
1

NEXTorch: A Design and Bayesian Optimization Toolkit
for Chemical Sciences and Engineering

Yifan Wang,1,2† Tai-Ying Chen,1,2† and Dionisios G. Vlachos1,2*

1Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware,
Newark, Delaware 19716, United States
2Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute
(DEI), 221 Academy St., University of Delaware, Newark, Delaware 19716, United States

†These authors contributed equally.

*Corresponding author: vlachos@udel.edu

Abstract
Automation and optimization of chemical systems require well-inform decisions on what experiments to
run to reduce time, materials, and/or computations. Data-driven active learning algorithms have emerged
as valuable tools to solve such tasks. Bayesian optimization, a sequential global optimization approach, is
a popular active-learning framework. Past studies have demonstrated its efficiency in solving chemistry
and engineering problems. We introduce NEXTorch, a library in Python/PyTorch, to facilitate laboratory
or computational design using Bayesian optimization. NEXTorch offers fast predictive modeling, flexible
optimization loops, visualization capabilities, easy interfacing with legacy software, and multiple types of
parameters and data type conversions. It provides GPU acceleration, parallelization, and state-of-the-art
Bayesian Optimization algorithms and supports both automated and human-in-the-loop optimization. The
comprehensive online documentation introduces Bayesian optimization theory and several examples from
catalyst synthesis, reaction condition optimization, parameter estimation, and reactor geometry
optimization. NEXTorch is open-source and available on GitHub.

Keywords
Design of experiments, Bayesian optimization, response surface, statistical learning, active learning,
adaptive experimentation

2

Introduction
Data generation in chemical sciences can be expensive and time-consuming when performing computations
or experiments. Chemical systems are often complex, multidimensional, and include various interacting
parameters. These traits make the autonomous discovery,1 predictive modeling, and optimization
challenging. Design of experiments (DOE) has been employed to determine the relationships between input
parameters and output responses. However, the traditional DOE is difficult to scale to high dimensional
problems where the cost of fine-tuning parameters and locating optima is prohibitive. Active learning refers
to the idea of a machine learning algorithm “learning” from data, proposing next experiments or
calculations, and improving prediction accuracy with fewer training data or lower cost.2 Bayesian
Optimization (BO), an active learning framework, often used to tune hyperparameters in machine learning
models, has seen a rise in its applications to various chemical science fields, including parameter tuning for
density functional theory (DFT) calculations,3 catalyst synthesis,4,5 high throughput reactions,6 and
computational material discovery.7–9 Its close variant, kriging,10 originating in geostatistics, has also been
widely applied in process engineering.11,12 Fundamentally, BO is a sequential global optimization approach
consisting of two essential parts: (1) a surrogate model (often a Gaussian process13) to approximate the
system response and (2) an acquisition function to suggest new experiments to run. The method is designed
to balance the exploration of uncertainty and exploitation of current knowledge in the parameter space.
Previously, researchers have designed similar global optimization methods for chemistry applications, such
as the Stable Noisy Optimization by Branch and Fit (SNOBFIT),14,15 a genetic algorithm (GA),16,17 and
reinforcement learning.18 Some methods resemble GP-based BO with different surrogate models (e.g.,
neural networks) and customized acquisition functions.19,20 Here, we focus our discussion on GP-based BO
because its simple architecture scales well for medium-sized systems with less than 20 dimensions,21
requires less data and training time, and supports native uncertainty quantification. GP-based BO often
outperforms experts or other algorithms in locating optima and producing accurate surrogate models with
minimal customization effort.6 There is no doubt that BO could supercharge the field towards faster
adoption of automation.

The machine learning community has developed several BO software tools, with most of them interfaced
in Python. We curate a list of open-source BO packages and provide further discussion in Table S1.
Spearmint22 and GyOpt23 are among the early works that make BO accessible to end-users. Recently, some
packages are built on popular machine learning frameworks, such as PyTorch and TensorFlow, to benefit
from fast matrix operations, parallelization, and GPU acceleration. Examples include BoTorch24 and
GPflowOpt25. BoTorch stands out since it naturally supports parallel optimization, Monte Carlo acquisition
functions, and advanced multi-task and multi-objective optimization. The PyTorch backend also makes it
suitable for easy experimentation and fast prototyping. However, most tools are designed for AI researchers
or software engineers, often requiring a steep learning curve. The workflow can also be less transparent to
end-users. Occasionally, design choices are made that keep humans out of the optimization loop.26,27 The
above reasons make these tools difficult to extend to chemistry or engineering problems, where domain
knowledge is essential. We have seen such an attempt by the authors of edbo6 (a Bayesian reaction
optimization package). They performed extensive testing and benchmarking to showcase the effectiveness
of the method.6 However, the software is still based on command-line scripts, and clear documentation is
lacking. Edbo lacks hardware acceleration or the latest state-of-the-art BO methods.

From a practical perspective, we believe a BO tool should be scalable, flexible, and accessible to the end-
users, i.e., chemists and engineers. Hence, we build NEXTorch (Next EXperiment toolkit in PyTorch),
extending the capabilities of BoTorch, to democratize the use of BO in chemical sciences. NEXTorch is
unique for several reasons. First, it benefits from the modern architecture and a variety of models and
functions offered by BoTorch. Second, going beyond BoTorch, NEXTorch provides connections to real-

3

world problems, including automatic parameter scaling, data type conversions, and visualization. These
features allow human-in-the-loop design where decision-making on generating future data is aided by
domain knowledge. Utilizing these features, NEXTorch can assist not only chemical synthesis in laboratory
experiments4 but also the multiscale computational tasks from molecular-scale design, such as
heterogeneous catalyst calculations17 and homogeneous (ligand) catalyst discovery, to reactor-scale
optimization, i.e., automatic reactor optimization with computational fluid dynamics (CFD).28 Third,
NEXTorch is modular, making it easy to extend to other frameworks. It also serves as a library for learning
the theory and implementing BO. We provide clear documentation and guided examples at
https://nextorch.readthedocs.io/en/latest/. We believe its easy use could serve the community, including
experimentalists with little or no programming background.

In the first section of this paper, we review the theoretical foundations of NEXTorch. In the second, we
describe the design of the software and the data structures. In the third, we demonstrate how NEXTorch
can optimize a plug flow reactor (PFR) performance.

Theory

Figure 1. Overview of the active learning framework.

Overview. Our framework (Figure 1) integrates DOE, BO, and surrogate modeling. The goal is to optimize
the function of interest, i.e., objective function 𝑓(𝑿). 𝑿 denotes the input variables (parameters). Here, 𝑿 =
	𝒙𝟏, 𝒙𝟐, 𝒙𝟑,…𝒙𝒅; each of 𝒙𝒊 is a vector 𝒙𝒊 	= 	 (𝑥01, 𝑥21, … , 𝑥31)4; 𝑛 is the number of sample points, and 𝑑
is the dimensionality of the input. Each parameter is bounded, and the resulting multidimensional space is
called the design space A, i.e., 𝑿 ∈ A ∈ ℝ: . The objective function is evaluated using complex computer
simulations or experiments. The responses, 	𝒀 , are usually expensive, time-consuming, or difficult to
calculate or measure. A set of initial sampling 𝑿𝒊𝒏𝒊𝒕 data is generated using DOE. These sampling points
are passed to evaluate 𝑓. One collects the data 𝐷 = 	(𝑋, 𝑌) and use it to train a cheap-to-evaluate surrogate
model 𝑓A (e.g., a Gaussian process). Next, an acquisition function gives the new sampling points (i.e., infill
points, 𝑿𝒏𝒆𝒘) for achieving an optimization goal. At this stage, one could choose to visualize the response

Surrogate model
(GP)

Acquisition
function

Objective function
New trials,
Infill points

Search further?

Terminate

Yes

No

Active learning loop

Initial sampling
(DOE)

Visualization
Training data

4

surfaces using the surrogate model or the infill point locations in the design space. A new dataset is collected
by evaluating 𝑓 at 𝑿𝒏𝒆𝒘 and surrogate model 𝑓A is updated. This process is repeated until the accuracy of 𝑓A
is satisfactory or the optimum location 𝒙∗ = argmax

𝒙∈J
𝑓(𝒙) is found.

Design of experiments (DOE). Standard methods include full factorial design, completely randomized
design, and Latin hypercube sampling (LHS), described in statistics books.29 Here, we use LHS heavily due
to its near-random design and efficient space-filling abilities.30

Gaussian process (GP). A GP model constructs a joint probability distribution over the variables, assuming
a multivariate Gaussian distribution. A GP is determined from a mean function 𝜇(𝑿) and a covariance
kernel function ∑(𝑿,𝑿′).13 A Matern covariance function is typically used as the kernel function,21

𝐶O(d) = 𝜎2 2
RST

U(V)
(√2𝜈 :Z)

[𝐾[(√2𝜈
:
Z
) (1)

where d represents the distance between two points, 𝜎 represents the standard deviation, Γ is the gamma
function, 𝐾[is the modified Bessel function, and 𝜈 and 𝜌 are non-negative parameters.

Acquisition function. The acquisition function is applied to obtain the new sampling point 𝑿𝒏𝒆𝒘 . It
measures the value of evaluating the objective function at 𝑿𝒏𝒆𝒘, based on the current posterior distribution
over 𝑓A. The most commonly used acquisition function is the expected improvement (EI). The EI is the
expectation taken under the posterior distribution 𝑓A of the improvement of the new observation at 𝑿 over
the current best observation 𝑓∗:

𝐸𝐼(𝑿) = 𝔼[𝑚𝑎𝑥(𝑓A(𝑿) − 𝑓∗, 0)] (2)

Aside from the EI, there are also other acquisition functions for a single objective BO available in
NEXTorch, including probability of improvement (PI), upper confidence bound (UCB), and their Monte
Carlo variants (qEI, qPI, qUCB).

Parameter types. Parameters and the associated data are generally continuous, categorical, and ordinal.
Continuous parameters are numerical and take any real value in a range. Categorical are non-numeric and
are denoted by words, text, or symbols. Ordinal parameters take ordered discrete values. Traditionally, BO
is designed for systems with all continuous parameters. However, depending on the problem, the resulting
design space can be discrete or mixed (continuous-discrete). If the number of discrete combinations is low,
one possible solution is to enumerate the values and optimize the continuous parameters for each. Without
loss of generality, we use a continuous relaxation, where the acquisition function is optimized and rounded
to the available values. For ordinal parameters, these values are the ordered discrete values. For categorical
parameters, we encode the categories with integers from 0 to 𝑛hijklmno − 1 and then perform continuous
relaxation in the encoding space. Since a parameter can be approximated as continuous, given a high order
discretization, this approach usually works well for problems with many discrete combinations.

Multi-objective optimization (MOO). MOO involves minimizing (maximizing) the multi-objective
function. The optimal is not a single point but a set of solutions defining the best tradeoff between
competing objectives. The goodness of the solution is determined by the dominance, where 𝑿𝟏 dominates
𝑿𝟐 when 𝑿𝟏 is not worse than 𝑿𝟐 in all objectives, and 𝑿𝟏 is strictly better than 𝑿𝟐 in at least one objective.
A Pareto optimal set defines points not dominated by each other, where the boundary is the Pareto front.

5

The weighte-sum method is a classic MOO method that scalarizes a set of objectives {𝒀𝟏,𝒀𝟐, …𝒀𝒊, …𝒀𝑴}
into a new objective 𝒀𝒎𝒐𝒅 by multiplying each with user-defined weights {w1,w2,…wi,…wM},	where
Ymod=∑ wiYiM

i=1 . The MOO becomes a single-objective optimization

An alternative is to use the expected hypervolume improvement (EHVI) as the acquisition function. A
hypervolume indicator (HV) approximates the Pareto set and EHVI evaluates its EI. In NEXTorch, one can
use either the weighted-sum method or the Monte Carlo EHVI (qEHVI) method as an acquisition function.
The methods are detailed in the Supporting Information (SI).

Software Design

Figure 2. High-level workflow in NEXTorch. (1) Automated optimization; (2) Human-in-the-loop
optimization.

The NEXTorch software package is structured in a similar way to the active learning framework. Figure 2
shows the high-level workflow. Initially, users identify the parameters and objectives and frame the
optimization problem. The critical information includes the ranges and types (categorical, ordinal,
continuous, or mixed) of each parameter. It is helpful to know the sensitivity of the parameters by
performing exploratory data analysis. Depending on the availability of the objective function, NEXTorch
supports two types of optimization: (1) automated optimization, where the analytical form of the objective
function is known and provided to the software (in the form of a Python object). This is often the case in
modeling and simulations; however, closed-form objective functions may also not be available in complex
models, a situation that falls under the next type. And (2) human-in-the-loop optimization, where the
objective function is unknown, as happens in laboratory experiments. We call the action of generating data
from the objective function an “experiment,” which is also the name of the core class in NEXTorch,
irrespective of whether this is done in the laboratory or on a computer. In (1), data is passed through the
loop, and new experiments are conducted as suggested by the acquisition function automatically. In (2),
visualization could help the users decide whether to carry on the experiments or adjust the experimental
setup. The users are left to perform new trials, i.e., conduct further experiments and supply additional data.
NEXTorch reads CSV or Excel files and exports the data in the same format.

Experiment setup
- Parameters
- Objectives
- Design space
…

New trialVisualization

Experiment

User

(1)

(2)

Training Data

6

Figure 3. Main classes and functions in NEXTorch.

NEXTorch is implemented in a modular fashion. Figure 3 summarizes its available classes, modules, and
functions. The Parameter class stores the range and type of each parameter. The ParameterSpace class
consists of all Parameter classes. In the beginning, users can choose a DOE function to construct a sampling
plan and get the initial responses. Next, the data is passed to an Experiment class. We integrate most
acquisition functions and GP models from the upstream BoTorch with the Experiment classes. The
Experiment classes are the core of NEXTorch, where data is preprocessed, GP models are trained and used
for prediction, and the optima are located. There are several variants of the Experiment class depending on
the application. At the higher level, users interact with the Experiment class, WeightedMOOExperiment
class, and EHVIMOOExperiment for sequential single-objective optimization, MOO with a weighted sum
method, and MOO with EHVI. Moreover, NEXTorch also offers various visualization functions for the
sampling plans, response surfaces/heatmaps, acquisition functions, Pareto fronts, etc., up to three
dimensions.

Applications
To demonstrate the easy implementation and modularity of NEXTorch, we provide comprehensive
examples on the documentation page (https://nextorch.readthedocs.io/en/latest/user/examples.html). The
examples cover various types of experiments, designs, BO methods, and parameter types from reaction
engineering and catalysis synthesis. A full list of examples and their description is in Table S2.

Here, we briefly demonstrate the overall optimization pipeline for two specific cases with code snippets
(shown in the SI) on single-objective (example 5) and multi-objective optimization (examples 7 and 11),
respectively. The examples are built on prior kinetics studies of fructose conversion to 5-
hydroxymethylfurfural (HMF) in a PFR.31,32 Fructose, produced from biomass, can be converted to valuable
fuels and chemicals through a chain of reactions. HMF is an essential intermediate in this supply chain
derived from fructose through acid-catalyzed dehydration.33,34 Besides, side reactions produce byproducts,

BoTorch acquisition functions

ExpectedImprovement
ProbabilityOfImprovement
UpperConfidenceBound
qExpectedImprovement
qProbabilityOfImprovement
qUpperConfidenceBound
qExpectedHypervolumeImprove
ment

BoTorch model

SingleTaskGP

Experiment classes

Database
• Handles data preprocessing

BasicExperiment
• Set optimization goals
• Fit GP model with data and make predictions

Experiment
• Generate infill points based on a single objective
• Obtain the current optima

SingleWeightedExperiment
• Generate infill points based on a scalarized

weighted objective

WeightedMOOExperiment
• Run experiments with different weight

combinations and obtain the Pareto set

EHVIMOOExperiment
• Perform MOO with EHVI and obtain the Pareto set

Data preprocessing utilities

• PyTorch tensor ↔ numpy
array conversion

• Ordinal, categorical variable
encoding/decoding

• (Inverse) normalization
• (Inverse) standardization
• Mesh test points generation

Visualization functions

Parity plots
Discovery plots
Acquisition function 1d
Response 1d
Sampling plan 2d
Sampling plan 3d
Response heatmap
Response scatter
Error heatmap
Response surface
Pareto front

DOE functions

General full factorial
Latin Hypercube
Randomized design

Parameter classes

Parameter
ParameterSpace

7

such as humins, formic acid (FA), and levulinic acid (LA). A schematic of the PFR is shown in Figure 4a.
In this example and similar reaction problems, it is essential to maximize the HMF yield while maintaining
a high selectivity of HMF to reduce downstream separation costs. The objective functions are derived from
a kinetic model consisting of a set of ordinary differential equations (ODEs) that compute the concentrations
of each species at a given time in a batch reactor or location in a PFR (as is the case here).1 The input
parameters (𝑿), include the reaction temperature (T), pH, and final residence time (tf). Their ranges are
140-200 °C, 0-1, and 0.01 to 100 min, respectively.

Case 1 – Renewable Platform Chemical (HMF) Yield Optimization
In this case, the goal is to maximize a single objective, the HMF yield (𝑌), in the three-dimensional
continuous space. The objective function (PFR_yield) is a Python function object. The first steps involve
importing NEXTorch modules, defining the parameter spac and a DOE sampling plan to obtain an initial
set of responses. Code example S1 illustrates these steps. Next, we initialize an Experiment object, input
the initial data, and set the goal as maximization (Code example S2). 54 additional BO trials using the
default acquisition function (EI), where one infill point is generated in each iteration, are obtained (Code
example S3). An explicit (human-in-the-loop) loop allows users to access the values of parameters
(X_new_real) and responses (Y_new_real) in real units. The final set of optimal values can also be extracted
and further exported to standard data storage files.

NEXTorch also offers a variety of visualization options (Figure 4). We compare the aforementioned
LHS+BO approach with two other sampling plans with the same total number of 64 points: (1) full factorial
design with four levels in each dimension and (2) completely random sampling. In each approach, we
construct an Experiment object and train a GP model based on all points. Interestingly, BO samples more
in the low pH and low tf region where the potential optimum is (Figure 4g). A two-dimensional plane at
pH=0.7 is shown in the three-dimensional space. On this plane, the response surfaces (Figure 4b, e, h) and
surface plots (Figure 4c, f, i) suggest that the surrogate model predictions from LHS+BO are generally
closer to the ground truth. Next, we plot the best yield observed sequentially (Figure S1). The method also
locates a higher optimal value compared to others. This example showcases that LHS+BO efficiently
converges to the optimum and produces accurate surrogate models at an affordable computational cost. The
runtime of core BO functions (GP training and acquisition function evaluation) completes in seconds per
iteration on a laptop CPU, negligible compared to the cost of the objective function evaluation. Even though
we use a simple PFR model here with a relatively small reaction network of overall reactions, the
computational cost escalates if one uses instead complex parameter estimations, computational fluid
dynamics (CFD) simulations and/or complex reaction networks of thousands and millions of elementary
reactions. The central idea and workflow remain the same. We recently demonstrated such an example of
optimization in five dimensions (reactor geometry and operating conditions) of a microwave reactor using
CFD.28

8

Figure 4. Optimization of HMF yield. (a) Scheme of a PFR that converts fructose to HMF via acid-catalyzed
dehydration. (b) Response surface, and (c) surface plot for the ground truth model at pH = 0.7. (d) Sampling
plan, (e) response surface, and (f) surface plot at pH = 0.7 for the full factorial approach. (g) Sampling plan,
(h) response surface, and (i) surface plot at pH = 0.7 for the LHS+BO approach. In (d) and (g), the sampling
points are visualized in three dimensions, and the two-dimensional plan at pH=0.7 is shown in green. In (g),
the initial points from LHS are shown in blue, and the infill points in red.

Case 2 – Simultaneous Two Variable- (HMF Yield and Selectivity) Optimization
While aiming to maximize the HMF yield, similar to Case 1, it is crucial to maintain a high HMF selectivity
to reduce the separation costs. In this regard, two objectives, yield and selectivity, need to be optimized.
These two variables may not be maximized simultaneously, indicating that an increase in yield may lead to
a decrease in selectivity and vice versa. Therefore, we perform the multi-objective optimization to find out
a Pareto front.

HMF
LA,
FA,
Fructose,
Humins
…

Fructose

log
10 (tf(m

in))

LHS + BOFull FactorialGround Truth

a

b

c

d

e

f

g

h

i

log
10 (tf(m

in))

log
10 (tf(m

in))

Yield % Yield % Yield %

T, pH, tf

9

As in Case 1, the optimization is performed in the three-dimensional continuous space, and the objective
function (PFR_yield) is a Python function object, which returns the yield and selectivity of HMF. We
initialize an EHVIMOOExperiment object, which uses the Monte Carlo EHVI as the acquisition function,
and set the reference point. The reference point defines slightly worse values than the lower bound of the
objective values that are acceptable for each objective (Code example S4). Alternatively, we can initialize
a WeightedMOOExperiment object, which handles multiple weight combinations to perform multi-
objective optimizations using the weighted-sum method automatically (Code example S5).

Then, we perform multi-objective optimization using either method, as in Code example S6. We perform
20 trials using the Monte Carlo EHVI acquisition function, and the loop is explicitly defined, where the
values of parameters (X_new_real) and responses (Y_new_real) are fed explicitly at each iteration. On the
other hand, the NEXTorch also provides automatic optimization, as shown in Code example 6 for the
weighted-sum method, where the loop is defined implicitly in the software. Either implicitly or explicitly
defined optimization loops can be used in both methods. The final set of optimal values can be extracted
and further exported to standard data storage files as in the single-objective optimization.

The Pareto optimal can be visualized using the tools of NEXTorch (Figure 5). We compare the Pareto front
from the two methods, where both sets of optimal lay in the region that HMF selectivity is greater or equal
to the HMF yield and share a similar Pareto front. Interestingly, the Pareto front obtained from the Monte
Carlo EHVI method covers a larger range than the weighted sum method. This is attributed to the limitation
of the pre-assigned weights to each objective in the weighted-sum method, which are not guaranteed to
include the desired region of the design space. Moreover, the computational time of the weighted sum
method (12.9 min) is orders of magnitude higher than that of the Monte Carlo EHVI method (0.2 min)
because the objective function is called many more times (𝑛_𝑡𝑟𝑖𝑎𝑙𝑠 ∗ 𝑛_𝑒𝑥𝑝 = 420). This example
showcases that the Monte Carlo EHVI method efficiently finds out the Pareto optimum and produces an
accurate surrogate model at a lower cost.

Figure 5. Pareto optimum of the HMF yield and selectivity using (a) the Monte Carlo EHVI and (b)
weighted sum method. The diagonal line is used for visualization reasons and indicates the locus of 100%
conversion conditions. As the points approach the diagonal, the conversion increases. The selectivity drops
only slightly as the conversion increases until high conversions are reached.

a b

10

Conclusions
Optimization and predictive modeling are ubiquitous in chemical sciences. Bayesian Optimization-based
active learning is a powerful approach for such tasks. The NEXTorch library was created to enable
streamlined and efficient Bayesian Optimization and surrogate modeling for chemical sciences and
engineering applications. Its backend from BoTorch/PyTorch enables GPU acceleration, parallelization,
and state-of-the-art Bayesian Optimization algorithms. The modular and flexible design of NEXTorch
expands its capabilities and connects with real-world problems. Specifically, it can deal with mixed types
of parameters and data type conversions, supports both automated and human-in-the-loop optimization, and
offers various visualization options. It can be used in chemical synthesis, molecular modeling, reaction
condition optimization, parameter estimation, and reactor geometry optimization, to mention a few
examples. Such tasks can easily be performed without extensive programming effort so that the user can
focus on domain-specific questions. Moreover, NEXTorch enables interface with the commonly used
simulation tools in the reaction engineering field, such as CFD and multiphysics simulations, for automatic
optimization. Including surrogate models, such as random forest and multi-fidelity models, extending the
acquisition function list, and adding a graphical user interface, are important future directions. We believe
the adoption of Bayesian Optimization in daily laboratory or computing practices could advance the field
towards a more efficient and automated future.

ASSOCIATED CONTENT
Supporting Information
The supporting information is available free of charge. (1) Comparison of existing Python-based Bayesian
Optimization or kriging packages; (2) Details of multi-objective optimization methods; (3) List of examples
in the NEXTorch online documentation; (4) Comparison of the best yield value attained using different
sample methods; and (5) Code examples for case 1 and 2.

Software Availability
NEXTorch is publicly available free of charge at https://github.com/VlachosGroup/nextorch. It can be
installed using pip, the standard package-management system in Python. The online documentation is
available at https://nextorch.readthedocs.io/en/latest.

Conflicts of interest
There are no conflicts to declare.

Acknowledgments
Funding from the RAPID manufacturing institute, supported by the Department of Energy (DOE)
Advanced Manufacturing Office (AMO), award numbers DE-EE0007888-9.5 is gratefully acknowledged.
The Delaware Energy Institute gratefully acknowledges the support and partnership of the State of
Delaware in furthering the essential scientific research being conducted through the RAPID projects. The
authors thank Jaynell Keely for assistance with the graphics.

11

References
(1) Coley, C. W.; Eyke, N. S.; Jensen, K. F. Autonomous Discovery in the Chemical Sciences Part II:

Outlook. Angew. Chem., Int. Ed. 2020, 59, 23414–23436.

(2) Settles, B. Active Learning Literature Survey; 2009.

(3) Yu, M.; Yang, S.; Wu, C.; Marom, N. Machine Learning the Hubbard U Parameter in DFT+U
Using Bayesian Optimization. npj Comput. Mater. 2020, 6.

(4) Ebikade, E. O.; Wang, Y.; Samulewicz, N.; Hasa, B.; Vlachos, D. Active Learning-Driven
Quantitative Synthesis–Structure–Property Relations for Improving Performance and Revealing
Active Sites of Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction. React. Chem. Eng.
2020.

(5) Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.; Wang, X.; Li, X.; Alston,
B. M.; Li, B.; Clowes, R.; Rankin, N.; Harris, B.; Sprick, R. S.; Cooper, A. I. A Mobile Robotic
Chemist. Nature 2020, 583, 237–241.

(6) Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. M.;
Adams, R. P.; Doyle, A. G. Bayesian Reaction Optimization as a Tool for Chemical Synthesis.
Nature 2021, 590, 89–96.

(7) del Rosario, Z.; Rupp, M.; Kim, Y.; Antono, E.; Ling, J. Assessing the Frontier: Active Learning,
Model Accuracy, and Multi-Objective Materials Discovery and Optimization. 2019, 024112.

(8) Tran, A.; Tranchida, J.; Wildey, T.; Thompson, A. P. Multi-Fidelity Machine-Learning with
Uncertainty Quantification and Bayesian Optimization for Materials Design: Application to
Ternary Random Alloys. J. Chem. Phys. 2020, 153.

(9) Montoya, J. H.; Winther, K. T.; Flores, R. A.; Bligaard, T.; Hummelshøj, J. S.; Aykol, M.
Autonomous Intelligent Agents for Accelerated Materials Discovery. Chem. Sci. 2020, 11, 8517–
8532.

(10) Forrester, A. I. J.; Sóbester, A.; Keane, A. J. Engineering Design via Surrogate Modelling; Wiley,
2008.

(11) Jones, D. R.; Schonlau, M.; W. J. Welch. Efficient Global Optimization of Expensive Black-Box
Functions," , Vol. 13, No. 4, Pp. 455-492, 1998. J. Glob. Optim. 1998, 13, 455–492.

(12) Boukouvala, F.; Muzzio, F. J.; Ierapetritou, M. G. Dynamic Data-Driven Modeling of
Pharmaceutical Processes. Ind. Eng. Chem. Res. 2011, 50, 6743–6754.

(13) Rasmussen, C. E.; Williams, C. K. I. Gaussian Processes for Machine Learning; 2000; Vol. 7.

(14) Bédard, A.; Adamo, A.; Aroh, K. C.; Russell, M. G.; Bedermann, A. A.; Torosian, J.; Yue, B.;
Jensen, K. F.; Jamison, T. F. Reconfigurable System for Automated Optimization of Diverse
Chemical Reactions. Science 2018, 361, 1220–1225.

(15) Mateos, C.; Nieves-Remacha, M. J.; Rincón, J. A. Automated Platforms for Reaction Self-
Optimization in Flow. React. Chem. Eng. 2019, 4, 1536–1544.

(16) Berardo, E.; Turcani, L.; Miklitz, M.; Jelfs, K. E. An Evolutionary Algorithm for the Discovery of
Porous Organic Cages. Chem. Sci. 2018, 9, 8513–8527.

(17) Wang, Y.; Su, Y.-Q.; Hensen, E. J. M.; Vlachos, D. G. Finite-Temperature Structures of
Supported Subnanometer Catalysts Inferred via Statistical Learning and Genetic Algorithm-Based
Optimization. ACS Nano 2020, 14, 13995–14007.

12

(18) Zhou, Z.; Li, X.; Zare, R. N. Optimizing Chemical Reactions with Deep Reinforcement Learning.
ACS Cent. Sci. 2017, 3, 1337–1344.

(19) Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. Phoenics: A Bayesian Optimizer for
Chemistry. ACS Cent. Sci. 2018, 4, 1134–1145.

(20) Janet, J. P.; Ramesh, S.; Duan, C.; Kulik, H. J. Accurate Multiobjective Design in a Space of
Millions of Transition Metal Complexes with Neural-Network-Driven Efficient Global
Optimization. ACS Cent. Sci. 2020.

(21) Frazier, P. I. A Tutorial on Bayesian Optimization. 2018.

(22) Snoek, J.; Larochelle, H.; Adams, R. P. Practical Bayesian Optimization of Machine Learning
Algorithms. 2012, 1–12.

(23) GPyOpt. GPyOpt: A Bayesian Optimization framework in python
http://github.com/SheffieldML/GPyOpt.

(24) Balandat, M.; Karrer, B.; Jiang, D. R.; Daulton, S.; Letham, B.; Wilson, A. G.; Bakshy, E.
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. 2019.

(25) Knudde, N.; Van Der Herten, J.; Dhaene, T.; Couckuyt, I. GPflowOpt: A Bayesian Optimization
Library Using TensorFlow. arXiv 2017, 0–1.

(26) Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; De Freitas, N. Taking the Human out of the
Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175.

(27) Kandasamy, K.; Vysyaraju, K. R.; Neiswanger, W.; Paria, B.; Collins, C. R.; Schneider, J.;
Poczos, B.; Xing, E. P. Tuning Hyperparameters without Grad Students: Scalable and Robust
Bayesian Optimisation with Dragonfly. 2019.

(28) Chen, T.-Y.; Baker-Fales, M.; Vlachos, D. G. Operation and Optimization of Microwave-Heated
Continuous-Flow Microfluidics. Ind. Eng. Chem. Res. 2020, 59, 10418–10427.

(29) Ogunnaike, B. A. (Babatunde A. Random Phenomena : Fundamentals of Probability and Statistics
for Engineers; CRC Press: Boca Raton, 2010.

(30) McKay, M. D.; Beckman, R. J.; Conover, W. J. A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979,
21, 239.

(31) Swift, T. D.; Bagia, C.; Choudhary, V.; Peklaris, G.; Nikolakis, V.; Vlachos, D. G. Kinetics of
Homogeneous Brønsted Acid Catalyzed Fructose Dehydration and 5-Hydroxymethyl Furfural
Rehydration: A Combined Experimental and Computational Study. ACS Catal. 2014, 4, 259–267.

(32) Desir, P.; Saha, B.; Vlachos, D. G. Ultrafast Flow Chemistry for the Acid-Catalyzed Conversion
of Fructose. Energy Environ. Sci. 2019, 12, 2463–2475.

(33) Chen, T. Y.; Desir, P.; Bracconi, M.; Saha, B.; Maestri, M.; Vlachos, D. G. Liquid-Liquid
Microfluidic Flows for Ultrafast 5-Hydroxymethyl Furfural Extraction. Ind. Eng. Chem. Res.
2021.

(34) Chen, T. Y.; Cheng, Z.; Desir, P.; Saha, B.; Vlachos, D. G. Fast Microflow Kinetics and Acid
Catalyst Deactivation in Glucose Conversion to 5-Hydroxymethylfurfural. React. Chem. Eng.
2021, 6, 152–164.

