range 176 
87-1197, retention time range 20s-791s),138 metabolites were significantly associated with one 177 
exposure biomarker and 42 were significantly associated with multiple exposure biomarkers (2–178 
4 exposures, see Figure 1). Overall, a greater number of significant associations with 179 
metabolites were found with PFCs than with trace elements (total of 345 and 26, respectively). 180 
The greatest number of exposure biomarker–metabolite associations could be found for n-181 
PFOS and n-PFOA for both modes. Only 41 significant associations were found for Sm-PFOS, 182 
PFHxS and PFNA. For trace elements, predominant associations were between metabolites 183 
and BMN (23) and metabolites and THG (3); no metabolites were significantly associated with 184 
BPB, BSE, and BCD. Interestingly, in contrast to the PFCs, the number of trace elements 185 
associated with metabolites was higher in ZHP than RPN (16 and 10, respectively).   186 
 187 
  188 
 189 

 190 
Figure 1. Upset plots of pairwise associations between metabolites and exposure biomarkers for 191 
ZHP and RPN modes. Associations were detected by linear models using the empirical Bayes 192 
procedures with p-values < 0.05 after FDR control using BH correction. The Set Size is the total 193 
number of metabolites associated with each exposure biomarker, while Associated Metabolites 194 
(vertical axis) describe the number of metabolites distributed across each intersection of 195 
multiple exposure biomarkers.  196 



Molecular Gatekeeper Discovery 197 
For ZHP, 178 out of 964 metabolites were correlated with at least one other metabolite 198 
(Spearman Rho >0.9). Of these, 28 peaks were significantly associated with at least one 199 
exposure (PFC or trace element analyte). For RPN, 368 out of 1784 metabolites were 200 
correlated with at least one other metabolite. Of these, 43 peaks were significantly associated 201 
with at least one PFC or trace element analyte. Thus, the 28 (ZHP) and 43 (RPN) peaks were 202 
considered gatekeepers, and those gatekeepers were highly correlated with a total of 58 (ZHP) 203 
and 101 (RPN) unique metabolites. The full list of 71 gatekeepers and their details can be found 204 
in Table S1, and the corresponding gatekeeper networks are shown in Figure 2. This figure 205 
depicts relationships between exposure biomarkers (blue points) and correlated metabolites 206 
(red points) and gatekeepers (red triangles). Compared with larger numbers of gatekeepers of 207 
PFC (27 in ZHP and 40 in RPN), only four gatekeepers were negatively associated with BMN 208 
(one in ZHP and three in RPN). Three gatekeepers in ZHP and twelve gatekeepers in RPN 209 
were significantly associated with multiple exposures (Table S1). 210 

 211 
Figure 2. Molecular gatekeeper discovery network for metabolites measured in ZHP and RPN 212 
with PFCs and trace elements as exposure biomarkers. Red nodes represent independent 213 
metabolites, triangles represent gatekeeper metabolites, and blue nodes with labels represent 214 
exposure biomarkers. The edges among triangles and blue nodes represent significant 215 
associations (p-value < 0.05, empirical Bayes procedures after FDR control with BH correction). 216 
The edges among triangles and other nodes represent correlations (Spearman correlation 217 
coefficient > 0.9). Solid lines indicate a positive association or correlation while dashed lines 218 
indicate negative association or correlation. Gatekeeper molecules represent potentially 219 
important links between environmental exposures and metabolite sets.  220 
 221 
Of the 71 gatekeepers, we ascertained high confidence annotations for ten. We then extracted 222 
the network for each annotated gatekeeper; we depict the linkages between the exposure 223 
biomarker and any correlated metabolites in Figure 3. From ZHP mode, we identified betaine, 224 
LPC(16:0), LPC(18:0), SM(d18:2/14:0), and PE(20:4/P-18:0) as gatekeepers. From RPN mode, 225 
we identified gatekeepers hippuric acid, dehydroepiandrosterone sulfate, androsterone sulfate, 226 
taurodeoxycholate and GPC(P-18:0/20:4). Two gatekeepers were associated with multiple 227 
exposures. LPC(16:0) was negatively associated with n-PFOS and n-PFOA and positively 228 
correlated with an unannotated metabolite (M991.6733T348.8). Taurodeoxycholate was 229 
positively associated with both n-PFOS and n-PFOA and one unannotated metabolite 230 
(M514.2835T307.5). There were two additional gatekeepers without annotation that were 231 
associated with three PFCs (Table S1). 232 



 233 



Figure 3. Networks for annotated gatekeepers. Each network for the ten annotated gatekeepers 234 
in both ZHP and RPN mode are displayed, depicting the linkages between the exposure 235 
biomarker and any correlated metabolites (A–J). Red nodes represent independent metabolites, 236 
triangles represent gatekeeper metabolites, and blue nodes with labels represent exposures. 237 
The edges among triangles and blue nodes represent significant associations (p-value < 0.05, 238 
empirical Bayes procedures after FDR control with BH correction). The edges among triangles 239 
and other nodes represent correlation (Spearman correlation coefficient > 0.9). Solid lines 240 
indicate positive association or correlation while dashed lines indicate negative association or 241 
correlation.   242 

Gatekeepers linked with health outcomes 243 
We next sought to test the hypothesis that gatekeepers represent conduits to downstream 244 
biological effects of exposures, and therefore hold relevance for exposome research.  We first 245 
determined if there were direct associations between the exposure biomarkers and the health 246 
outcomes of interest. We estimated associations between the exposure biomarkers that are 247 
linked with gatekeepers (n-PFOS, n-PFOA, Sm-PFOS, and BMN) and age at menarche, BMI 248 
percentile, and BMI group (Table 2). Without adjustment for covariates, exposure biomarkers n-249 
PFOS and n-PFOA were significantly associated with BMI percentile and exposure biomarker n-250 
PFOS was associated with BMI group. After adjustment for race/ethnicity and age at blood 251 
collection n-PFOS remained associated with BMI percentile. No associations were detected 252 
between exposure biomarkers and age at menarche without adjustment or after adjusting for 253 
covariates. 254 
 255 
Table 2. Associations between selected exposure biomarkers and health outcomes. Significant 256 
nominal p-values (< 0.05) are in bold. For continuous variables, linear regression was 257 
performed with or without adjustment for covariates. For the BMI percentile group (high versus 258 
low), logistic regression was performed with or without adjustment for covariates. N=152 259 
Exposure 
biomarker 
(ug/L) 

BMI 
percentile 
(unadjusted, 
β±SE) 

BMI 
percentile 
(adjusteda, 
β±SE) 

BMI 
percentile 
group 
(unadjusted, 
β±SE) 

BMI 
percentile 
group 
(adjusteda, 
β±SE) 

Age at 
menarche in 
years 
(unadjusted, 
β±SE) 

Age at 
menarche in 
years 
(adjustedb, 
β±SE) 

n-PFOA -5.7±2.8 -4.5±3.1 -0.4±0.2 -0.3±0.2 1.5±1.3 1.2±1.5 

n-PFOS -5±1.8 -4.2±2.1 -0.3±0.1 -0.3±0.2 0.5±0.9 -0.2±1 

Sm-PFOS -3.6±5.8 -2.5±5.9 -0.1±0.4 -0.1±0.4 1.9±2.8 2.4±2.8 

BMN 0.5±0.4 0.3±0.4 0.02±0.03 0.002±0.03 -0.3±0.2 -0.2±0.2 
a: adjusted for race/ethnicity, age at blood collection 260 
b: adjusted for race/ethnicity, age at blood collection, and BMI percentile 261 
 262 
As a proof-of-concept, we investigated associations between the annotated gatekeepers and 263 
BMI percentile, BMI group, and age at menarche (Table 3). Annotated gatekeepers 264 
SM(d18:2/14:0), dehydroepiandrosterone, and androsterone sulfate were positively associated 265 
with BMI percentile and BMI group both without adjustment and after adjusting for covariates.  266 
Taurodeoxycholate and GPC(P-18:0/20:4) were negatively associated with BMI percentile and 267 
BMI group both without adjustment and after adjusting for covariates. In addition, 268 
SM(d18:2/14:0) was positively associated with age at menarche after adjusting for covariates. 269 



As the units of exposures (µg/L) are different from the log-transformed intensity data of 270 
metabolomics datasets, the estimates in Table 3 represented an effect several times larger than 271 
for the single exposures in Table 2. 272 
 273 
Table 3. Associations among annotated gatekeepers, selected health outcomes and exposure 274 
biomarkers. Significant nominal p-values (< 0.05) are in bold. For continuous variables (log2), 275 
linear regression was performed with or without adjustment for relevant covariates. For the BMI 276 
percentile group (high versus low), logistic regression was performed with or without adjustment 277 
for relevant covariates. N=152. 278 
Gateke
epers 
(log2 
intensit
y) 

mz rt mode BMI 
percen
tile 
(unadj
usted, 
β±SE) 

BMI 
percen
tile 
(adjust
ede, 
β±SE) 

BMI 
percen
tile 
group 
(unadj
usted, 
β±SE) 

BMI 
percen
tile 
group 
(adjust
edf, 
β±SE) 

Age at 
menar
che in 
years 
(unadj
usted, 
β±SE) 

Age at 
menar
che in 
years 
(adjust
edb, 
β±SE) 

Associ
ated 
exposu
re(s) 

Betain
e 

118.08
62 

418.7 ZHP 1.4 
±3.4 

5.3 
±3.8 

0.1 
±0.2 

0.3 
±0.3 

0 ±0.1 0 ±0.2 n-
PFOS 

LPC(1
6:0)a 

496.34
07 

348.8 ZHP 37 
±15.7 

26.1 
±16.6 

1.2 
±1.1 

0.4 
±1.2 

-0.7 
±0.6 

-0.3 
±0.7 

n-
PFOA, 
n-
PFOS 

LPC(1
8:0) 

524.37
16 

344 ZHP 13 ±9 7.4 
±9.6 

0.1 
±0.6 

-0.3 
±0.7 

0.1 
±0.4 

0.3 
±0.4 

n-
PFOS 

SM(d1
8:2/14:
0)b 

673.52
8 

337 ZHP 32.2 
±5 

30.5 
±5.2 

2.2 
±0.5 

2.2 
±0.5 

0.2 
±0.2 

0.8 
±0.2 

n-
PFOS 

PE(20:
4/P-
18:0)c 

752.55
78 

266.9 ZHP -5.1 
±4.8 

-2.5 
±5.1 

-0.8 
±0.3 

-0.7 
±0.4 

0.2 
±0.2 

0 ±0.2 Sm-
PFOS 

Hippuri
c acid 

178.05
1 

74.9 RPN -4.1 
±2.2 

-3.8 
±2.3 

-0.2 
±0.2 

-0.2 
±0.2 

0 ±0.1 0 ±0.1 n-
PFOS 

Dehydr
oepian
droster
one 
sulfate 

367.15
81 

293 RPN 6.1 
±2.4 

6.0 
±2.5 

0.5 
±0.2 

0.5 
±0.2 

-0.2 
±0.1 

-0.1 
±0.1 

n-
PFOA 

Andros
terone 
sulfate 

369.17
37 

280.9 RPN 10.9 
±2.3 

10.8 
±2.4 

0.9 
±0.2 

1.0 
±0.2 

-0.2 
±0.1 

-0.1 
±0.1 

n-
PFOA 

taurod
eoxych
olate 

498.28
87 

338.4 RPN -4.3 
±1.6 

-3.9 
±1.6 

-0.3 
±0.1 

-0.3 
±0.1 

0.1 
±0.1 

0.1 
±0.1 

n-
PFOA, 
n-
PFOS 

GPC(P
-
18:0/2
0:4)d 

838.59
57 

725.4 RPN -16 
±4.6 

-13.4 
±5.1 

-1.3 
±0.4 

-1.2 
±0.4 

0.2 
±0.2 

-0.1 
±0.2 

n-
PFOS 



a: LPC, lysophosphatidylcholine 279 
b: SM, sphingomyelin 280 
c: PE, phosphatidylethanolamine 281 
d: GPC, glycerophosphocholine 282 
e: adjusted for race/ethnicity, age at blood collection 283 
f: adjusted for race/ethnicity, age at blood collection, and BMI percentile 284 

Discussion 285 

Gatekeepers are characterized by their connective roles between exposure biomarkers and 286 
other endogenous metabolites. As shown by the KEGG pathway database28, metabolites within 287 
pathways tend to be correlated with each other instead of isolated from other metabolites. In this 288 
case, metabolites that are highly correlated with both other metabolites and exposure 289 
biomarkers should contain more biologically relevant information than metabolites associated 290 
with a single exposure biomarker in isolation. The purpose of the gatekeeper discovery process 291 
is to find those information-rich metabolites among the thousands of metabolites that are 292 
measured, as a priori targets for testing associations with health outcomes. Therefore, 293 
gatekeeper discovery can be considered as a dimension-reduction method to highlight 294 
biologically relevant metabolites based on network analysis.  295 
 296 
Our results showed that seven out of ten exposure biomarkers—PFNA, THG, BMN, Sm-PFOS, 297 
n-PFOA, n-PFOS, and PFHxS— were significantly associated with a total of 233 metabolites in 298 
RPN and ZHP modes combined, highlighting the complex interactions between plasma 299 
metabolites and both PFCs and trace elements. Further network analysis identified 28 300 
gatekeepers in ZHP and 43 gatekeepers in RPN associated with sm-PFOS, n-PFOS, n-PFOA, 301 
and MNE, indicating that these three PFCs and BMN may be particularly biologically important 302 
exposures. While studies of exposures to PFCs and metabolomics in human populations are 303 
emerging in the literature29–31, studies on manganese exposure are sparse. We found only a 304 
single human study investigating associations between manganese exposure and metabolite 305 
profiles during pregnancy32, although studies in rat models have been performed33,34. Since 306 
manganese exposure has been associated with both beneficial and harmful health effects35,36, 307 
future metabolomics studies investigating this exposure in humans are encouraged.  308 
 309 
We found gatekeepers that were associated with more than one exposure. While 13 out of the 310 
15 gatekeepers that were linked to multiple exposures are unannotated, we found that  311 
LPC(16:0), a glycerophospholipid, was negatively associated with both PFOA and PFOS while 312 
taurodeoxycholate, an active bile acid derivative, was positively associated with both PFOA and 313 
PFOS. These results are consistent with observations in epidemiological studies. Dysregulated 314 
glycerophospholipid metabolism has been associated with PFC exposure in children and 315 
adults37,38. In addition, recent literature suggests associations between PFCs and cholesterol levels 316 
in human plasma which may be mediated by reabsorption of bile acids in the gut39. Bile acid 317 
metabolism is influenced by PFOA and PFOS exposures in human HepaRG hepatoma cells40, 318 
and a recent pilot study found positive associations between several PFCs, including PFOA and 319 
PFOS, with bile acids41.  Therefore, gatekeeper discovery facilitated the selection of metabolites 320 
involved in important biological response pathways following exposures. Further, two unannotated 321 
gatekeepers (Table S1, M418.0859T38.6 and M717.7553T25.9) were associated with three 322 
PFCs (PFOS/PFOA/Sm-PFOS) suggesting that PFCs may work synergistically to alter specific 323 
pathways. These metabolites, associated with multiple exposures, may be particularly important 324 
for understanding health impacts of exposure groups.  325 
 326 



Several gatekeepers linked exposure biomarkers to health outcomes, even when direct 327 
associations were absent. Since n-PFOS is associated with BMI (Table 2), and SM(d18:2/14:0), 328 
taurodeoxycholate, and GPC(P-18:0/20:4) are associated with n-PFOS and with BMI (Table 3), 329 
these gatekeeper metabolites may play key roles in the n-PFOS–BMI interaction at a molecular 330 
level, providing hypotheses for future research. Similarly, while there were no associations 331 
between exposures and age at menarche (Table 2), SM(d18:2/14:0) was positively associated 332 
with age at menarche after adjustment and negatively associated with PFOS. In this case, direct 333 
associations may have been masked by antagonist relationships, and gatekeeper discovery 334 
revealed SM(d18:2/14:0) as a sensitive endogenous marker of this exposure-health interaction. 335 
SM(d18:2/14:0) was also associated with BMI, as has been observed in other studies42. 336 
Taurodeoxycholate has been observed at higher levels in prepubertal obese children with 337 
insulin resistance compared with their non-insulin resistant counterparts43. However, we found 338 
taurodeoxycholate was negatively correlated with BMI in the adolescent girls, most of whom 339 
were not obese. Together, gatekeeper discovery generated hypotheses linking biomarkers to 340 
health outcomes to guide future mechanistic research.  341 
 342 
In summary, we demonstrated that the gatekeeper discovery workflow selects key metabolites 343 
from untargeted data that encompass biologically important information linking exposures to 344 
health outcomes. The associations between paired exposure–metabolite relationships were built 345 
using a simple linear regression. However, the gatekeeper discovery framework can be 346 
extended in future work to multivariate linear regression to consider covariates, or other 347 
machine learning algorithms such as random forest or support vector machine. Additionally, the 348 
correlation threshold among metabolites can be reduced by the user to reveal additional 349 
biological pathways or gatekeepers, or correlation can be replaced by other relationships such 350 
as reactomics or paired mass distances7. As a general data analysis framework, gatekeeper 351 
discovery is flexible for direct adoption to different environmental health studies and even 352 
different omics. Limitations of this study include a small sample size and limited health outcome 353 
data. Therefore, results reported here may not be generalizable to other populations.  354 
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 542 
Table S1. Gatekeepers found in this study and their association with exposure(s).The 543 
associations were detected by linear models using the empirical Bayes procedures and the 544 
coefficients of the association show p-values < 0.05 after FDR control BH correction.  545 
 546 
Gatekeeper m/z Retention time (s) mode Associated environmental 

biomarkers 

M90.9767T553.8 90.9767 553.8 ZHP n-PFOA, n-PFOS 

M104.107T418.5 104.107 418.5 ZHP n-PFOS 

M118.0862T418.7 118.0862 418.7 ZHP n-PFOS 

M202.1549T409 202.1549 409 ZHP n-PFOS 

M202.1802T389.4 202.1802 389.4 ZHP n-PFOS 

M231.1452T419.9 231.1452 419.9 ZHP n-PFOS 

M243.1831T414.4 243.1831 414.4 ZHP n-PFOS 

M280.1543T151 280.1543 151 ZHP n-PFOS 

M280.2382T156.9 280.2382 156.9 ZHP n-PFOS 

M305.207T413.8 305.207 413.8 ZHP n-PFOS 

M328.2623T337.3 328.2623 337.3 ZHP n-PFOS 

M357.2117T233.8 357.2117 233.8 ZHP n-PFOA 

M439.3297T389.4 439.3297 389.4 ZHP n-PFOS 

M496.3407T348.8 496.3407 348.8 ZHP n-PFOA, n-PFOS 

M520.3404T346.8 520.3404 346.8 ZHP n-PFOS 

M523.0476T455.7 523.0476 455.7 ZHP Sm-PFOS 

M524.3716T344 524.3716 344 ZHP n-PFOS 

M586.3599T175.6 586.3599 175.6 ZHP n-PFOS 

M627.5345T260.8 627.5345 260.8 ZHP n-PFOS 

M673.528T337 673.528 337 ZHP n-PFOS 

M728.558T271 728.558 271 ZHP Sm-PFOS 



M752.5578T266.9 752.5578 266.9 ZHP Sm-PFOS 

M773.0767T455.7 773.0767 455.7 ZHP Sm-PFOS 

M907.5782T305.5 907.5782 305.5 ZHP n-PFOA, n-PFOS 

M991.6733T348.8 991.6733 348.8 ZHP n-PFOS 

M1019.704T345.4 1019.704 345.4 ZHP n-PFOS 

M1039.6725T345.4 1039.6725 345.4 ZHP n-PFOS 

M1091.7023T342.7 1091.7023 342.7 ZHP BMN 

M178.051T74.9 178.051 74.9 RPN n-PFOS 

M188.0105T105.8 188.0105 105.8 RPN n-PFOS 

M231.052T210 231.052 210 RPN n-PFOA 

M231.5534T209.4 231.5534 209.4 RPN n-PFOA 

M340.1413T37.4 340.1413 37.4 RPN n-PFOS 

M367.1581T293 367.1581 293 RPN n-PFOA 

M369.1737T280.9 369.1737 280.9 RPN n-PFOA 

M380.8143T29.6 380.8143 29.6 RPN n-PFOS 

M389.2469T532.2 389.2469 532.2 RPN n-PFOA, n-PFOS 

M390.0555T31.3 390.0555 31.3 RPN n-PFOA 

M391.2042T525.5 391.2042 525.5 RPN n-PFOA, n-PFOS 

M391.2621T559.4 391.2621 559.4 RPN n-PFOA, n-PFOS 

M401.2022T68.9 401.2022 68.9 RPN n-PFOA, n-PFOS 

M407.2199T472.8 407.2199 472.8 RPN n-PFOS 

M411.3473T603.7 411.3473 603.7 RPN n-PFOA 

M412.0889T38.6 412.0889 38.6 RPN n-PFOA 

M418.0859T38.6 418.0859 38.6 RPN n-PFOA, n-PFOS, Sm-PFOS 

M425.3992T655.7 425.3992 655.7 RPN n-PFOA 

M435.1453T293 435.1453 293 RPN n-PFOA 

M438.7727T30.1 438.7727 30.1 RPN n-PFOS 

M451.3777T619.4 451.3777 619.4 RPN n-PFOA 



M454.2654T517.1 454.2654 517.1 RPN n-PFOA 

M467.3735T597 467.3735 597 RPN n-PFOA, n-PFOS 

M481.2935T560.7 481.2935 560.7 RPN n-PFOA 

M487.2906T502.5 487.2906 502.5 RPN n-PFOA 

M491.3228T560.1 491.3228 560.1 RPN n-PFOA 

M493.205T214.2 493.205 214.2 RPN n-PFOA 

M498.2887T338.4 498.2887 338.4 RPN n-PFOA, n-PFOS 

M539.8857T26.5 539.8857 26.5 RPN n-PFOA, n-PFOS 

M540.8686T24.7 540.8686 24.7 RPN n-PFOA, n-PFOS 

M540.9461T26.5 540.9461 26.5 RPN n-PFOA, n-PFOS 

M561.4873T701.2 561.4873 701.2 RPN n-PFOA 

M578.3009T470.4 578.3009 470.4 RPN BMN 

M614.3461T481.9 614.3461 481.9 RPN BMN 

M641.3532T338.4 641.3532 338.4 RPN n-PFOA 

M641.3534T331.1 641.3534 331.1 RPN n-PFOA 

M657.3304T366.9 657.3304 366.9 RPN n-PFOA 

M717.7553T25.9 717.7553 25.9 RPN n-PFOA, n-PFOS, Sm-PFOS 

M718.7816T30.1 718.7816 30.1 RPN n-PFOA, n-PFOS 

M836.5798T706.6 836.5798 706.6 RPN n-PFOS 

M838.5957T725.4 838.5957 725.4 RPN n-PFOS 

M857.5969T370.5 857.5969 370.5 RPN n-PFOS 

M1131.6617T470.4 1131.6617 470.4 RPN BMN 

 547 


