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Abstract 
Automation and optimization of chemical systems require well-inform decisions on what experiments to 
run to reduce time, materials, and/or computations. Data-driven active learning algorithms have emerged 
as valuable tools to solve such tasks. Bayesian optimization, a sequential global optimization approach, is 
a popular active-learning framework. Past studies have demonstrated its efficiency in solving chemistry 
and engineering problems. We introduce NEXTorch, a library in Python/PyTorch, to facilitate laboratory 
or computational design using Bayesian optimization. NEXTorch offers fast predictive modeling, flexible 
optimization loops, visualization capabilities, easy interfacing with legacy software, and multiple types of 
parameters and data type conversions. It provides GPU acceleration, parallelization, and state-of-the-art 
Bayesian Optimization algorithms and supports both automated and human-in-the-loop optimization. The 
comprehensive online documentation introduces Bayesian optimization theory and several examples from 
catalyst synthesis, reaction condition optimization, parameter estimation, and reactor geometry 
optimization. NEXTorch is open-source and available on GitHub.  

Keywords 
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Introduction  
Data generation in chemical sciences can be expensive and time-consuming when performing computations 
or experiments. Chemical systems are often complex, multidimensional, and include various interacting 
parameters. These traits make the autonomous discovery,1 predictive modeling, and optimization 
challenging. Design of experiments (DOE) has been employed to determine the relationships between input 
parameters and output responses. However, the traditional DOE is difficult to scale to high dimensional 
problems where the cost of fine-tuning parameters and locating optima is prohibitive. Active learning refers 
to the idea of a machine learning algorithm “learning” from data, proposing next experiments or 
calculations, and improving prediction accuracy with fewer training data or lower cost.2 Bayesian 
Optimization (BO), an active learning framework, often used to tune hyperparameters in machine learning 
models, has seen a rise in its applications to various chemical science fields, including parameter tuning for 
density functional theory (DFT) calculations,3 catalyst synthesis,4,5 high throughput reactions,6 and 
computational material discovery.7–9 Its close variant, kriging,10 originating in geostatistics, has also been 
widely applied in process engineering.11,12 Fundamentally, BO is a sequential global optimization approach 
consisting of two essential parts: (1) a surrogate model (often a Gaussian process13) to approximate the 
system response and (2) an acquisition function to suggest new experiments to run. The method is designed 
to balance the exploration of uncertainty and exploitation of current knowledge in the parameter space. 
Previously, researchers have designed similar global optimization methods for chemistry applications, such 
as the Stable Noisy Optimization by Branch and Fit (SNOBFIT),14,15 a genetic algorithm (GA),16,17 and 
reinforcement learning.18 Some methods resemble GP-based BO with different surrogate models (e.g., 
neural networks) and customized acquisition functions.19,20 Here, we focus our discussion on GP-based BO 
because its simple architecture scales well for medium-sized systems with less than 20 dimensions,21 
requires less data and training time, and supports native uncertainty quantification. GP-based BO often 
outperforms experts or other algorithms in locating optima and producing accurate surrogate models with 
minimal customization effort.6 There is no doubt that BO could supercharge the field towards faster 
adoption of automation.  

The machine learning community has developed several BO software tools, with most of them interfaced 
in Python. We curate a list of open-source BO packages and provide further discussion in Table S1. 
Spearmint22 and GyOpt23 are among the early works that make BO accessible to end-users. Recently, some 
packages are built on popular machine learning frameworks, such as PyTorch and TensorFlow, to benefit 
from fast matrix operations, parallelization, and GPU acceleration. Examples include BoTorch24 and 
GPflowOpt25. BoTorch stands out since it naturally supports parallel optimization, Monte Carlo acquisition 
functions, and advanced multi-task and multi-objective optimization. The PyTorch backend also makes it 
suitable for easy experimentation and fast prototyping. However, most tools are designed for AI researchers 
or software engineers, often requiring a steep learning curve. The workflow can also be less transparent to 
end-users. Occasionally, design choices are made that keep humans out of the optimization loop.26,27 The 
above reasons make these tools difficult to extend to chemistry or engineering problems, where domain 
knowledge is essential. We have seen such an attempt by the authors of edbo6 (a Bayesian reaction 
optimization package). They performed extensive testing and benchmarking to showcase the effectiveness 
of the method.6 However, the software is still based on command-line scripts, and clear documentation is 
lacking. Edbo lacks hardware acceleration or the latest state-of-the-art BO methods.   

From a practical perspective, we believe a BO tool should be scalable, flexible, and accessible to the end-
users, i.e., chemists and engineers. Hence, we build NEXTorch (Next EXperiment toolkit in PyTorch), 
extending the capabilities of BoTorch, to democratize the use of BO in chemical sciences. NEXTorch is 
unique for several reasons. First, it benefits from the modern architecture and a variety of models and 
functions offered by BoTorch. Second, going beyond BoTorch, NEXTorch provides connections to real-
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world problems, including automatic parameter scaling, data type conversions, and visualization. These 
features allow human-in-the-loop design where decision-making on generating future data is aided by 
domain knowledge. Utilizing these features, NEXTorch can assist not only chemical synthesis in laboratory 
experiments4 but also the multiscale computational tasks from molecular-scale design, such as 
heterogeneous catalyst calculations17 and homogeneous (ligand) catalyst discovery, to reactor-scale 
optimization, i.e., automatic reactor optimization with computational fluid dynamics (CFD).28 Third, 
NEXTorch is modular, making it easy to extend to other frameworks. It also serves as a library for learning 
the theory and implementing BO. We provide clear documentation and guided examples at 
https://nextorch.readthedocs.io/en/latest/. We believe its easy use could serve the community, including 
experimentalists with little or no programming background.  

In the first section of this paper, we review the theoretical foundations of NEXTorch. In the second, we 
describe the design of the software and the data structures. In the third, we demonstrate how NEXTorch 
can optimize a plug flow reactor (PFR) performance. 

 

Theory 

 

Figure 1. Overview of the active learning framework. 

 

Overview. Our framework (Figure 1) integrates DOE, BO, and surrogate modeling. The goal is to optimize 
the function of interest, i.e., objective function 𝑓(𝑿). 𝑿 denotes the input variables (parameters). Here, 𝑿 =
	𝒙𝟏, 𝒙𝟐, 𝒙𝟑,…𝒙𝒅; each of 𝒙𝒊 is a vector 𝒙𝒊 	= 	 (𝑥01, 𝑥21, … , 𝑥31)4; 𝑛 is the number of sample points, and 𝑑 
is the dimensionality of the input. Each parameter is bounded, and the resulting multidimensional space is 
called the design space A, i.e., 𝑿 ∈ A ∈ ℝ: . The objective function is evaluated using complex computer 
simulations or experiments. The responses, 	𝒀 , are usually expensive, time-consuming, or difficult to 
calculate or measure. A set of initial sampling 𝑿𝒊𝒏𝒊𝒕 data is generated using DOE. These sampling points 
are passed to evaluate 𝑓. One collects the data 𝐷 = 	(𝑋, 𝑌) and use it to train a cheap-to-evaluate surrogate 
model 𝑓A (e.g., a Gaussian process). Next, an acquisition function gives the new sampling points (i.e., infill 
points, 𝑿𝒏𝒆𝒘) for achieving an optimization goal. At this stage, one could choose to visualize the response 
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surfaces using the surrogate model or the infill point locations in the design space. A new dataset is collected 
by evaluating 𝑓 at 𝑿𝒏𝒆𝒘 and surrogate model 𝑓A is updated. This process is repeated until the accuracy of 𝑓A 
is satisfactory or the optimum location 𝒙∗ = argmax

𝒙∈J
𝑓(𝒙) is found. 

Design of experiments (DOE). Standard methods include full factorial design, completely randomized 
design, and Latin hypercube sampling (LHS), described in statistics books.29 Here, we use LHS heavily due 
to its near-random design and efficient space-filling abilities.30  

Gaussian process (GP). A GP model constructs a joint probability distribution over the variables, assuming 
a multivariate Gaussian distribution. A GP is determined from a mean function 𝜇(𝑿) and a covariance 
kernel function ∑(𝑿,𝑿′).13 A Matern covariance function is typically used as the kernel function,21  

𝐶O(d) = 𝜎2 2
RST

U(V)
(√2𝜈 :Z)

[𝐾[(√2𝜈
:
Z
) (1) 

where d represents the distance between two points, 𝜎 represents the standard deviation, Γ is the gamma 
function, 𝐾[ is the modified Bessel function, and 𝜈 and 𝜌 are non-negative parameters.  

Acquisition function. The acquisition function is applied to obtain the new sampling point 𝑿𝒏𝒆𝒘 . It 
measures the value of evaluating the objective function at 𝑿𝒏𝒆𝒘, based on the current posterior distribution 
over 𝑓A. The most commonly used acquisition function is the expected improvement (EI). The EI is the 
expectation taken under the posterior distribution 𝑓A of the improvement of the new observation at 𝑿 over 
the current best observation 𝑓∗: 

𝐸𝐼(𝑿) = 𝔼[𝑚𝑎𝑥(𝑓A(𝑿) − 𝑓∗, 0)] (2) 

Aside from the EI, there are also other acquisition functions for a single objective BO available in 
NEXTorch, including probability of improvement (PI), upper confidence bound (UCB), and their Monte 
Carlo variants (qEI, qPI, qUCB). 

Parameter types. Parameters and the associated data are generally continuous, categorical, and ordinal. 
Continuous parameters are numerical and take any real value in a range. Categorical are non-numeric and 
are denoted by words, text, or symbols. Ordinal parameters take ordered discrete values. Traditionally, BO 
is designed for systems with all continuous parameters. However, depending on the problem, the resulting 
design space can be discrete or mixed (continuous-discrete). If the number of discrete combinations is low, 
one possible solution is to enumerate the values and optimize the continuous parameters for each. Without 
loss of generality, we use a continuous relaxation, where the acquisition function is optimized and rounded 
to the available values. For ordinal parameters, these values are the ordered discrete values. For categorical 
parameters, we encode the categories with integers from 0 to 𝑛hijklmno − 1 and then perform continuous 
relaxation in the encoding space. Since a parameter can be approximated as continuous, given a high order 
discretization, this approach usually works well for problems with many discrete combinations.  

Multi-objective optimization (MOO). MOO involves minimizing (maximizing) the multi-objective 
function. The optimal is not a single point but a set of solutions defining the best tradeoff between 
competing objectives. The goodness of the solution is determined by the dominance, where 𝑿𝟏 dominates 
𝑿𝟐 when 𝑿𝟏 is not worse than 𝑿𝟐 in all objectives, and 𝑿𝟏 is strictly better than 𝑿𝟐 in at least one objective. 
A Pareto optimal set defines points not dominated by each other, where the boundary is the Pareto front.  
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The weighte-sum method is a classic MOO method that scalarizes a set of objectives {𝒀𝟏,𝒀𝟐, …𝒀𝒊, …𝒀𝑴} 
into a new objective 𝒀𝒎𝒐𝒅  by multiplying each with user-defined weights {w1,w2,…wi,…wM},	where 
Ymod=∑ wiYiM

i=1 . The MOO becomes a single-objective optimization 

An alternative is to use the expected hypervolume improvement (EHVI) as the acquisition function. A 
hypervolume indicator (HV) approximates the Pareto set and EHVI evaluates its EI. In NEXTorch, one can 
use either the weighted-sum method or the Monte Carlo EHVI (qEHVI) method as an acquisition function. 
The methods are detailed in the Supporting Information (SI). 

 

Software Design 

 

Figure 2. High-level workflow in NEXTorch. (1) Automated optimization; (2) Human-in-the-loop 
optimization.  

 

The NEXTorch software package is structured in a similar way to the active learning framework. Figure 2 
shows the high-level workflow. Initially, users identify the parameters and objectives and frame the 
optimization problem. The critical information includes the ranges and types (categorical, ordinal, 
continuous, or mixed) of each parameter. It is helpful to know the sensitivity of the parameters by 
performing exploratory data analysis. Depending on the availability of the objective function, NEXTorch 
supports two types of optimization: (1) automated optimization, where the analytical form of the objective 
function is known and provided to the software (in the form of a Python object). This is often the case in 
modeling and simulations; however, closed-form objective functions may also not be available in complex 
models, a situation that falls under the next type. And (2) human-in-the-loop optimization, where the 
objective function is unknown, as happens in laboratory experiments. We call the action of generating data 
from the objective function an “experiment,” which is also the name of the core class in NEXTorch, 
irrespective of whether this is done in the laboratory or on a computer. In (1), data is passed through the 
loop, and new experiments are conducted as suggested by the acquisition function automatically. In (2), 
visualization could help the users decide whether to carry on the experiments or adjust the experimental 
setup. The users are left to perform new trials, i.e., conduct further experiments and supply additional data. 
NEXTorch reads CSV or Excel files and exports the data in the same format.  
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Figure 3. Main classes and functions in NEXTorch. 

 

NEXTorch is implemented in a modular fashion. Figure 3 summarizes its available classes, modules, and 
functions. The Parameter class stores the range and type of each parameter. The ParameterSpace class 
consists of all Parameter classes. In the beginning, users can choose a DOE function to construct a sampling 
plan and get the initial responses. Next, the data is passed to an Experiment class. We integrate most 
acquisition functions and GP models from the upstream BoTorch with the Experiment classes. The 
Experiment classes are the core of NEXTorch, where data is preprocessed, GP models are trained and used 
for prediction, and the optima are located. There are several variants of the Experiment class depending on 
the application. At the higher level, users interact with the Experiment class, WeightedMOOExperiment 
class, and EHVIMOOExperiment for sequential single-objective optimization, MOO with a weighted sum 
method, and MOO with EHVI. Moreover, NEXTorch also offers various visualization functions for the 
sampling plans, response surfaces/heatmaps, acquisition functions, Pareto fronts, etc., up to three 
dimensions. 

 

Applications 
To demonstrate the easy implementation and modularity of NEXTorch, we provide comprehensive 
examples on the documentation page (https://nextorch.readthedocs.io/en/latest/user/examples.html). The 
examples cover various types of experiments, designs, BO methods, and parameter types from reaction 
engineering and catalysis synthesis. A full list of examples and their description is in Table S2.  

Here, we briefly demonstrate the overall optimization pipeline for two specific cases with code snippets 
(shown in the SI) on single-objective (example 5) and multi-objective optimization (examples 7 and 11), 
respectively. The examples are built on prior kinetics studies of fructose conversion to 5-
hydroxymethylfurfural (HMF) in a PFR.31,32 Fructose, produced from biomass, can be converted to valuable 
fuels and chemicals through a chain of reactions. HMF is an essential intermediate in this supply chain 
derived from fructose through acid-catalyzed dehydration.33,34 Besides, side reactions produce byproducts, 
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such as humins, formic acid (FA), and levulinic acid (LA). A schematic of the PFR is shown in Figure 4a. 
In this example and similar reaction problems, it is essential to maximize the HMF yield while maintaining 
a high selectivity of HMF to reduce downstream separation costs. The objective functions are derived from 
a kinetic model consisting of a set of ordinary differential equations (ODEs) that compute the concentrations 
of each species at a given time in a batch reactor or location in a PFR (as is the case here).1 The input 
parameters (𝑿), include the reaction temperature (T), pH, and final residence time (tf). Their ranges are 
140-200 °C, 0-1, and 0.01 to 100 min, respectively. 

 

Case 1 – Renewable Platform Chemical (HMF) Yield Optimization  
In this case, the goal is to maximize a single objective, the HMF yield (𝑌), in the three-dimensional 
continuous space. The objective function (PFR_yield) is a Python function object. The first steps involve 
importing NEXTorch modules, defining the parameter spac and a DOE sampling plan to obtain an initial 
set of responses. Code example S1 illustrates these steps. Next, we initialize an Experiment object, input 
the initial data, and set the goal as maximization (Code example S2). 54 additional BO trials using the 
default acquisition function (EI), where one infill point is generated in each iteration, are obtained (Code 
example S3). An explicit (human-in-the-loop) loop allows users to access the values of parameters 
(X_new_real) and responses (Y_new_real) in real units. The final set of optimal values can also be extracted 
and further exported to standard data storage files.  

NEXTorch also offers a variety of visualization options (Figure 4). We compare the aforementioned 
LHS+BO approach with two other sampling plans with the same total number of 64 points: (1) full factorial 
design with four levels in each dimension and (2) completely random sampling. In each approach, we 
construct an Experiment object and train a GP model based on all points. Interestingly, BO samples more 
in the low pH and low tf region where the potential optimum is (Figure 4g). A two-dimensional plane at 
pH=0.7 is shown in the three-dimensional space. On this plane, the response surfaces (Figure 4b, e, h) and 
surface plots (Figure 4c, f, i) suggest that the surrogate model predictions from LHS+BO are generally 
closer to the ground truth. Next, we plot the best yield observed sequentially (Figure S1). The method also 
locates a higher optimal value compared to others. This example showcases that LHS+BO efficiently 
converges to the optimum and produces accurate surrogate models at an affordable computational cost. The 
runtime of core BO functions (GP training and acquisition function evaluation) completes in seconds per 
iteration on a laptop CPU, negligible compared to the cost of the objective function evaluation. Even though 
we use a simple PFR model here with a relatively small reaction network of overall reactions, the 
computational cost escalates if one uses instead complex parameter estimations, computational fluid 
dynamics (CFD) simulations and/or complex reaction networks of thousands and millions of elementary 
reactions. The central idea and workflow remain the same. We recently demonstrated such an example of 
optimization in five dimensions (reactor geometry and operating conditions) of a microwave reactor using 
CFD.28  
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Figure 4. Optimization of HMF yield. (a) Scheme of a PFR that converts fructose to HMF via acid-catalyzed 
dehydration. (b) Response surface, and (c) surface plot for the ground truth model at pH = 0.7. (d) Sampling 
plan, (e) response surface, and (f) surface plot at pH = 0.7 for the full factorial approach. (g) Sampling plan, 
(h) response surface, and (i) surface plot at pH = 0.7 for the LHS+BO approach. In (d) and (g), the sampling 
points are visualized in three dimensions, and the two-dimensional plan at pH=0.7 is shown in green. In (g), 
the initial points from LHS are shown in blue, and the infill points in red.  

 

Case 2 – Simultaneous Two Variable- (HMF Yield and Selectivity) Optimization  
While aiming to maximize the HMF yield, similar to Case 1, it is crucial to maintain a high HMF selectivity 
to reduce the separation costs. In this regard, two objectives, yield and selectivity, need to be optimized. 
These two variables may not be maximized simultaneously, indicating that an increase in yield may lead to 
a decrease in selectivity and vice versa. Therefore, we perform the multi-objective optimization to find out 
a Pareto front. 
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As in Case 1, the optimization is performed in the three-dimensional continuous space, and the objective 
function (PFR_yield) is a Python function object, which returns the yield and selectivity of HMF. We 
initialize an EHVIMOOExperiment object, which uses the Monte Carlo EHVI as the acquisition function, 
and set the reference point. The reference point defines slightly worse values than the lower bound of the 
objective values that are acceptable for each objective (Code example S4). Alternatively, we can initialize 
a WeightedMOOExperiment object, which handles multiple weight combinations to perform multi-
objective optimizations using the weighted-sum method automatically (Code example S5). 

Then, we perform multi-objective optimization using either method, as in Code example S6. We perform 
20 trials using the Monte Carlo EHVI acquisition function, and the loop is explicitly defined, where the 
values of parameters (X_new_real) and responses (Y_new_real) are fed explicitly at each iteration. On the 
other hand, the NEXTorch also provides automatic optimization, as shown in Code example 6 for the 
weighted-sum method, where the loop is defined implicitly in the software. Either implicitly or explicitly 
defined optimization loops can be used in both methods. The final set of optimal values can be extracted 
and further exported to standard data storage files as in the single-objective optimization. 

The Pareto optimal can be visualized using the tools of NEXTorch (Figure 5). We compare the Pareto front 
from the two methods, where both sets of optimal lay in the region that HMF selectivity is greater or equal 
to the HMF yield and share a similar Pareto front. Interestingly, the Pareto front obtained from the Monte 
Carlo EHVI method covers a larger range than the weighted sum method. This is attributed to the limitation 
of the pre-assigned weights to each objective in the weighted-sum method, which are not guaranteed to 
include the desired region of the design space. Moreover, the computational time of the weighted sum 
method (12.9 min) is orders of magnitude higher than that of the Monte Carlo EHVI method (0.2 min) 
because the objective function is called many more times (𝑛_𝑡𝑟𝑖𝑎𝑙𝑠 ∗ 𝑛_𝑒𝑥𝑝 = 420 ). This example 
showcases that the Monte Carlo EHVI method efficiently finds out the Pareto optimum and produces an 
accurate surrogate model at a lower cost. 

 

Figure 5. Pareto optimum of the HMF yield and selectivity using (a) the Monte Carlo EHVI and (b) 
weighted sum method. The diagonal line is used for visualization reasons and indicates the locus of 100% 
conversion conditions. As the points approach the diagonal, the conversion increases. The selectivity drops 
only slightly as the conversion increases until high conversions are reached. 

a b
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Conclusions  
Optimization and predictive modeling are ubiquitous in chemical sciences. Bayesian Optimization-based 
active learning is a powerful approach for such tasks. The NEXTorch library was created to enable 
streamlined and efficient Bayesian Optimization and surrogate modeling for chemical sciences and 
engineering applications. Its backend from BoTorch/PyTorch enables GPU acceleration, parallelization, 
and state-of-the-art Bayesian Optimization algorithms. The modular and flexible design of NEXTorch 
expands its capabilities and connects with real-world problems. Specifically, it can deal with mixed types 
of parameters and data type conversions, supports both automated and human-in-the-loop optimization, and 
offers various visualization options. It can be used in chemical synthesis, molecular modeling, reaction 
condition optimization, parameter estimation, and reactor geometry optimization, to mention a few 
examples. Such tasks can easily be performed without extensive programming effort so that the user can 
focus on domain-specific questions. Moreover, NEXTorch enables interface with the commonly used 
simulation tools in the reaction engineering field, such as CFD and multiphysics simulations, for automatic 
optimization. Including surrogate models, such as random forest and multi-fidelity models, extending the 
acquisition function list, and adding a graphical user interface, are important future directions. We believe 
the adoption of Bayesian Optimization in daily laboratory or computing practices could advance the field 
towards a more efficient and automated future.  
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