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Broader Impact 

This manuscript introduces solvent toxicity in solar perovskite ink chemistries as a major 

technoeconomic limitation for the growth of the technology.  More specifically, the capital and 

operational cost of handling such toxic chemicals to maintain a safe working environment can 

lead to significant added costs. As all record power conversion efficiency devices to date have 

been solution processed, this represents a major challenge for the perovskite optoelectronic field 

and of printed electronics as a whole. Knowing this limitation, we propose that solvent selections 

for ink chemistries should be more quantitative and focus on lowering toxicity. To this end, we 

show that a Hansen solubility model is effective in predicting ink systems using lower toxicity 

solvents. We also show that inks formed from this method are applicable for high-speed slot-die 

coating, limiting the need for long anneal times. These methods and results demonstrate a useful 

framework for quantitatively engineering solvent systems with reduced toxicity while 

simultaneously maintaining and surpassing performance. It therefore provides a pathway and 

major step forward towards the commercialization of solution coated perovskite technologies. 



Abstract 

Printed lead-based perovskite thin films have gained interest due to their potential to be used in 

high power conversion efficiency photovoltaic (PV) devices, which could be manufactured with 

scalable roll-to-roll techniques. In industrial scale-up, toxicity of solvents used in perovskite inks 

can constrain roll-to-roll manufacturing due to the added cost of managing toxic effluents. Due to 

solvent toxicity few perovskite solution chemistries in published PV structures are scalable to 

gigawatt production capacity at low cost. In the present study we show that for scalable perovskite 

thin film production, the use of aprotic polar solvents should be avoided due to their overall toxicity. 

Compliance with the worldwide worker safety regulations for solvent exposure limits could require 

additional air handling requirements for some solvents, which in turn would affect the cost-

effectiveness of PV production. We show that costs associated with handling of hazardous 

substances can be significant and estimate an added cost of ¢3.7/W for dimethylformamide 

(DMF) based, commonly used perovskite coating inks. To solve this problem, we quantitatively 

develop a new perovskite ink solvent system composed entirely of ether and alcohol, which has 

an effective exposure limit 14x higher than DMF, making it suitable for industrial coating 

processes. We show that our new ink solvent system is capable of fabricating high efficiency 

perovskite solar cells processed in one minute on a standard roll-to-roll system. Our work provides 

a framework for selection of printed perovskite solvents by using solubility models, as well as 

regulatory and economics arguments. 

Introduction 

The performance of photovoltaic (PV) structures made from solution processed lead-halide 

perovskites recently exceeded 25% power conversion efficiency1, raising the interest in printing 

and coating deposition techniques for the scale-up production of this solar technology. With scale-

up, toxicity of production needs to be examined, however, there is presently little information and 



safety guidelines for perovskite thin film manufacturing. For example, toxicity of lead in perovskite 

thin films2–6 has led to a growing number of publications examining lead-free perovskites5, 

however, there has been limited work on the toxicity of perovskite ink systems on a whole. These 

ink systems are composed of solvents7–12, processing additives13,14 and organic and metallic 

salts15 all of which have different effects on the human body3. The ink solvents, as the majority 

component of inks, have the largest potential for health impact during the perovskite film 

processing, directing us to focus the present study to identifying less toxic solvent compositions. 

Indeed, toxic chemicals and solvents have been readily used in industrial semiconductor 

processing with well-known negative health effects16–20, so we will use the present study to 

generalize the perovskite ink solvent selection framework, quantifying the effects of toxicity in 

perovskite thin-film manufacturing processes. We develop a set of selection rules that leads us to 

formulate a less toxic, fast crystalizing perovskite ink for use in slot die coating applications. 

Toxicity in Manufacturing 

Chemical toxicity can be quantified with several methods, but the most well understood metric is 

through the lethal dosing of 50% of a studied population (LD50). A LD50 study is conducted by 

subjecting test animals (usually rats, rabbits, or guinea pigs) to a chemical of interest21–23. An 

analog for volatile compounds is the lethal concentration to 50% of the population (LC50). These 

tests are non-standardized, with dosage timing and methodology being dependent on each 

specific study. Therefore, LD50 and LC50 are particularly useful for understanding acute toxicity, 

rather than longer term chronic effects. 

In the thin-film coating industry, workers may be exposed to solvents during their working shift 

over the course of years24. For them, LD50 and LC50 are incomplete metrics for understanding if 

a solvent is safe to use industrially. Instead, in the present study we use government-regulated 

work exposure limits, which dictate the maximum chemical concentration a worker is allowed to 

be exposed to before deemed unsafe. Lower exposure limits correlate to a higher toxicity . We 



use these limits in combination with practical constraints present in industrial settings to determine 

solvent selection rules for coating inks.  

Discussion 

In the United States, solvent exposure in industrial settings are regulated federally through the 

Occupational Safety and Health Administration (OSHA)25. OSHA regulates Permissible Exposure 

Limits (PELs) as well as ventilation requirements in hazardous areas that could expose a worker 

to toxic or flammable fumes. Regulations are based on academic studies, historical and medical 

effects on workers24, industry voices and recommendations from the National Institute of 

Occupational Safety and Health, who generate Recommended Exposure Limits (RELs)26. There 

are many other third-party institutions, such as the American Industrial Hygiene Association 

(AIHA) and the American Conference of Governmental Industrial Hygienists (ACGIH) who 

recommend chemical limits such as Threshold Limit Values (TLVs)27. In Europe, the European 

Agency for Safety and Health at Work (EU OSHA) also regulates the use of solvents in the 

European Union as Occupational Exposure Limits (OELs)28. Many countries have adopted or 

have similar exposure limits to the institutions previously mentioned. For the purpose of this 

discussion, focus will be placed on United States regulatory practices due to regulations being 

largely federal in nature, ease of access to databases, and exposure limits being similar country 

to country. A list of United States OSHA standards that apply to the coating industry can be seen 

in Table S1. A list of common solvents used in perovskite based thin film research, along with 

their exposure limits are seen in Table 1. We also include 25% of the Lower Explosion Limit (LEL) 

as a useful metric of comparison. This limit represents the controlled maximum concentration in 

air to avoid a fire. This concentration regulates concentration buildup in recirculating ovens, 

exhaust piping and other sealed containment. 



Although some common solvents are unregulated from a manufacturing and occupational safety 

perspective, they may be regulated through an environmental release perspective. In the United 

States, the Department of Energy (DOE) has created protective action criteria (PACs) to 

determine exposure severity in the case of chemical release29. For the chemicals listed in Table 

1, their respective DOE PAC levels are listed in Table S2. 

Exposure limits place an upper limit on human exposure, but directly translate into an upper 

manufacturing limit for a given facility size and air handling capacity. Because solvents are 

continuously evaporating during a coating process, only a limited amount of solvent can be used 

before factory workers are over exposed due to solvent vapors. In addition, only a limited amount 

of air can be extracted from a building at any given time before heating, air conditioning (HVAC) 

and other environmental control costs become too expensive to support. Therefore, a practical 

upper manufacturing limit exits based on the permissible exposure limit. We calculate this upper 

limit assuming a 5 micrometer wet film coating thickness, as previously reported30,31, and 

experimental procedures described later. We also assume a single shift 8-hour working day and 

a 250-day working year. The end product is assumed to be a 15% peak power conversion 

efficiency (PCE) PV module. We find that the upper limit to manufacturing productivity (MW/year) 

for a given volume of production facility (m3) is dependent on the air exchange rate of the 

production facility (1/hour) as well as the exposure limit of the solvent and its liquid molar volume 

(liters/mol). We plot the material quantities versus the gross building air exchange rate in Figure 

1a. Comparing dimethylformamide (DMF) and tetrahydrofuran (THF), two industrial aprotic 

solvents, with a modest air exchange rate of 4 exchanges per hour, we find that transitioning to a 

THF based solvent system over a DMF based system can increase the manufacturing capacity 

of a same sized factory 22-fold. 

This analysis shows that working with more hazardous substances requires additional resources 

in the form of air handling and building capacity. We sought to determine a minimum added cost 



to a solution printed solar panel given this increase in operating costs (OpEx) and capital costs 

(CapEx) for air handling. Operating costs were estimated using air flow capacity and cost 

estimations provided by the United States Department of Energy and Environmental Protection 

Agency32. Capital costs were calculated using a constant 4 air exchanges per hour in a 3-story 

factory with a 10-year cost depreciation and a 15% PCE module. The facility had a nominal cost 

of $5000/m2 of floor area. Additional details for the calculation can be found in the supplementary 

information. These costs, broken down by OpEx, CapEx and total costs are plotted against the 

PEL can be seen in Figure 1b. For a solvent system that uses DMF as the main component, the 

overall cost add is ¢0.74/W (¢0.09/W for OpEx and ¢0.65/W for CapEx). For a solvent system 

that uses THF, the overall cost add would be ¢0.037/W (¢0.0042/W for OpEx and ¢0.033/W for 

CapEx). We note that the operating cost here only includes costs for heating, cooling, and air 

circulation. It does not include costs for particle filtration, humidity control and general building 

maintenance. Therefore, the OpEx cost may be artificially low compared to what may be required 

in a true manufacturing line. 

This analysis assumes constant exposure at the PEL over the course of the working shift. Many 

institutions implement safety factors of 4x – 10x in order to increase worker safety due to unknown 

and accidental variables. With a modest 5x safety factor, a DMF solvent system would add ¢3.7/W 

in HVAC related costs while a THF based solvent would add ¢0.18/W. Using the SunShot 2030 

sustainable module price of $0.30/W33, HVAC related expenses for a DMF based system would 

account for 12.3% of the module cost and a THF based system would account for 0.6% of the 

module cost using these safety factors. These costs do not include cost of solvents, cost of 

materials, interconnection, packaging or tool depreciation and therefore would represent a 

significant added cost.  

Using four air exchanges per hour as a basis and assuming a medium sized factory building of 

100,000 m3  ($50M U.S) we show the upper limit to manufacturing in Figure 1c. This cost is 



plotted alongside the slot-die low-flow limit and an estimated extended flow regime34–36. DMF 

systems are highly limited by hazardous vapors despite fundamental coating speeds being much 

higher. For THF, coating speeds are initially limited by the low-flow limit in the laminar regime 

rather than hazardous vapor buildup. By using different slot die head geometry, high coating 

speeds can be realized through the extended coating regime before workers hit the PEL limit.  

Since exposure limits are motivated by worker safety, classes of solvents with generally low 

exposure limits should be considered more hazardous than solvents with high exposure limits. 

Polar aprotic solvents, small molecule amines as well as chlorinated solvents in general have low 

PELs and should follow caution. Alcohols and ethers in general have higher PELs. Lastly, the 

lower explosion limits (LEL) are similar across all solvents, and these values are one to two orders 

of magnitude above the permissible exposure limit. Therefore, if a solvent vapor is controlled to 

its permissible exposure limit, it will also be controlled to its fire safety limit (25% of LEL) given 

that there is adequate control to prevent solvent buildup in certain high-risk areas, like 

recirculating ovens. 

Engineering Safer Solvent Systems 

As discussed in the previous section, systems with higher permissible exposure limits allow for 

higher manufacturing limits, increased worker safety and lower costs. We sought to create an ink 

system with an overall higher exposure limit than traditional DMF systems. For this, we resort to 

lead-methylamine coordination complex systems that has previously been shown to extend 

perovskite solubility into acetonitrile37 and therefore has the potential to extend solubility into other 

solvents. We select THF as a solvent of interest because it is a cyclic ether with a high permissible 

exposure limit, and has the ability to form metal-complexes similar to acetonitrile. With this system 

we make a few qualitative observations. Firstly, the acetonitrile ink can be diluted with THF with 

no obvious adverse effects to crystal formation. Secondly, the lead-methylamine complex forms 



in pure THF but the complex itself is only partially soluble, creating a liquid-liquid phase separated 

system as seen in the supplementary Figure S1.  

Since the THF-lead amine adduct is expected to be organic-like, we explored the solubility 

mechanics through the Hansen solubility model. For this, we generate the lead-methylamine 

adduct in THF at a high concentration and then dilute with a solvent of known Hansen parameters. 

We then fit this data to a traditional organic Hansen ellipsoid and extract the Hansen parameters 

and interaction radius. Solubility information and modeled Hansen sphere results can be seen in 

Figure 2a and the list of solvents and experimental details seen in the supplementary Information 

and Table S3. Fitted Hansen sphere parameters can be seen in Table 3.  Projections of the polar 

and hydrogen bonding axes as seen in Figure 2b and the dispersion and hydrogen bonding axes 

as seen in Figure 2c show that solubility is largely defined by solvent polarity rather than hydrogen 

bonding.   

We take two points within the Hansen sphere and optimize both formulations for spin coated 

devices to demonstrate the power of the Hansen Model for predicting usable mixed solvent ink 

systems. For the first mixed system, we create binary mixtures of Acetonitrile and THF 

(THF/ACN). Acetonitrile and THF are both aprotic, and methylamine gas dissolved in THF can be 

sourced easily from common suppliers. Therefore, this solvent system is significantly easier to 

prepare than previous gas bubbling preparation methods. We then directly replace the Acetonitrile 

with a binary mixture of THF and Methanol (THF/MeOH). After this replacement, the main solvent 

system is composed entirely of ether and alcohol.  This binary mixture has a higher PEL of 

200 ppm vs 40 ppm for pure acetonitrile. Optimized device power conversion statistics from both 

solvent systems are shown in Figure 3a with stabilized power output of the champion cells in 

Figure 3b. As shown, the two ink systems show similar performance for a n-i-p style 

heterojunction PV device. Stabilized power outputs of the champion cells also show similar 

performance, albeit a slightly longer stabilization time is needed for the THF/MeOH ink system 



which may be attributed to the slightly higher hysteresis. The THF/MeOH optimized ink also 

utilizes a nucleation modifier to improve morphology. Similar inks that do not use this modifier are 

shown in Figure S2 and S3 but have similar performance characteristics. Due to small differences 

between these ink formulations, we believe both are optimizable to high performance. 

To demonstrate the viability of these inks in a manufacturing setting, we optimized slot die coated 

devices using the THF/MeOH solvent system. Here we choose a p-i-n structured PV device for 

ease of fabrication in a roll-to-roll setting. The ink is slot-die coated onto a moving web at 1 meter 

per minute and dried immediately with an air knife. The dried and crystalized film is passed 

through a one meter oven with a temperature of 130C, allowing for only one minute of annealing. 

Here we find an average PCE of 10.5% with a champion device of 13.1% as shown in Figure 4. 

Device statistics and additional fabrication methods can be seen in Figure S4. The cells are 

largely limited by high series resistance originating from higher resistivity 50 /square ITO on 

PET. Higher efficiency spin-coated devices with lower resistivity ITO show similar scanned 

performance to the n-i-p structures. 

Exposure Limits of Mixed Solvents 

The above results show that it is possible to engineer safer solvent systems by using mixed 

solvents for Pb-methylamine adduct based solvent systems. The United States OSHA defines 

that for mixed chemical systems that do not have additive effects, the permissible exposure can 

be represented by an equivalent exposure as seen in Equation 125. Here, C is the time weighted 

average exposure concentration of the component and 𝐿 is the exposure limit. To be compliant 

the equivalent exposure must be less than one. 

𝐸 =
𝐶1

𝐿1
+  

𝐶2

𝐿2
+ ⋯ 

𝐶𝑛

𝐿𝑛
 

𝐸 ≤ 1 Eq.1 



Equation 1 

 

Using this equivalent exposure, we can calculate an equivalent permissible exposure limit for a 

given mixed solvent system. For the systems discussed in this work, their equivalent PELs are 

listed in Table 4, along with more traditional systems found in literature. 

In all systems the equivalent PEL is pinned by the lowest regulated component, in this case 

methylamine. However, the amount is low enough that the equivalent PEL remains high, 14x 

higher than DMF alone. Future work should focus on the replacement of methylamine with non-

toxic ligands to further improve ink safety. 

Conclusion 

This work shows the importance of lower toxicity solvents in order to achieve high manufacturing 

capacity in printed thin film perovskite solar technologies. Hazardous solvent ink systems have 

lower exposure limits which restricts manufacturing capacity due to the need for additional air 

handling infrastructure. This additional cost can be significant, adding up to ¢3.7/W on a 

theoretical module of 15% power conversion efficiency for a DMF based perovskite layer. Due to 

this cost we demonstrate that DMF is not compatible with high speed manufacturing and may not 

be economically sustainable. We engineer a lead-methylamine adduct-based solvent system and 

apply the Hansen Solubility Model to select new solvent systems with lowered toxicity. We 

develop two new ink systems: one system that is easier to prepare relative to similar acetonitrile 

systems, as well as a new ink system composed entirely of THF and methanol. This new ink 

system is fast drying and easily slot die coated. In addition, this system has a 14x higher 

permissible exposure limit than a traditional DMF system. We have also shown high efficiency 

perovskite PV with both proof-of-concept spin coated as well as slot-die coated device films. 

Overall, this work aims to provide a quantifiable framework for industry compatible solvent 

selection for perovskite ink development as needed for scalable perovskite PV manufacturing. 
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  Figure 1: a) Upper manufacturing limit for a given material and the gross air exchange rate. Highlighted 

are the exposure limits for THF and DMF and OSHA minimum and recommended gross air exchange 

rates for laboratories. b) Air handling cost for a 15% PCE printed solar module for a given permissible 

exposure limit.  c) Slot-die microfluidic coating windows compared to productivity exposure limits for 

THF and DMF solvents. 



 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2: a) 3D Fitted solubility sphere for the THF-MA adduct. b) Projection of the 𝜹𝑷 and 𝜹𝑯 axes.   

c) Projection of the 𝜹D and 𝜹P axes.  Transparent or hollow points lie outside the solubility sphere. 



 

 

 

 

 

 

 

 

 

  

Figure 3: a) Device statistics for THF/ACN and THF/MeOH optimized formulations. b) Stabilized power 

output and stabilized current density of champion devices. 

Figure 4: a) J-V curve for champion roll-to-roll coated THF/MeOH device b) Stabilized power output 

and stabilized current density of champion roll-to-roll device. 



 

 

 

 

Solvent PEL REL TLV OEL 25%LEL Use 

Dimethylformamide (DMF) 10 10 10 5/10[a] 5500 Solvent 
Acetonitrile (ACN) 40 20 40/60[a] 40/70[a] 11000 Solvent 

N-Methyl-2-pyrrolidone 
(NMP) 

--- --- --- 10/20[a] 3250 Solvent 

Dimethyl Sulfoxide 
(DMSO) 

--- --- --- --- 6500 Solvent 

gamma-Butyrolactone[c] --- --- --- --- --- Solvent 
Propylene Carbonate --- --- --- --- 6500 Solvent 

2-Methoxyethanol (2ME) 25 0.1 0.1 10 4500 Solvent 
Methylamine[c] 10 10 5/15[a] --- 12250 Additive 

Ethylamine 10 10 5/15[a] 5 8750 Additive 
Isopropylamine 5 --- 5/10[a] --- 5000 Additive 

Pyridine 5 5 1 5 4500 Additive 
Chlorobenzene 75 --- 10 5/15[a] 3250 Anti-Solvent 

Chloroform 50[b] 2 10 2 N/A Anti-Solvent 
Toluene 200/300[b]/500[a] 100 20 50/100[a] 2750 Anti-Solvent 

Diethyl Ether 400 --- 400/500[a] 100/200[a] 4750 Anti-Solvent 
Tetrahydrofuran (THF) 200 200/250[a] 50/100[a] 50/100[a] 5000 This Study 

Methanol 200 200/250[a] 200/250[a] 200 15000 This Study 

PEL = Permissible Exposure Limit, REL = Recommended Exposure Limit, TLV = Threshold Limit Value, OEL = Occupational Exposure 

Limit 

LEL = Lower Explosion Limit 

[a] Short term exposure limit – 15-30 minutes 

[b] Ceiling Limit – exposure may never go over this value 

[c] U.S. List 1 precursors. Regulated by the U.S. FDA 

Table 1: Exposure Limits dependent on source.  Compiled from issuing institutions26–28. Units are PPM (parts-per-million).  All values are time 

weighted over 8 hours except those identified. 



  



 

 

 

Parameter Fit 

Dispersion - 𝜹𝑫 16.69 ±0.17 

Polarity - 𝜹𝑷 13.60 ± 0.17 

Hydrogen Bonding - 𝜹𝑯 8.12 ± 0.15 

Interaction Radius - 𝑹𝟎 7.70 ± 0.19 

 

 

 

 

 

 

 

 

  

System PEL-Eq Ref 

THF/MeOH/MA 140 This work 

THF/ACN/MA 50 This work 

ACN/MA 38 Noel et al.38 

DMF/DMSO 17.5 Saliba et al.39 

Table 2: Fitted Hansen Parameters for the Pb-Methylamine-THF adduct. 

Table 3: Equivalent PEL's using US OSHA's equivalent exposure criteria. 
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