
Prediction of Drug-Target Binding Kinetics for

Flexible Proteins by Comparative Binding Energy

Analysis

Ariane Nunes-Alves,∗,†,‡ Fabian Ormersbach,† and Rebecca C. Wade∗,†,‡,¶

†Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118

Heidelberg, Germany

‡Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im

Neuenheimer Feld 282, 69120 Heidelberg, Germany

¶Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im

Neuenheimer Feld 205, Heidelberg, Germany

E-mail: ariane.nunes-alves@h-its.org; rebecca.wade@h-its.org

Abstract

There is growing consensus that the optimization of the kinetic parameters for

drug-protein binding leads to improved drug efficacy. Therefore, computational meth-

ods have been developed to predict kinetic rates and to derive quantitative structure-

kinetic relationships (QSKRs). Many of these methods are based on crystal structures

of ligand-protein complexes. However, a drawback is that each protein-ligand complex

is usually treated as having a single structure. Here, we present a modification of COM-

parative BINding Energy (COMBINE) analysis, which uses the structures of protein-

ligand complexes to predict binding parameters. We introduce the option to use mul-

tiple structures to describe each ligand-protein complex into COMBINE analysis and

apply this to study the effects of protein flexibility on the derivation of dissociation rate
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constants (koff ) for inhibitors of p38 mitogen-activated protein (MAP) kinase, which

has a flexible binding site. Multiple structures were obtained for each ligand-protein

complex by performing docking to an ensemble of protein configurations obtained from

molecular dynamics simulations. Coefficients to scale ligand-protein interaction ener-

gies determined from energy-minimized structures of ligand-protein complexes were

obtained by partial least squares regression and allowed the computation of koff val-

ues. The QSKR model obtained using single, energy minimized crystal structures for

each ligand-protein complex had a higher predictive power than the QSKR model ob-

tained with multiple structures from ensemble docking. However, the incorporation of

protein-ligand flexibility helped to highlight additional ligand-protein interactions that

lead to longer residence times, like interactions with residues Arg67 and Asp168, which

are close to the ligand in many crystal structures. These results show that COMBINE

analysis is a promising method to guide the design of compounds that bind to flexible

proteins with improved binding kinetics.

1 Introduction

The realization that drug binding kinetic rates can be key determinants of drug efficacy in

vivo1–3 has led to high interest in the development of computational methods to estimate the

drug-target dissociation rate constant (koff ) or its inverse, the residence time (τ=1/koff ).

A range of computational methods have been proposed to estimate koff values at low to

moderate computational cost,4 and these may facilitate rational drug design. On one hand,

there are methods based on molecular dynamics (MD) simulations, such as τRAMD5 and

scaled MD,6 in which a force or energy bias is added to the system, thereby allowing relative

koff values for a set of compounds to be estimated within a few days. Other methods, such as

weighted ensemble,7,8 allow absolute koff values to be estimated at a higher computational

cost. On the other hand, there are chemometric methods such as COMparative BINding

Energy (COMBINE) analysis9 and Volsurf,10 which require an experimental dataset with at
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least tens of ligands for training a system-specific model, but then allow one to estimate koff

values in seconds or minutes by using chemical descriptors of the ligand or of the structure

of the ligand-protein complex.

Here, we used COMBINE analysis11 to predict koff values for ligand-protein complexes.

Among chemometric methods, COMBINE analysis has the advantages of using information

available from experimental structures of ligand-protein complexes and identifying specific

protein residues that affect the computed parameters. In COMBINE analysis, the interaction

energies (E) between the ligand and each protein residue computed from the structure of the

complex using a classical molecular mechanics force field can be decomposed:

E =

np∑
k=1

EvdW
k +

np∑
k=1

Eelec
k (1)

where EvdW and Eelec designate van der Waals and electrostatic interaction energies, respec-

tively, np is the total number of protein residues and k is the index of residues. Eq. 1 includes

only the terms from a classical force field; other terms can be added, such as changes in sol-

vation energy computed with a continuum model or dependent on buried surface area, or

changes in the intramolecular energy of the ligand or the protein upon (un)binding. Then,

n interaction energies (Ei) that have standard deviations above a defined threshold and are

therefore expected to contribute the most to the differences in koff values are selected and

scaled by coefficients or weights (wi) obtained from partial least squares (PLS) regression

for a training set:

log koff ≈
n∑

i=1

wiEi + C (2)

where i is the index of the selected interaction energies, and C is a constant that accounts

for factors not included in Ei, such as covalent energy terms, entropy gain or solvation of

the ligand or of the protein binding site during the (un)binding process. First, eq. 2 is

used with computed Ei values and experimental koff values to allow the assignment of wi
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and C values. Once known, the wi and C values are employed to compute koff values for

other similar complexes. COMBINE analysis was recently used to predict koff values for

inhibitors of heat shock protein 90 (HSP90) and HIV-1 protease,9 achieving good predictive

power (coefficient of determination for cross-validation, Q2, of 0.69 and 0.70, respectively).

COMBINE analysis was used originally to predict inhibitory activities for complexes of the

human synovial fluid phospholipase A2 with small molecules.11 Moreover, it has already

been applied to predict affinities or inhibitory activities for complexes of proteins with small

molecules,12–14 peptides15 and other proteins.16

One of the potential drawbacks of COMBINE analysis is that the ligand-protein complex

is represented by a single energy minimized structure, which limits the representation of pro-

tein flexibility and ligand binding modes. Sometimes ligands or side chains have more than

one possible configuration in a single crystal structure. Moreover, ligand-protein complexes

are flexible in in vivo conditions, so considering this flexibility might be expected to improve

quantitative structure-kinetic relationship (QSKR) models or quantitative structure-activity

relationship (QSAR) models derived by COMBINE analysis.

Different strategies can be used to represent protein-ligand complexes flexibility. For

instance, a set of protein configurations from crystal structures17 or nuclear magnetic reso-

nance can be employed. Representative sets of protein configurations can also be obtained

from computational methods, such as MD simulations,18–21 machine learning22,23 or elastic

network models.24 The representation of protein flexibility using ensembles of configurations

was shown to be beneficial in docking, leading to improved results in the prediction of binding

affinities19 and in the identification of true binders in a large set of small molecules.17,20

The aim of this work was to extend the COMBINE analysis method to allow the use of

an ensemble of structures to represent one ligand-protein complex, in order to incorporate

the effects of structural flexibility in the predictions of binding parameters. Two COMBINE

analysis models were built to predict koff values, one using one energy minimized crystal

structure to represent each ligand-protein complex, and one using 10 structures from ensem-
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ble docking to represent each ligand-protein complex. The ensemble of protein configurations

for docking was obtained from MD simulations. p38 mitogen-activated protein (MAP) ki-

nase, for which koff values are available for a number of complexes, was selected as a model

system. This choice was motivated by the fact that there is a region (residues 170 to 184

in PDB 1KV225) close to the binding site that is missing in many crystal structures, which

suggests that it is disordered and flexible. Moreover, due to its location, this region may

have transient interactions with inhibitors, playing a role in ligand binding kinetics. Type-II

inhibitors, which occupy an allosteric pocket close to the ATP binding site,26 were selected

for this work due to the spread of experimental koff values and the availability of crystal

structures. They occupy a pocket created by a conformational change in the conserved amino

acid sequence Asp-Phe-Gly (DFG motif, residues 168-170) in the activation loop, and bind

to the out (inactive) conformation of the DFG motif of p38 MAP kinase.26

2 Computational methods

2.1 Dataset

The full dataset for the COMBINE analysis model was composed of 33 inhibitors of p38

MAP kinase (Figure S1, Table S1). These inhibitors were chosen based on the availability

of (i) experimental koff values25,27–30 (Table S2); and (ii) experimental structures of the

inhibitor bound to p38 MAP kinase or to other kinases in the DFG-out conformation (Table

S2), or similarity to inhibitors with experimental structures available for the complex. The

dataset was split into a training set and a test set, with 22 and 11 inhibitors, respectively.

The dataset was ranked according to koff values and every third ligand was assigned to the

test set. Using this procedure, ligands 3, 5, 6, 12, 14, 16, 21, 24, 28, 34 and 35 were selected

to be part of the test set (Table S2). Additional tests were performed with three other test

sets selected similarly, namely: ligands 1, 2, 8, 15, 17, 22, 26, 27, 31, 32 and 36; ligands 7,

9, 11, 13, 18, 20, 23, 25, 29, 30 and 33; or ligands 3, 5, 12, 14, 16, 21, 24, 34 and 35. The

5



results were similar (data not shown).

2.2 Parametrization of COMBINE analysis model

First, two sets of structures for the dataset were modeled and used to derive COMBINE

analysis models (sections 2.4 and 2.5). Then, structures were energy minimized (section

2.6). After energy minimization, interaction energy components for the training set and

test set were obtained using the COMBINE software31 and the AMBER ff14SB force field32

to describe parameters for bonded and non-bonded interactions. Electrostatic interactions

were computed using a uniform dielectric constant of 4. Interaction energy components that

had a standard deviation greater than the cutoff value of 0.25 kcal/mol were selected for

regression. Then, coefficients or weights to scale the ligand-protein interaction energies were

obtained by COMBINE analysis11 using partial least squares regression33 (section 2.3). Up

to 10 latent variables were tested to decompose the data in partial least squares regression.

2.3 Modification of COMBINE software to use multiple structures

to represent one ligand-protein complex

Previously, COMBINE analysis has been performed using one structure to represent one

protein-ligand complex and estimate one response (in this case, log I, where I can be koff ,

binding affinity, inhibitory activity or any other parameter related to ligand-protein interac-

tions). Here, the COMBINE software31 was modified to retrieve an average response using

N structures for each ligand-protein complex. Multiple structures for one complex were

obtained using ensemble docking (details in section 2.5). Each structure is treated indepen-

dently during the regression step to obtain weights for interaction energies. The responses

obtained from the N structures are averaged, resulting in one final response for the complex.

The average can be arithmetic or exponential.
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Previously:11

(log I)comp = log I1 (3)

where (log I)comp is the prediction for the response variable and log I1 is the prediction made

using 1 structure to represent the ligand-protein complex.

In the ensemble method introduced here, exponential (eq. 4) or arithmetic averages (eq.

5) can be used to obtain one response variable from N structures:

(log I)comp
exp = −log 1

N

N∑
j=1

e−log Ij (4)

(log I)comp
arit =

1

N

N∑
j=1

log Ij (5)

where j is the index of the structure used. Eqs. 4 and 5 give the same result as eq. 3 for

N=1 or for N identical structures representing one ligand-protein complex. The exponential

average proposed is based on previous studies using protein conformational averaging for an

adapted linear interaction model19 and the implicit ligand theory.34 Here, (log I)comp
arit and

(log I)comp
exp are the total computed log I for one ligand-protein complex, while log Ij is the

log I computed from weighted interaction energy terms for structure j.

Two new parameters were added in the COMBINE analysis input file: N, the number

of structures to describe one ligand-protein complex, and the averaging scheme to be used

(arithmetic or exponential). The cross-validation part of the COMBINE software was also

modified so that all structures of one ligand-protein complex are removed from the training

set when necessary.
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2.4 Modeling of protein-ligand structures using data from X-ray

crystallography

Two sets of structures were used to derive COMBINE analysis models. In one set, each

complex was represented using one structure, usually a crystal structure, described in this

section. In the other set, each complex was represented using 10 structures from ensemble

docking (section 2.5).

Crystal structures of protein-ligand complexes retrieved from the Protein Databank

(PDB) were used after removal of water and other crystallization molecules. Ligands 1,

2, 16, 25, 32 and 33 had crystal structures available (PDBs 1KV1,25 1KV2,25 3HV6,35

3HEC,36 2YIW28 and 2YIS,28 respectively, Table S2). Incomplete regions were built using

homology modeling with Modeller37 and the structure from PDB file 1WBV38 as a reference.

This structure was chosen because it is fully resolved and has good resolution (2 Å). For

each structure, 20 models were built and the one with the lowest Discrete Optimized Protein

Energy (DOPE) score was selected. Incomplete side chains were built with Modeller. Hy-

drogens were added using pdb2pqr39,40 at pH 7.2 for the protein and Babel41 for the ligands.

All protein structures had a net charge of -7 e.

Ligands 3-15, 17-24, 26-31 and 34-36 had no crystal structures in complex with p38 MAP

kinase available. A ligand search in KLIFS,42,43 a structural database for kinases, using

SMILES showed that ligands 20-24 and 26-31 had crystal structures available in complexes

with other kinases (PBDs 4RZW,44 3F82,45 3QRI,46 3LQ8,47 5IA5,48 3EFL, 3GP0, 6FNI,49

4U0I,50 4RT751 and 4ASE,52 respectively, Table S2). Complexes with p38 MAP kinase

for these ligands were built using the binding modes in the available crystal structures as

references. Complexes with p38 MAP kinase for ligands 3-15, 17-18 and 34-36 were built

using the binding mode of ligand 16 (PDB 3HV6) as a reference. Ligand superimposition was

performed using a custom script built using Python 3.8 and the packages RDkit 2020.03.353

and MDAnalysis 1.0.054,55 (details and validation using ligRMSD56 are given in section S2).
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The ligand geometry was built using Molden57 and energy minimized using AMBER 201658

and the General AMBER Force Field (GAFF)59 if crystal structures were not available.

2.5 Modeling of protein-ligand structures using ensemble docking

A configurational ensemble was generated for p38 MAP kinase bound to ligand 16. An

ensemble from the apo protein was not tested, as a previous study showed that ensembles

generated from apoprotein structures can have occluded binding sites.19 The structure of

the ligand-protein complex was energy minimized, and a molecular dynamics simulation

was run for 1200 nanoseconds (see details in section 2.6). The ensemble was built using

10 configurations (excluding the ligand) collected along the trajectory at time intervals of

80 nanoseconds for the last 800 nanoseconds of simulation. For each configuration in the

ensemble, 20 ligand poses were generated by docking, and the top pose (irrespective of the

binding mode) was selected, resulting in a total of 10 ligand-protein structures for each

ligand.

Additionally, another configurational ensemble for p38 MAP kinase was built using clus-

tering. 80 protein structures were collected along a 1200-nanosecond trajectory at time

intervals of 10 nanoseconds for the last 800 nanoseconds of simulation. The 80 protein struc-

tures were grouped using hierarchical agglomerative clustering and an epsilon value of 1.5 Å.

This procedure generated five clusters with fractional populations of 0.475, 0.15, 0.1, 0.087

and 0.075, and four clusters with fractional populations of 0.037, 0.037, 0.025 and 0.013.

The clusters with populations equal to 0.037 or lower were discarded. The five remaining

clusters were used for docking, with approximate populations of 0.5, 0.2, 0.1, 0.1 and 0.1.

Docking to the ensembles was performed with AutoDock Vina.60 Parameters for docking

were optimized by redocking and cross-docking (section 3.2), resulting in the choice of an

exhaustiveness level of 8 and a cubic grid with a spacing of 0.375 Å and 70 points along

each edge centered in the known binding site. Bond rotations were allowed in ligands, while

the protein structures were kept rigid.
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2.6 Force field and simulation details

AMBER 201658 was used for energy minimization and MD simulations. Parameters to de-

scribe the protein and the ligand were obtained from the AMBER ff14SB force field32 and

GAFF,59 respectively. RESP61,62 partial atomic charges for ligands were obtained using

electrostatic potentials from quantum mechanical calculations performed in GAMESS63 us-

ing single-point calculations (HF/6-31G**) after energy minimization of the ligand structure

(HF/6-31G).

Energy minimization of the complexes was performed using implicit solvent prior to the

use of the complexes to obtain interaction energies in COMBINE analysis, or using explicit

solvent prior to performing MD simulations. Both procedures are described further below.

Energy minimization of ligand-protein complexes prior to their use in COMBINE analysis

was performed in two steps. In the first step, a harmonic restraint with a force constant

of 100 kcal/(mol Å2) was applied to the positions of the heavy atoms. In the second step,

no positional restraints were used. For each step of energy minimization, 1000 steps of

the steepest descent algorithm followed by 4000 steps of the conjugate gradient algorithm

were applied. Energy minimization was performed using implicit solvent. The generalized

Born (GB) approximation as implemented in the GBn model64 was used. The nonpolar

contribution was calculated using the LCPO model65 to compute the surface area and a

surface tension of 0.005 kcal/(mol Å2).66

MD simulations to obtain the configurational ensemble were carried out at 300 K with a 4

femtosecond time-step, which was possible due to the use of the hydrogen mass repartitioning

method.67 The structure of ligand 16 bound to p38 MAP kinase from PDB 3HV635 was used

after removal of crystallization cosolute molecules (waters were maintained). Missing regions

and residues were modeled as described previously (section 2.4). Hydrogens were added using

pdb2pqr39,40 at pH 7.2 for the protein and Babel41 for the ligand. The complex was solvated

in a periodic box of TIP3P water molecules68 with a distance of 15 Å from the solute
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to the box edge using tleap. 73 sodium ions and 66 chloride ions were added to achieve

neutrality and an approximate ionic strength of 150 mM. The system was energy minimized

with 1000 steps of the steepest descent algorithm followed by 1000 steps of the conjugate

gradient algorithm, with restraints of 100 kcal/(mol Å2) on the heavy atoms of the protein

and the ligand. The system was heated in cycles of 100-picosecond simulations with gradual

temperature increases (10, 50, 150 and 300 K) using the Berendsen thermostat.69 Then, the

pressure was adjusted to 1 atm with the Berendsen barostat69 in a 400-ps simulation. The 100

kcal/(mol Å2) restraints were gradually removed in cycles of 500-picosecond simulations (50,

10, 5 and 1 kcal/(mol Å2)). Then, for production MD simulations, the Langevin thermostat

was used to keep the temperature at 300 K, and the Monte Carlo barostat was used to keep

the pressure at 1 bar (NPT ensemble). The configurational ensemble obtained from the

structure of ligand 16 bound to p38 MAP kinase was used for docking all the ligands in the

dataset.

Additionally, 50-nanosecond MD simulations were performed to generate one ensemble

for each ligand-protein complex. The structures of the ligand-protein complexes modeled

using data from X-ray crystallography, as described in section 2.4, were used as initial con-

figurations. The procedure for system set up and equilibration was the same as the one

described in the previous paragraph. The ensemble for each ligand-protein complex was

composed of 10 structures collected along the trajectory at time intervals of 5 nanoseconds.

2.7 Sequence alignment

Sequence alignment of p38 MAP kinase with other human kinases was performed to validate

the functional role of the residues identified in the COMBINE analysis. Protein sequences

were obtained from UniProt70 and pairwise sequence alignment was performed using nee-

dle.71,72
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3 Results

3.1 COMBINE analysis using one crystal structure to represent

one ligand-protein complex

We first made a model representing the protein as one structure to use it as a reference to as-

sess the usefulness of incorporating protein flexibility in COMBINE analysis. Therefore, one

energy-minimized structure from X-ray crystallography was used to represent each ligand-

protein complex and obtain interaction energies. Using COMBINE analysis, 348 electrostatic

and 348 van der Waals interaction energies for each of the 22 p38 MAP kinase inhibitors in

the training set were calculated. These interaction energies correspond to the 348 residues

in the protein. Then the interaction energies which had a standard deviation greater than

the specified cutoff value were selected to remove energy terms that may not contribute to

the differences in koff values. A cutoff value of 0.25 kcal/mol was used, since it resulted in

better models in a previous study,9 resulting in the selection of 36 van der Waals interaction

energies and 14 electrostatic interaction energies (Figure S2). Next, the weights of these

50 interaction energies for different numbers of latent variables were determined using PLS

regression to correlate the interaction energies with the experimental log koff values (Figure

1A). The coefficients of determination (R2tr and Q2 for the training and cross-validation

sets, respectively), the average absolute errors (AAEtr and AAEv for the training and cross-

validation sets, respectively) and the root mean squared errors (RMEtr and RMEv for the

training and cross-validation sets, respectively) were calculated using different numbers of

latent variables (Tables 1 and S4; equations given in section S1). The model with two latent

variables was chosen, since it presented the highest Q2 value, 0.75, when the leave-one-out

method was used for cross-validation (Table S4). The AAEv and RMEv values were 0.68 log

s−1 and 0.75 log s−1, respectively, for the leave-one-out method for cross-validation. More-

over, the Q2, AAEv and RMEv values were similar for the different cross-validation methods
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used (Table 1), showing that the model with two latent variables is consistent. The decrease

in Q2 when moving from the leave-one-out method to the leave-two-out and leave-three-out

methods was expected, since fewer structures were used in the training set in the latter.

This model presented a R2tr of 0.86, showing it could successfully fit the training set (Figure

1B, Table S4). The coefficient of determination for the test set (R2te) was 0.79 (Figure 1B,

Table 1), showing this model had high predictive power.

Table 1: Statistical measures of the validation and test sets for COMBINE analysis models
derived for log koff of p38 MAP kinase inhibitors. Q2, R2te: coefficient of determination
of the cross-validation and test sets; AAEv, AAEte: average absolute error of the cross-
validation and test sets (in log s−1); RMEv, RMEte: root mean squared error of the cross-
validation and test sets (in log s−1).

singlea ensembleb

cross-validation set Q2 AAEv RMEv Q2 AAEv RMEv
leave-one-out (LOO) 0.75 0.68 0.75 0.70 0.68 0.82
leave-two-out (L2O) 0.72 0.68 0.79 0.67 0.70 0.85
leave-three-out (L3O) 0.65 0.74 0.88 0.62 0.74 0.92
test set R2te AAEte RMEte R2te AAEte RMEte

0.79 0.54 0.64 0.72 0.65 0.74
aOne structure per ligand-protein complex, two latent variables. bTen structures per

ligand-protein complex, one latent variable.

The interaction energies with the highest weights were the van der Waals interaction

energies of the inhibitors with residues Lys53, Arg70, Glu71 and Leu167 and the electrostatic

interaction energies with residues Lys53 and Glu71, which surround the binding site (Figures

1A and 1C). The weight for the electrostatic interaction with Lys53 was negative, meaning

that favorable interactions with this residue resulted in high koff values. On the other hand,

the weights for the electrostatic interaction with Glu71 and most van der Waals interactions

were positive, indicating that favorable interactions with these residues result in low koff

values. Inhibitors with low koff values usually make two hydrogen bonds with Glu71 and

have two bulky hydrophobic groups, one making nonpolar interactions with Lys53 and the

other making nonpolar interactions with the pocket formed by Arg70 and Glu71 (Figure

1C), in agreement with the interaction energies with highest weights identified in the model.
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Figure 1: COMBINE analysis models to compute koff values for p38 MAP kinase inhibitors.
(A) Weights for different van der Waals and electrostatic interaction energies derived from
partial least squares regression (PLS) using single structures (black) or ensemble docking
(orange, bars displaced by 0.50 on the x axis to aid visualization). Results are shown for
2 or 1 latent variables for single structures or ensemble docking, respectively. Highlighted
residues are shown in green in panel (C). (B) Plots of computed versus experimental log koff

values for the training and test sets (22 and 11 inhibitors, respectively) for PLS regression
using single structures or ensemble docking. The straight line corresponds to y = x (ideal
case). The empty symbols highlight the inhibitors with poor binding modes in ensemble
docking: 23, 26 (training set), 21 and 24 (test set). (C) Comparison of binding modes and
key interactions of a slow (ligand 2, BIRB 796, PDB 1KV2) and a fast dissociating inhibitor
(ligand 25, Imatinib, PDB 3HEC). Protein backbone in gray, ligands and residues colored
according to atom type, with carbon atoms in cyan and green, respectively. Hydrogen bonds
are shown as black dotted lines.

3.1.1 Comparison of models using different energy contributions

A COMBINE model was tested including the solvation of the ligand as an extra term given

by the change in solvent accessible surface area of the ligand upon unbinding. The model

with the best Q2 value (2 latent variables) had a performance similar to the model without

solvation (Table S5).

Electrostatic interactions were computed using a uniform dielectric constant. Tests were

also performed with a distance-dependent dielectric constant for which the predictive perfor-

mance was less good (R2te of 0.76 versus R2te of 0.79 for the model with uniform dielectric

constant, Table S6).

3.2 COMBINE analysis using multiple structures from ensemble

docking to represent one ligand-protein complex

After making the reference model with one structure for each ligand, we made a COMBINE

analysis model using a structural ensemble. A 1200-nanosecond MD simulation of p38 MAP

kinase was performed to obtain different protein configurations. Protein configurations were

collected every 80 nanoseconds for the last 800 nanoseconds of simulation, resulting in 10
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protein configurations. Then, docking of the 33 p38 MAP kinase inhibitors to each of the

10 protein configurations was performed to obtain a total of 330 protein-ligand complexes.

AutoDock Vina60 was used for ligand-protein docking, since it was able to reproduce the

crystallographic poses of ligands 2 and 16 in redocking and cross-docking tests (ligand root

mean squared deviation, RMSD, lower than 2 Å in all cases, Table S3). For most ligands,

ligand poses obtained from ensemble docking were similar (Figure S3) and had low RMSD

from the ligand pose in the complex used in the COMBINE model with one structure to

represent each complex. Ligands 21, 23, 24 and 26 are exceptions, as most ligand poses

obtained from docking had high RMSD values from the ligand poses in the COMBINE

model with one structure for each complex (Figure S4, Table S16 and discussion in section

4).

Ten energy-minimized structures from ensemble docking were used to represent each

ligand-protein complex and obtain interaction energies. Using COMBINE analysis, 348

electrostatic and 348 van der Waals interaction energies for each of the 220 complexes (10

structures for each of the 22 p38 MAP kinase inhibitors) in the training set were calculated.

Then the interaction energies that had a standard deviation greater than 0.25 kcal/mol were

selected, resulting in 43 van der Waals interaction energies and 16 electrostatic interaction

energies (Figure S2). Next, the weights of these 59 interaction energies for different numbers

of latent variables were determined using PLS regression to correlate the interaction energies

with the experimental log koff values (Figure 1A). Independent log koff values were com-

puted for each structure describing one ligand-protein complex, and these values were later

assembled in one computed koff value for the complex using an exponential average (section

2.3). R2, Q2, AAEtr, AAEv, RMEtr and RMEv values were calculated using different num-

bers of latent variables (Tables 1 and S7). The model with one latent variable was selected,

since it had the best compromise between high Q2 value (0.70 when the leave-one-out method

was used for cross-validation) and low number of latent variables (Table S7). The AAEv and

RMEv values were 0.68 log s−1 and 0.82 log s−1, respectively, for the leave-one-out method
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for cross-validation. Moreover, the Q2, AAEv and RMEv values were similar for the different

cross-validation methods used (Table 1), showing that the model with one latent variable is

consistent. The model with one latent variable presented a R2tr of 0.83, showing it could

fit the data of the training set (Figure 1B, Table S7). The R2te value for the test set of 11

inhibitors was 0.72 (Figure 1B, Table 1), showing this model had good predictive power.

The interaction energies with the highest weights were the van der Waals interaction en-

ergies of the inhibitors with residues Arg67, Glu71, Leu167 and Asp168 and the electrostatic

interaction energies with residues Lys53 and Glu71 (Figures 1A and 1C). Some of the major

contributions identified using COMBINE analysis and single structures, like electrostatic

interactions with Lys53 and Glu71 and van der Waals interactions with Glu71 and Leu167,

were also captured in the model with ensemble docking. Moreover, the use of structural en-

sembles helped to highlight the contributions of interactions with residues Arg67 and Asp168

in the DFG motif, which came closer to the binding site during MD simulations (Figure 2).

The contributions from these two residues were high in the model using single structures,

and became dominant in the model using an ensemble of structures.

3.2.1 Comparison of models using different ensembles and averaging schemes

Tests with COMBINE analysis were also performed using 20 instead of 10 structures to

represent each protein-ligand complex, or using one structure, the one with the highest Vina

score, to represent each protein-ligand complex (Table 2). A higher number of interaction

energies was selected when more structures were used (52, 59 and 68 for 1, 10 and 20

structures, respectively). For one structure, the model with two latent variables had the

best compromise between high Q2 value (0.65 when the leave-one-out method was used for

cross-validation) and low number of latent variables (Tables 2 and S8). For 20 structures,

the model with one latent variable had the best compromise between high Q2 value (0.65)

and low number of latent variables (Tables 2 and S9). The highest predictive power was

achieved with the model with one structure, while the predictive power of models with
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Figure 2: The use of ensemble docking to include protein and ligand flexibility in COMBINE
analysis helped to highlight the contributions of interactions with residues Arg67 and Asp168.
Arg67 and Asp168 side chains moved closer into the binding site during MD simulations.
Ligand 2 (BIRB 796), Arg67 and Asp168 are shown in sticks. Protein backbone in gray
(crystal structure, PDB 1KV2) or wheat (structure from MD simulation), ligand and residues
colored according to atom type, with carbon atoms in cyan (ligand), green (residue in crystal
structure) or yellow (residue in MD simulation).

multiple structures was similar (R2te values of 0.80, 0.72 and 0.71 for 1, 10 and 20 structures,

respectively). The maximum R2te value achieved by the COMBINE analysis models with

ensemble docking was 0.80, which is similar to the R2te value achieved with the model which

used single structures, 0.79, indicating that the structural information to achieve predictive

models using single crystal structures can be recovered in ensemble docking.

Another scheme to obtain protein configurations was also tested. 80 protein configu-

rations from the 1200-nanosecond MD simulation of p38 MAP kinase were clustered using

hierarchical agglomerative clustering, resulting in five clusters (details in section 2.5). These

clusters had approximate relative weights of 5:2:1:1:1. The structures corresponding to the

centers of these clusters were used for docking and the complexes were subsequently energy

minimized. The resulting ligand-protein complexes, with weights proportional to the weig

ht of the cluster the protein configuration belonged to, were used in COMBINE analysis.

For example, a complex from a protein of weight 5 was represented 5 times in the training

or test set. The resulting R2te (Tables 2 and S10) was similar to the one obtained using
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Table 2: Statistical measures of the validation and test sets for COMBINE analysis models
derived for log koff of p38 MAP kinase inhibitors using different ensembles and averaging
schemes. Q2, R2te: coefficient of determination of the cross-validation and test sets; AAEv,
AAEte: average absolute error of the cross-validation and test sets (in log s−1); RMEv,
RMEte: root mean squared error of the cross-validation and test sets (in log s−1). LV:
number of latent variables for the model with the best compromise between high Q2 value
and low number of latent variables.

ensemble cross-validation set test set
type size Q2 AAEv RMEv R2te AAEte RMEte LV
MD sim. (1)a 1 0.65 0.73 0.88 0.80 0.49 0.63 2
MD sim. (1)b 10 0.70 0.68 0.82 0.72 0.65 0.74 1
MD sim. (1)c 20 0.65 0.75 0.88 0.71 0.66 0.76 1
MD sim. (1) + cluster.d 5 0.70 0.64 0.82 0.70 0.65 0.77 3
MD sim. (33)e 10 0.80 0.59 0.67 0.80 0.52 0.63 3
MD sim. (1) + arith. av.f 10 0.78 0.58 0.70 0.71 0.61 0.76 1
MD sim. (1) + exp. av.g 10 0.71 0.70 0.81 0.66 0.71 0.82 2
a10 protein configurations for ensemble docking obtained from 1 MD simulation; the

complex with the highest Vina score was selected. b10 protein configurations for ensemble
docking obtained from 1 MD simulation. c20 protein configurations for ensemble docking
obtained from 1 MD simulation. d5 protein configurations for ensemble docking obtained
from clustering of structures from 1 MD simulation. e10 configurations of ligand-protein
complexes obtained from 33 independent MD simulations (one for each inhibitor). f10
protein configurations for ensemble docking obtained from 1 MD simulation; arithmetic
averages of individual interaction energies from the 10 different complexes were used as
input. g10 protein configurations for ensemble docking obtained from 1 MD simulation;

exponential averages of individual interaction energies from the 10 different complexes were
used as input.

an ensemble of 10 protein configurations collected at regular intervals from the MD simu-

lation, at the expenses of a higher number of latent variables. The relative weights of the

clusters were also similar when the cluster composition was determined using the 10 protein

configurations: 3:2:1:1:0 (the other 3 protein configurations belonged to smaller clusters, not

considered in the analysis).

Previous studies have shown that short MD simulations to relax the structures of com-

plexes obtained from docking can lead to better results in distinguishing active from de-

coy ligands.73 Here, we also tested ensembles generated from MD simulations to relax the

initial structures for each ligand-protein complex. One ensemble was generated for each
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protein-ligand complex by collecting 10 structures at regular intervals of 5 nanoseconds from

50-nanosecond MD simulations performed for each ligand-protein complex. The structures

of these ensembles were energy minimized and used in COMBINE analysis. The resulting

R2te (Tables 2 and S11) was better than that obtained using a single ensemble of 10 protein

configurations to perform docking for all ligands. This was expected, as the single simula-

tion sampled favorable protein configurations for the binding of one ligand, the one used in

the simulation, whereas the simulations for each ligand could sample the favorable protein

conformations for each particular ligand. However, it should be noted that this scheme can

lead to high computational costs when a large number of ligands is present in the dataset as

each protein-ligand complex has to be subjected to MD simulation.

COMBINE analysis was also performed using averages of the individual interaction en-

ergies obtained from the 10 structures of ligand-protein complexes obtained from ensemble

docking using one protein ensemble. The R2te of the best model using arithmetic averages

(Tables 2 and S12) had a value similar to the models using averaging of 10 or 20 structures,

while the R2te of the best model using exponential averages (Tables 2 and S12) had a lower

value. It should be noted that this kind of averaging can lead to unrealistic favorable in-

teractions for one ligand-protein complex. For example, if favorable interactions between

the ligand and two residues are mutually exclusive and only appear in different structures,

in an exponential averaging scheme the interactions with these two residues can appear as

simultaneously favorable.

3.2.2 Comparison of models using single or multiple structures

Comparisons between the different COMBINE analysis models obtained using a single crys-

tal structure or structures from ensemble docking to represent one ligand-protein complex

can help us to understand the weaknesses and strengths of each model. A similar R2tr

value was obtained from COMBINE analysis using one or multiple structures (0.86 vs. 0.83,

respectively; Tables S4 and S7), indicating that both models can basically make good fits
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for the training set. Both models could also reproduce the ranking for a small ligand series

composed of ligands 13 (training set), 3 and 14 (test set), which differ by only one sub-

stitution (Figure 3). However, the overall R2te value was higher for the model using one

structure (0.79 and 0.72 for the models using one or multiple structures, respectively, Table

1), indicating that the group of interaction energies selected in the model with one structure

had a higher predictive power. Possible reasons for the selection of interaction energies with

lower predictive power in the model with multiple structures include worse signal to noise

ratio, the lack of sampling of important protein configurations or poor ligand positions ob-

tained from docking. The latter was the case for some ligands, as their RMSD value between

docking and crystallographic positions was higher than 2 Å (Figure S4 and discussion in

section 4). For instance, considering the test set, ligands 5 and 16 had a high prediction

error (difference between experimental and computed log koff higher than 1 log s−1) for the

model using one structure. These ligands also had a high prediction error for the model

using multiple structures, together with ligand 21, which had a poor prediction of ligand

positions from docking.

3.2.3 Comparison of models to predict koff and Kd values

COMBINE analysis was also used to predict equilibrium dissociation constants (Kd) using

a single crystal structure or structures from ensemble docking to represent each complex.

The R2tr and R2te values obtained for these models (tables S13 and S14) were lower than

the ones obtained from COMBINE analysis to predict koff values, showing that model

training was less successful and the predictive power was lower for models to predict Kd.

The COMBINE analysis, as implemented in this work, considers only interaction energies

between the ligand and the protein in the bound state. However, predictions for koff and

Kd values also depend on the energies of the transition and unbound states, respectively.

The transition state is structurally not far from the bound state and can have interactions

in common with it, while the bound state is less structurally related to the unbound state
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Figure 3: COMBINE analysis models to compute koff values for p38 MAP kinase inhibitors
can reproduce the ranking for a small series composed of ligands 13 (training set), 3 and 14
(test set). (A) Chemical structures of the ligands in the series. Green circles indicate the
differences among the ligands. (B) Plot of computed versus experimental log koff values for
the ligands in the series. COMBINE analysis models were obtained using single structures
(two latent variables) or ensemble docking (one latent variable). The straight line corre-
sponds to y = x (ideal case). For ligand 13, koff values were computed from training, while
for ligands 3 and 14 koff values were computed from testing.

in which there may be differences in solvation of the unbound ligands that contribute to Kd.

COMBINE analysis was originally developed to predict binding affinities for series of related

(congeneric) compounds. In the more diverse set of compounds studied here, differences

in solvation are likely to be larger and make a larger contribution to the differences in Kd.

This contribution is not considered explicitly in the COMBINE analysis described here.

The structural similarity between transition and bound states, and the smaller influence of

solvation effects may explain why good predictions were obtained for koff values, but not

for Kd values for this diverse set of compounds.

The interaction energies associated with the coefficients with the highest absolute values

were compared for models used to predict koff or Kd values (table S15). While four out of

six interaction energies were different for models predicting koff and Kd values using one

structure to represent each ligand-protein complex, only one out of six interaction energies

was different when multiple structures were used. This indicates that, in the case of models
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using one structure to represent each ligand-protein complex, the predictions depend on

different interaction energies, and Kd and koff may be tuned independently.

4 Discussion

The present study is the second to apply COMBINE analysis to predict experimental koff

values. In the first study,9 two independent COMBINE analyses were performed to predict

koff values using a training set of 53 inhibitors of the heat shock protein 90 (HSP90) and

33 inhibitors of HIV-1 protease, resulting in models with Q2-LOO values of 0.69 and 0.70,

respectively. The present study achieved a higher Q2-LOO value, 0.75, despite the fact that

less crystallographic data was available for the ligand-protein complexes (37/66, 12/33 and

6/33 complexes had crystal structures available for HSP90, HIV-1 protease and p38 MAP

kinase, respectively), resulting in greater uncertainty in the modeling. A Q2-LOO value

similar to the previous study was achieved for the model with multiple structures.

Previous studies used MD simulations or regression methods to predict koff values for p38

MAP kinase inhibitors (Table S17). A method combining steered molecular dynamics (SMD)

and computation of free energies of dissociation obtained R2te of 0.88 for a dataset comprised

of eight inhibitors.74 In another study, a model obtained using PLS regression, a training

set of 14 inhibitors, a test set of 6 inhibitors and protein-inhibitor interaction fingerprints

(IFPs) from simulations of inhibitor dissociation had R2te of 0.56 and R2tr of 0.72.75 Negative

binding energy integrals obtained from ligand dissociation using local-scaled MD achieved

R2te of 0.64 in the prediction of koff values for 41 complexes with different kinases, including

12 complexes with p38 MAP kinase.76 Amongst regression methods, Volsurf, a method which

uses descriptors from the structures of inhibitors only, resulted in a model with R2te of 0.82

and R2tr of 0.82 for a training set of 18 inhibitors and a test set of 10 inhibitors.77 A model

obtained using random forest, ligand-protein interactions and information about the protein

structure as descriptors achieved R2te of 0.43 for a test set of 28 complexes with p38 MAP
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kinase.78 The study presented here had a R2tr higher than the method with the highest R2tr

value, Volsurf, and R2te value lower than the method with the highest predictive power,

the method based on SMD. On one hand, the SMD method includes more details about

the ligand-protein interactions and the unbinding process. On the other hand, it was tested

using only 8 inhibitors. Despite only inhibitor structures being considered, Volsurf had a

good fit for the training set. However, regression methods like Volsurf are usually not able

to directly identify important protein residues acting in the modulation of inhibitor-protein

binding kinetics.

Previous computational and experimental studies also identified inhibitor-protein interac-

tions and inhibitor features that contribute to lower koff values. Van der Waals interactions

and hydrogen bonds of inhibitors with Glu71 were identified as important factors for low-

ering koff values in SKR studies.25,27 These features were also observed in the COMBINE

analyses presented here. Weaker electrostatic interactions contributing to lower koff values

is a trend which was identified in a study using IFPs from simulations of inhibitor dissoci-

ation.75 Here, this trend is also observed, as there is a negative weight for the electrostatic

interaction between the inhibitors and Lys53, indicating that weaker electrostatic interac-

tions with Lys53 contribute to lower koff values. In the study using IFPs,75 stronger van

der Waals interactions were found to contribute to lower koff values, and interactions with

charged residues, such as Arg67 and Arg70, were involved in the modulation of koff val-

ues. Interactions with these residues were also identified as modulators of koff values in the

COMBINE analyses presented here. Other residues identified by COMBINE analysis, such

as Lys53, Glu71 and Leu167, were not identified by the study using IFPs, which may be

related to differences in the training set used or in the methods, as the IFPs were obtained

from simulations of inhibitor dissociation, while the interaction energies from COMBINE

analysis were obtained from ligand-protein complexes in the bound state. Moreover, the

contribution of larger molecular volumes and stronger van der Waals interactions to lower

koff values, found using Volsurf77 and IFPs,75 agrees with the overall results obtained in
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COMBINE analyses, since most interaction energies with high weights are van der Waals

interactions.

Computational predictions in this work are supported by data for mutations generating

drug resistance in EGFR and Abl kinases. In the COMBINE analysis using one structure,

interactions with residues Lys53, Arg70, Glu71 and Leu167 were identified as important

for long residence times. Additionally, in the COMBINE analysis using an ensemble of

structures, interactions with residues Arg67 and Asp168 were highlighted as important for

long residence times. Mutations in positions 28279,80 and 28580 of Abl kinase (equivalent

to positions 67 and 70 in p38 MAP kinase, respectively, Figure S5a) and in position 759

of EGFR81 (equivalent to position 71 in p38 MAP kinase, Figure S5b) are associated with

drug resistance, supporting the importance of residues Arg67, Arg70 and Glu71 in inhibitor

binding.

As pointed out in section 3.2, the R2te value was higher for the model using one structure

than for the model using multiple structures (0.79 and 0.72 for the models using one or

multiple structures, respectively, Table 1), indicating that the group of interaction energies

selected in the model with one structure had a higher predictive power. One of the possible

reasons for this is poor binding modes for ligands obtained from ensemble docking (Figure

S4). Docking using a protein ensemble led to improved binding modes24 and a higher area

under the receiver operating characteristic (ROC) curve (AUC)17 in previous studies. Here,

there were discrepancies between the reference binding modes (the binding modes in the

model using one structure) and the binding modes from ensemble docking for ligands 23, 26

(training set), 21 and 24 (test set), which had from 8/10 up to 10/10 binding modes with

RMSD higher than 5 Å from the ligand in the reference structure (Figure S4, Table S16).

Additionally, these ligands had low prediction errors in the COMBINE analysis model using

one crystal structure (0.06 to 0.38 log s−1), but average (0.55 to 0.58 log s−1 for ligands 24

and 26) to high (1.11 to 1.12 log s−1 for ligands 21 and 23) errors in the COMBINE analysis

model using multiple structures.
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Visual inspection of the crystal structures used to obtain the reference binding modes for

ligands 21, 23 and 24 showed that a significant structural rearrangement happens for residues

Lys53 and Glu71. Moreover, visual inspection of the crystal structure used to obtain the

reference binding mode for ligand 26 shows a Val in position 84, while this position is occupied

by a bulkier residue, Ile, in p38 MAP kinase. Docking was performed treating residues Lys53

and Glu71 (ligands 21, 23 and 24) or residue Ile 84 (ligand 26) as flexible, but this did not

improve significantly the binding modes (Table S16). As the reference binding modes for

these ligands are complexes with other kinases, it is possible that these ligands could have

different binding modes with p38 MAP kinase, or that other residues of p38 MAP kinase,

not explored in flexible docking, may need to reorganize for ligand binding.

Another possible reason for the higher predictive power of the model using single struc-

tures, compared to the model using an ensemble to represent each ligand-protein complex,

is the diversity of structures. Regarding the disordered region after the DFG motif (residues

170 to 184 in PDB 1KV2), the six crystal structures used in the model with single structures

presented a higher structural diversity than the 10 protein structures selected for ensemble

docking (Figure S6c). As noted before, the region after the DFG motif was missing in the

six crystal structures, and structural diversity came from modeling with Modeller (Section

2.4). The sampling of structures for the ensemble-based model could be improved by the

use of enhanced sampling MD simulation techniques but further work would be necessary to

investigate whether this results in improved predictive ability.

In the present study, energy minimization of structures prior COMBINE analysis was per-

formed using implicit solvation, and water molecules were not considered during collection of

the energy contributions. Modeling the water implicitly, and not by explicit molecules, is an

approximation to simplify the model, but it can lead to loss of important water-mediated in-

teractions. However, such interactions may be captured implicitly in the COMBINE model.

For instance, in a previous study by Ganotra and Wade,9 the correlation between low koff

values and water-mediated interactions between HIV-1 protease and its inhibitors was cap-

26



tured implicitly by negative coefficients attributed to residues involved in hydrogen bonding.

Among the six crystal structures available for complexes between inhibitors and p38 MAP

kinase, in four of them no water-mediated interactions between inhibitor and protein were

found. In two of them, two water molecules mediate interactions of the inhibitor with Arg149

(Figure 4). Interestingly, water-mediated protein-protein interactions in the binding site of

four crystal structures were found. In these structures, water mediated interactions between

the backbone of Asp168 and Lys53 (3 structures, Figure 4) or Glu71 (1 structure). The

interaction involving Lys53 can form a lock, hindering inhibitor exit from the binding site,

and explaining mechanistically why the electrostatic interaction with Lys53 has a negative

coefficient in koff predictions, as suggested by COMBINE analysis. Electrostatic interac-

tions with Lys53 have a negative coefficient. When this negative coefficient is combined

with favorable electrostatic interactions, it leads to positive contributions to the predicted

log koff values, resulting in high koff values. When the inhibitor interacts with Lys53, it

may prevent the formation of the lock between Lys53 and Asp168, resulting in facilitated

dissociation and a high koff value.

The current COMBINE analysis model presented here deals with one of the approxi-

mations of previous models, the treatment of protein flexibility. However, there are other

approximations in the present COMBINE analysis model which could be improved in fu-

ture work. One of them is the lack of consideration of the transition state ensemble. For

instance, inhibitors could have similar bound states but different transition state ensembles,

what would lead to different experimental koff values. Describing such an ensemble re-

quires knowledge of the dissociation path, which could make the preparation for COMBINE

analysis computationally expensive. Moreover, the description of such an ensemble can be

challenging if many dissociation pathways are available. This is the case, for instance, for

the T4 lysozyme L99A mutant, for which eight dissociation pathways have been identified.4

So far, three dissociation pathways were identified for inhibitors of p38 MAP kinase.76,82,83

Another assumption of the present COMBINE analysis model is that protein conforma-
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Figure 4: Protein-ligand and protein-protein interactions mediated by water molecules (PDB
2YIW). The water mediated interaction between Asp168 and Lys53 can form a lock, hin-
dering inhibitor dissociation. Ligand 32, Lys53, Arg149 and Asp168 are shown in sticks.
Crystallographic waters are shown as red spheres. Hydrogen bonds are shown as black dot-
ted lines, the protein backbone in gray, and the ligand and residues are colored according to
atom type, with carbon atoms in cyan (ligand) or green (residues).

tional changes during inhibitor dissociation do not need to be considered explicitly and their

effects on the relative dissociation rates of the ligands are accounted for implicitly by con-

sidering the protein-ligand interactions in the bound state. Bulkier inhibitors may require

larger conformational changes to dissociate and, therefore, show a higher energy penalty for

leaving the protein binding site, leading to lower koff values. A previous study83 sampled

dissociation paths for type I and type II inhibitors of p38 MAP kinase and identified by

umbrella sampling that the dissociation of type II inhibitors presented larger energy barriers

due to the larger protein motions required for inhibitor dissociation, which explained the

lower koff values for these inhibitors. The dataset in the present study contained type II

inhibitors only, which may have reduced potential problems arising from the lack of explicit

consideration of protein conformational changes during dissociation. Further terms can be

included in COMBINE analysis, such as energy penalties for changes in the protein con-

formation or differences in the intramolecular energy terms in bound and unbound protein

conformations.11
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One of the motivations of performing COMBINE analysis to predict koff values or other

biological activity is the speed of the parametrization and application of the method, espe-

cially for large datasets with tens or hundreds of inhibitors. One of the advantages of using

one structure over multiple structures in COMBINE analysis is the lower computational cost,

as usually only a single crystal structure and no simulations, just energy minimizations, are

required when one structure is used to represent the ligand-protein complex. For the model

with multiple structures obtained here, the computational bottleneck of the method was

running one MD simulation of 1200 nanoseconds for a ligand-protein complex to obtain the

configurational ensemble. This simulation length allowed the collection of more diverse pro-

tein structures (RMSD values and protein structures in Figure S6). High root mean squared

fluctuations and structural variation close to the DFG motif (Figure S6) suggest flexibility

is important for ligand binding to p38 MAP kinase. While docking with Vina took seconds

for each ligand-protein pair, running the MD simulation took approximately 6 days using 1

GPU (NVIDIA Tesla P40). Therefore, inclusion of protein and ligand flexibility in COM-

BINE analysis can be achieved with modest increases in computational time. Moreover,

the increase in computational time can be reduced by running a shorter MD simulation, or

obtaining a configurational ensemble from other sources, like NMR data, crystal structures

or computational methods such as the iterative Anisotropic Network Model (iterANM).24

Despite the increase in computational time compared to the model with a single structure,

COMBINE analysis using multiple structures for one ligand-protein complex can be useful

in cases where flexibility cannot be neglected. Here, a region in p38 MAP kinase close to the

binding site was not resolved in all crystal structures of ligand-protein complexes, suggesting

this region was highly flexible. The use of COMBINE analysis with multiple structures

helped to reveal more residues involved in the modulation of koff values. COMBINE analysis

with multiple structures can also be applied in cases where the ligand has multiple binding

modes, or in cases where the protein shows multiple conformations or rotamers for residues,

especially in the binding site.
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5 Conclusions

We propose a method to incorporate protein and ligand flexibility in COMBINE analysis us-

ing arithmetic or exponential averaging of the predicted koff values from multiple structures

describing one ligand-protein complex. Here, such structures were obtained from docking

the ligand to a protein ensemble from MD simulations, but protein ensembles can also be

obtained from multiple crystal structures or from NMR. We obtained models for koff values

for inhibitors of p38 MAP kinase with good predictive power (R2te = 0.79, R2tr = 0.86

and R2te = 0.72, R2tr = 0.83 for one and multiple structures, respectively) and identified

key ligand-protein interactions that contribute to variance in binding kinetics. COMBINE

analysis identified known important residues, such as Arg70 and Glu71, and also additional

relevant residues, such as Lys53 and Leu167. Moreover, the incorporation of protein-ligand

flexibility helped to highlight more residues connected to long residence times, such as Arg67

and Asp168. These specific interaction energies provide insights into the mechanisms of ac-

tion of slow and fast dissociating inhibitors.

6 Data and Software Availability

The software to apply ensemble COMBINE analysis is available, with an example (using the

structures from ensemble docking describe here), at

https://github.com/HITS-MCM/ensembleCOMBINE. The python script for ligand super-

imposition is available at https://github.com/HITS-MCM/LigSuperposition. The input files

and the files with coordinates and topologies of the ligand-protein complexes which were used

to obtain the models using single structures or an ensemble of structures to represent each

ligand-protein complex can be obtained at: https://doi.org/10.5281/zenodo.4597725.
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Figure S1: Chemical structures of the 33 inhibitors of p38 MAP kinase used for COMBINE
analysis.
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Figure S1: Continuation.

S3



Figure S2: Interaction energies between p38 MAP kinase amino acid residues and inhibitors.
Van der Waals (a, c) and electrostatic (b, d) interaction energies were computed between
inhibitors and the 348 residues in p38 MAP kinase using the COMBINE program. Each
column has 33 (a, b) data points corresponding to the 33 inhibitors used for COMBINE
analysis applied to single crystal structures or 330 data points (c, d) corresponding to the
330 ligand-protein complexes (10 complexes per ligand) used for COMBINE analysis applied
to structures from ensemble docking. Selected residues are labelled.
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A B

Figure S3: Ten binding modes obtained from ensemble docking for ligands 2 (a) and 23 (b).
Protein backbone in gray (PDB 1KV2), ligand colored according to atom type. The binding
modes were obtained from docking to ten different protein configurations using AutoDock
Vina.
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Figure S4: Histograms of root mean squared deviations (RMSD) between the ligand position
in the crystal structure and the ligand position in the 10 complexes obtained from ensemble
docking. (a) Ligands 1 to 9. (b) Ligands 11 to 18. (c) Ligands 20 to 29. (d) Ligands 30 to
36. Only heavy atoms were considered for RMSD calculation.
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Figure S5: Alignment of p38 MAP kinase with the human Abl kinase (a) or with the human
EGFR kinase (b). (a) Positions 67 and 70 of p38 MAP kinase are highlighted in bold.
Mutations in the equivalent positions in Abl kinase are associated with drug resistance. (b)
Position 71 of p38 MAP kinase is highlighted in bold. Mutations in the equivalent position
in EGFR kinase are associated with drug resistance.
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Figure S6: Structural variation of proteins in the models using single structures or an ensem-
ble of structures to represent each ligand-protein complex. (a) Root mean squared deviation
(RMSD) of p38 MAP kinase along the trajectory performed to obtain the ensemble. Only
heavy atoms of the protein backbone were considered for RMSD calculation. (b) Root mean
squared fluctuation (RMSF) of p38 MAP kinase in the trajectory performed to obtain the
ensemble. Only Cα atoms were considered for RMSF calculation. Orange dashed lines
highlight the position of the DFG motif. (c) Protein structures in the model using single
structures or an ensemble to represent each ligand-protein complex. Ligand 16 is represented
as sticks to show the position of the binding site.
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Table S1: List of the SMILES strings for the p38 MAP kinase inhibitors.

inhibitor ID SMILES
1 C(=O)(Nc1ccc(Cl)cc1)Nc1cc(nn1C)C(C)(C)C
2 C(=O)(Nc1c2c(c(cc1)OCCN1CCOCC1)cccc2)Nc1cc(nn1c1ccc(cc1)

C)C(C)(C)C
3 c1c(ccc(c1)C)n1c(cc(n1)C(C)(C)C)NC(=O)N
5 C1N(CCOC1)CCOc1c2c(c(cc1)NC(=O)Nc1cc(nn1c1ccccc1)C(C)

(C)C)cccc2
6 C1N(CCOC1)CCOc1c2c(c(cc1)NC(=O)Nc1cc(nn1c1ccccc1)C(C)

C)cccc2
7 c1c(ccc(c1)C)n1c(cc(n1)C(C)(C)CO)NC(=O)Nc1c2c(c(cc1)

OCCN1CCOCC1)cccc2
8 C1N(CCOC1)CCOc1c2c(c(cc1)NC(=O)Nc1cc(nn1C)C(C)(C)C)

cccc2
9 C1N(CCOC1)CCOc1c2c(c(cc1)NC(=O)Nc1cc(nn1c1cnc(cc1)C)C

(C)(C)C)cccc2
11 C1N(CCOC1)CCOc1c2c(c(cc1)NC(=O)Nc1cc(nn1c1cc(c(cc1)C)

N(C)C)C(C)(C)C)cccc2
12 C1N(CCOC1)CCOc1c2c(c(cc1)NC(=O)Nc1cc(nn1c1cc(ccc1)

N(C)C)C(C)(C)C)cccc2
13 c1cc(ccc1)NC(=O)Nc1n(nc(c1)C(C)(C)C)c1ccc(cc1)C
14 c1c(ccc(c1)C)n1c(cc(n1)C(C)(C)C)NC(=O)Nc1c2c(ccc1)cccc2
15 C1N(CCOC1)CCCc1c2c(c(cc1)NC(=O)Nc1cc(nn1c1ccc(cc1)

C)C(C)(C)C)cccc2
16 C1COCCN1CCOc1ccc(cc1)NC(=O)Nc1cc(C(C)(C)C)nn1c1ccc(C)cc1
17 c1c2c(ccc1)c(cc(c2)OC)NC(=O)Nc1n(nc(c1)C(C)(C)C)c1ccc(cc1)C
18 C1N(CCOC1)CCOc1c2c(c(cc1C)NC(=O)Nc1cc(nn1c1ccc(cc1)C)

C(C)(C)C)cccc2
20 c12c(ccc(c1)Nc1c(ccc(c1)NC(=O)c1cc(ccc1)C(C#N)(C)C)C)

ncn(c2=O)C
21 c1cc(ccc1n1ccc(c(c1=O)C(=O)Nc1ccc(c(c1)F)Oc1ccnc(c1Cl)N)OCC)F
22 c1(ccc2c(c1)cccn2)n1c(cc(n1)C(C)(C)C)NC(=O)Nc1ccc(cc1F)

Oc1cc(ncc1)C(=O)NC
23 c1(c(cc2c(c1)c(ccn2)Oc1ccc(cc1F)NC(=O)C1(C(=O)Nc2ccc(cc2)F)

CC1)OCCCN1CCOCC1)OC
24 C1CN(C)CCN1C1CCN(CC1)C(=O)Nc1cc(ccn1)Oc1cc(F)c(cc1)

NC(=O)C1(CC1)C(=O)Nc1ccc(F)cc1
25 c1cc(cnc1)c1ccnc(n1)Nc1c(ccc(c1)NC(=O)c1ccc(cc1)CN1CCN(C)

CC1)C
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Table S1: Continuation.

inhibitor ID SMILES
26 CC1(C)CNc2cc(ccc12)NC(=O)c1cccnc1NCc1ccncc1
27 O=C(Nc1cc(n2cc(C)nc2)cc(c1)C(F)(F)F)c1ccc(C)c(c1)Nc1nccc(n1)

c1cccnc1
28 Cc1c(cc(cc1)C(=O)Nc1cccc(c1)C(F)(F)F)Nc1nc(nc2c1cnn2C)c1cnccc1
29 n1c2cccnn2c(c1)C#Cc1c(ccc(c1)C(=O)Nc1ccc(c(c1)C(F)(F)F)

CN1CCN(CC1)C)C
30 N(C(=O)Nc1ccc(cc1)c1cn2c(n1)sc1c2ccc(c1)OCCN1CCOCC1)c1noc

(c1)C(C)(C)C
31 c1(cc2c(cc1OC)c(ccn2)Oc1cc(c(cc1)NC(=O)Nc1cc(on1)C)Cl)OC
32 CC(C)c1nnc2ccc(Sc3ccccc3CNC(=O)Nc3cc(nn3c3ccccc3)C(C)(C)C)

cn12
33 CC(C)(C)c1cc(NC(=O)NCc2ccccc2Sc2ccc3nnc(c4ccccc4SCCO)n3c2)

n(n1)c1ccc(O)c(Cl)c1
34 c1c(ccc(c1)C)n1c(cc(n1)C(C)(C)C)NC(=O)Nc1ccc(cc1)C
35 c1c2c(ccc1)c(ccc2)NC(=O)Nc1n(nc(c1)C(C)(C)C)C
36 c1c(ccc(c1)Cl)NC(=O)Nc1n(nc(c1)C(C)(C)C)C
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Table S2: List of the PDB identifiers of crystal structures and koff values (in s−1) for the
p38 MAP kinase inhibitors.

inhibitor ID PDBa ref.b PDB experimental koff ref. koff

1 1KV1 25 1.40E-01 25
2 1KV2 25 8.30E-06 27
3* - - 1.40E-01 27
5* - - 1.50E-05 27
6* - - 3.80E-04 27
7 - - 4.00E-04 27
8 - - 3.30E-03 27
9 - - 2.30E-05 27
11 - - 3.80E-05 27
12* - - 2.60E-05 27
13 - - 1.60E-03 27
14* - - 1.20E-04 27
15 - - 2.30E-05 27
16* 3HV6 35 3.90E-03 27
17 - - 3.40E-04 27
18 - - 1.50E-04 27
20 4RZW 44 1.13E-02 30
21* 3F82 45 9.03E-02 30
22 3QRI 46 4.88E-04 30
23 3LQ8 47 9.10E-02 30
24* 5IA5 48 1.21E-01 30
25 3HEC 36 1.31E-01 30
26 3EFL - 7.34E-02 30
27 3PG0 - 8.96E-03 30
28* 6FNI 49 3.18E-02 30
29 4U0I 50 4.82E-03 30
30 4RT7 51 5.20E-02 30
31 4ASE 52 9.68E-02 30
32 2YIW 28 4.00E-05 28
33 2YIS 28 2.40E-06 28
34* - - 1.00E-03 29
35* - - 9.00E-03 29
36 - - 2.80E-02 29

*: inhibitors which were assigned to the test set. aBold: ligand in complex with p38 MAP
kinase; others: ligand in complex with other kinases (the binding mode was used as a

reference). For ligands without crystal structures, the binding mode of ligand 16 was used
as a reference. bref.: reference.
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Table S3: Root mean squared deviation (RMSD) between the ligand position in the crystal
structure and the ligand position obtained from redocking or cross-docking to the p38 MAP
kinase structures in PDBs 1KV2 or 3HV6 using Vina. Only heavy atoms were considered
for the RMSD calculation.

redocking cross-docking
ligand PDB RMSD (Å) PDB RMSD (Å)
2 1KV2 1.05 3HV6 1.20
16 3HV6 1.02 1KV2 1.80

Table S4: Summary of the models derived for different numbers of latent variables (LVs) for
COMBINE analysis for log koff of p38 MAP kinase inhibitors using crystal structures (one
structure per ligand). The table lists the coefficient of determination for the training and
test sets (R2tr and R2te), the coefficient of determination for leave-one-out cross-validation
set (Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log s−1) and root mean
squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training set, leave-one-out
cross-validation set, and test set, respectively. The model with 2 LVs (in bold) displayed the
best balance between predictive performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.83 0.72 0.52 0.66 0.62 0.79 0.77 0.49 0.68
2 0.86 0.75 0.49 0.68 0.55 0.75 0.79 0.54 0.64
3 0.91 0.68 0.35 0.70 0.44 0.85 0.77 0.57 0.67
4 0.94 0.66 0.29 0.70 0.37 0.87 0.72 0.59 0.75
5 0.95 0.65 0.28 0.75 0.35 0.88 0.69 0.65 0.79
6 0.96 0.57 0.23 0.84 0.30 0.98 0.65 0.65 0.84
7 0.97 0.41 0.19 0.93 0.26 1.15 0.49 0.80 1.00
8 0.98 0.28 0.15 0.98 0.22 1.27 0.50 0.76 1.00
9 0.98 0.21 0.12 1.05 0.19 1.33 0.38 0.82 1.11
10 0.99 0.18 0.12 1.08 0.17 1.35 0.24 0.91 1.23
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Table S5: Summary of the models derived for different numbers of latent variables (LVs)
for COMBINE analysis for log koff of p38 MAP kinase inhibitors using crystal structures
(one structure per ligand). The model included as an extra term the solvation of the ligand,
which was represented as the change in solvent accessible surface area upon unbinding. The
table lists the coefficient of determination for the training and test sets (R2tr and R2te), the
coefficient of determination for leave-one-out cross-validation set (Q2-LOO), average absolute
errors (AAEtr, AAEv and AAEte, in log s−1) and root mean squared errors (RMEtr, RMEv,
and RMEte, in log s−1) for the training set, leave-one-out cross-validation set, and test set,
respectively. The model with 2 LVs (in bold) displayed the best balance between predictive
performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.60 0.52 0.80 0.87 0.95 1.04 0.20 1.15 1.26
2 0.87 0.79 0.48 0.61 0.55 0.68 0.79 0.48 0.64
3 0.90 0.73 0.38 0.65 0.46 0.77 0.75 0.58 0.71
4 0.93 0.67 0.30 0.70 0.38 0.86 0.75 0.58 0.71
5 0.94 0.66 0.28 0.74 0.35 0.87 0.70 0.64 0.78
6 0.96 0.60 0.22 0.81 0.30 0.95 0.64 0.70 0.84
7 0.97 0.46 0.19 0.92 0.26 1.10 0.50 0.79 0.99
8 0.98 0.35 0.15 0.97 0.23 1.21 0.49 0.80 1.01
9 0.98 0.27 0.12 1.02 0.19 1.28 0.33 0.93 1.16
10 0.99 0.20 0.11 1.08 0.18 1.34 0.21 0.98 1.25
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Table S6: Summary of the models derived for different numbers of latent variables (LVs) for
COMBINE analysis for log koff of p38 MAP kinase inhibitors using crystal structures (one
structure per ligand). Electrostatic interactions were computed using a distance-dependent
dielectric constant. The table lists the coefficient of determination for the training and test
sets (R2tr and R2te), the coefficient of determination for leave-one-out cross-validation set
(Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log s−1) and root mean
squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training set, leave-one-out
cross-validation set, and test set, respectively. The model with 3 LVs (in bold) displayed the
best balance between predictive performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.44 0.26 0.86 0.97 1.12 1.29 0.45 0.81 1.05
2 0.86 0.77 0.49 0.60 0.55 0.71 0.72 0.61 0.75
3 0.91 0.79 0.37 0.57 0.46 0.68 0.76 0.54 0.69
4 0.94 0.75 0.30 0.61 0.38 0.74 0.69 0.63 0.79
5 0.96 0.75 0.25 0.61 0.31 0.75 0.68 0.65 0.80
6 0.98 0.74 0.19 0.64 0.24 0.77 0.65 0.69 0.83
7 0.98 0.73 0.15 0.65 0.20 0.78 0.69 0.64 0.79
8 0.99 0.73 0.11 0.64 0.15 0.77 0.73 0.57 0.73
9 0.99 0.76 0.09 0.62 0.12 0.74 0.70 0.60 0.78
10 1.00 0.74 0.08 0.64 0.10 0.76 0.71 0.59 0.77

Table S7: Summary of the models derived for different numbers of latent variables (LVs) for
COMBINE analysis for log koff of p38 MAP kinase inhibitors using structures from ensemble
docking (10 structures per ligand). The table lists the coefficient of determination for the
training and test sets (R2tr and R2te), the coefficient of determination for leave-one-out
cross-validation set (Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log
s−1) and root mean squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training
set, leave-one-out cross-validation set, and test set, respectively. The model with 1 LV (in
bold) displayed the best balance between predictive performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.83 0.70 0.56 0.68 0.69 0.82 0.72 0.65 0.74
2 0.79 0.67 0.55 0.68 0.71 0.86 0.62 0.75 0.87
3 0.87 0.71 0.49 0.69 0.57 0.80 0.69 0.71 0.79
4 0.89 0.70 0.44 0.70 0.51 0.81 0.65 0.73 0.83
5 0.90 0.70 0.44 0.73 0.49 0.81 0.67 0.73 0.81
6 0.92 0.73 0.40 0.69 0.45 0.77 0.75 0.63 0.71
7 0.92 0.74 0.38 0.69 0.44 0.77 0.75 0.64 0.71
8 0.93 0.74 0.37 0.69 0.41 0.76 0.77 0.59 0.68
9 0.93 0.73 0.35 0.69 0.40 0.77 0.72 0.65 0.74
10 0.94 0.73 0.33 0.69 0.39 0.78 0.72 0.66 0.74
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Table S8: Summary of the models derived for different numbers of latent variables (LVs) for
COMBINE analysis for log koff of p38 MAP kinase inhibitors using structures from ensemble
docking (1 structure per ligand; the top structure was selected using Vina scores). The
table lists the coefficient of determination for the training and test sets (R2tr and R2te), the
coefficient of determination for leave-one-out cross-validation set (Q2-LOO), average absolute
errors (AAEtr, AAEv and AAEte, in log s−1) and root mean squared errors (RMEtr, RMEv,
and RMEte, in log s−1) for the training set, leave-one-out cross-validation set, and test set,
respectively. The model with 2 LVs (in bold) displayed the best balance between predictive
performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.77 0.60 0.62 0.78 0.72 0.94 0.83 0.48 0.58
2 0.83 0.65 0.53 0.73 0.62 0.88 0.80 0.49 0.63
3 0.90 0.59 0.40 0.81 0.46 0.96 0.82 0.45 0.60
4 0.92 0.61 0.33 0.78 0.41 0.93 0.84 0.41 0.57
5 0.94 0.61 0.30 0.79 0.38 0.93 0.83 0.40 0.58
6 0.94 0.61 0.26 0.81 0.36 0.94 0.83 0.40 0.59
7 0.96 0.53 0.21 0.88 0.31 1.02 0.77 0.42 0.68
8 0.96 0.34 0.19 0.99 0.29 1.21 0.65 0.55 0.83
9 0.97 0.22 0.17 1.01 0.24 1.32 0.27 0.80 1.21
10 0.98 0.13 0.16 1.01 0.21 1.39 -0.15 0.96 1.51

Table S9: Summary of the models derived for different numbers of latent variables (LVs) for
COMBINE analysis for log koff of p38 MAP kinase inhibitors using structures from ensemble
docking (20 structures per ligand). The table lists the coefficient of determination for the
training and test sets (R2tr and R2te), the coefficient of determination for leave-one-out
cross-validation set (Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log
s−1) and root mean squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training
set, leave-one-out cross-validation set, and test set, respectively. The model with 1 LV (in
bold) displayed the best balance between predictive performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.84 0.65 0.63 0.75 0.75 0.88 0.71 0.66 0.76
2 0.77 0.62 0.59 0.72 0.76 0.93 0.59 0.78 0.90
3 0.82 0.60 0.56 0.79 0.66 0.95 0.60 0.80 0.89
4 0.88 0.61 0.46 0.75 0.56 0.93 0.65 0.73 0.83
5 0.90 0.64 0.44 0.76 0.50 0.90 0.71 0.67 0.76
6 0.92 0.71 0.39 0.67 0.47 0.80 0.75 0.61 0.71
7 0.92 0.73 0.39 0.65 0.46 0.77 0.76 0.60 0.69
8 0.93 0.74 0.38 0.65 0.44 0.76 0.76 0.59 0.70
9 0.93 0.75 0.36 0.65 0.43 0.75 0.73 0.64 0.73
10 0.93 0.73 0.36 0.67 0.42 0.78 0.74 0.63 0.72
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Table S10: Summary of the models derived for different numbers of latent variables (LVs) for
COMBINE analysis for log koff of p38 MAP kinase inhibitors using structures from ensemble
docking (5 structures per ligand; protein structures obtained from hierarchical agglomerative
clustering). The table lists the coefficient of determination for the training and test sets (R2tr
and R2te), the coefficient of determination for leave-one-out cross-validation set (Q2-LOO),
average absolute errors (AAEtr, AAEv and AAEte, in log s−1) and root mean squared errors
(RMEtr, RMEv, and RMEte, in log s−1) for the training set, leave-one-out cross-validation
set, and test set, respectively. The model with 3 LV (in bold) displayed the best balance
between predictive performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.80 0.60 0.62 0.75 0.79 0.94 0.64 0.70 0.84
2 0.74 0.53 0.56 0.74 0.76 1.02 0.59 0.74 0.90
3 0.91 0.70 0.34 0.64 0.45 0.82 0.70 0.65 0.77
4 0.92 0.73 0.32 0.61 0.42 0.77 0.66 0.65 0.83
5 0.95 0.80 0.27 0.55 0.35 0.67 0.68 0.61 0.79
6 0.95 0.82 0.24 0.52 0.33 0.63 0.66 0.64 0.82
7 0.96 0.84 0.23 0.50 0.31 0.61 0.63 0.71 0.86
8 0.96 0.85 0.20 0.48 0.29 0.58 0.60 0.72 0.89
9 0.97 0.84 0.19 0.49 0.26 0.59 0.65 0.69 0.84
10 0.97 0.83 0.19 0.50 0.26 0.61 0.69 0.64 0.79
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Table S11: Summary of the models derived for different numbers of latent variables (LVs)
for COMBINE analysis for log koff of p38 MAP kinase inhibitors using structures from an
ensemble (10 structures per ligand; structures obtained from 33 independent MD simulations,
one for each inhibitor). The table lists the coefficient of determination for the training and
test sets (R2tr and R2te), the coefficient of determination for leave-one-out cross-validation
set (Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log s−1) and root mean
squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training set, leave-one-out
cross-validation set, and test set, respectively. The model with 3 LV (in bold) displayed the
best balance between predictive performance and number of LVs.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.86 0.73 0.47 0.61 0.57 0.78 0.85 0.44 0.55
2 0.90 0.76 0.43 0.64 0.49 0.74 0.78 0.59 0.66
3 0.94 0.80 0.29 0.59 0.37 0.67 0.80 0.52 0.63
4 0.95 0.84 0.25 0.49 0.34 0.60 0.76 0.56 0.69
5 0.96 0.84 0.23 0.49 0.29 0.61 0.67 0.63 0.81
6 0.97 0.84 0.22 0.51 0.28 0.61 0.64 0.65 0.84
7 0.97 0.82 0.21 0.53 0.26 0.63 0.65 0.62 0.83
8 0.97 0.82 0.20 0.54 0.25 0.64 0.65 0.62 0.84
9 0.97 0.81 0.19 0.55 0.25 0.65 0.67 0.60 0.81
10 0.97 0.80 0.19 0.54 0.25 0.66 0.68 0.58 0.80
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Table S12: Summary of the models derived for different numbers of latent variables (LVs)
for COMBINE analysis for log koff of p38 MAP kinase inhibitors using structures from
ensemble docking (10 structures per ligand; individual interaction energies averaged using
an arithmetic or an exponential scheme). The table lists the coefficient of determination for
the training and test sets (R2tr and R2te), the coefficient of determination for leave-one-out
cross-validation set (Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log
s−1) and root mean squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training
set, leave-one-out cross-validation set, and test set, respectively. The models which displayed
the best balance between predictive performance and number of LVs are highlighted in bold.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
arithmetic average

1 0.84 0.78 0.50 0.58 0.59 0.70 0.71 0.61 0.76
2 0.88 0.78 0.44 0.59 0.51 0.70 0.72 0.56 0.75
3 0.92 0.81 0.34 0.57 0.41 0.66 0.72 0.57 0.75
4 0.93 0.81 0.32 0.58 0.39 0.65 0.74 0.54 0.72
5 0.95 0.82 0.26 0.56 0.35 0.63 0.79 0.48 0.65
6 0.96 0.83 0.22 0.54 0.31 0.63 0.78 0.50 0.66
7 0.97 0.82 0.19 0.55 0.26 0.63 0.78 0.52 0.66
8 0.97 0.85 0.17 0.49 0.24 0.58 0.75 0.61 0.70
9 0.98 0.85 0.16 0.45 0.21 0.57 0.63 0.77 0.86
10 0.99 0.79 0.14 0.53 0.18 0.68 0.52 0.86 0.97

exponential average
1 0.81 0.62 0.57 0.74 0.66 0.92 0.63 0.70 0.86
2 0.86 0.71 0.50 0.70 0.56 0.81 0.66 0.71 0.82
3 0.90 0.71 0.42 0.73 0.48 0.81 0.71 0.65 0.76
4 0.92 0.69 0.35 0.75 0.43 0.83 0.73 0.60 0.74
5 0.93 0.62 0.33 0.82 0.41 0.92 0.72 0.60 0.75
6 0.95 0.53 0.27 0.89 0.34 1.03 0.62 0.68 0.87
7 0.96 0.52 0.22 0.92 0.32 1.04 0.63 0.66 0.86
8 0.96 0.56 0.20 0.89 0.29 1.00 0.63 0.65 0.86
9 0.97 0.70 0.20 0.74 0.27 0.82 0.63 0.67 0.85
10 0.97 0.76 0.17 0.61 0.24 0.73 0.54 0.78 0.95
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Table S13: Summary of the models derived for different numbers of latent variables (LVs)
for COMBINE analysis for log Kd of p38 MAP kinase inhibitors using crystal structures (one
structure per ligand). The table lists the coefficient of determination for the training and
test sets (R2tr and R2te), the coefficient of determination for leave-one-out cross-validation
set (Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log s−1) and root mean
squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training set, leave-one-out
cross-validation set, and test set, respectively.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.64 0.38 0.75 1.01 0.97 1.26 0.37 0.93 1.22
2 0.78 0.46 0.67 0.99 0.75 1.17 0.39 1.05 1.21
3 0.87 0.57 0.50 0.89 0.57 1.05 0.44 0.95 1.16
4 0.90 0.60 0.42 0.90 0.50 1.02 0.27 1.00 1.33
5 0.92 0.53 0.37 0.98 0.45 1.09 0.08 1.06 1.49
6 0.94 0.50 0.29 1.01 0.39 1.14 -0.19 1.17 1.69
7 0.96 0.47 0.24 1.02 0.33 1.16 -0.34 1.21 1.79
8 0.98 0.35 0.19 1.12 0.25 1.29 -0.93 1.38 2.15
9 0.98 0.31 0.16 1.17 0.21 1.33 -1.15 1.43 2.27
10 0.99 0.31 0.13 1.20 0.19 1.33 -1.36 1.48 2.38

Table S14: Summary of the models derived for different numbers of latent variables (LVs) for
COMBINE analysis for log Kd of p38 MAP kinase inhibitors using structures from ensemble
docking (10 structures per ligand). The table lists the coefficient of determination for the
training and test sets (R2tr and R2te), the coefficient of determination for leave-one-out
cross-validation set (Q2-LOO), average absolute errors (AAEtr, AAEv and AAEte, in log
s−1) and root mean squared errors (RMEtr, RMEv, and RMEte, in log s−1) for the training
set, leave-one-out cross-validation set, and test set, respectively.

LV R2tr Q2-LOO AAEtr AAEv RMEtr RMEv R2te AAEte RMEte
1 0.56 0.34 0.88 1.05 1.10 1.31 0.27 1.06 1.32
2 0.57 0.27 0.86 1.09 1.06 1.37 0.19 1.10 1.39
3 0.71 0.24 0.75 1.13 0.90 1.40 0.35 1.04 1.25
4 0.74 0.19 0.71 1.15 0.86 1.45 0.32 1.02 1.28
5 0.76 0.16 0.67 1.14 0.82 1.47 0.32 1.01 1.28
6 0.82 0.20 0.60 1.12 0.73 1.44 0.30 1.04 1.30
7 0.84 0.16 0.55 1.14 0.68 1.47 0.28 1.06 1.32
8 0.86 0.14 0.52 1.14 0.63 1.48 0.34 1.03 1.26
9 0.87 0.19 0.50 1.11 0.61 1.44 0.32 1.06 1.27
10 0.88 0.22 0.50 1.12 0.59 1.41 0.30 1.07 1.29

S19



Table S15: Interaction energies associated with the coefficients with the highest absolute
values in COMBINE models to predict log koff or log Kd of p38 MAP kinase inhibitors. *:
interactions in common in models to predict log koff and log Kd values.

single ensemble
ka
off Kb

d kc
off Kc

d

residue coefficient residue coefficient residue coefficient residue coefficient
van der Waals interactions

Glu71* 0.248 Lys53* 0.382 Glu71* 0.180 Glu71* 0.154
Leu167 0.130 Leu171 0.285 Arg67* 0.128 Leu167* 0.116
Arg70 0.124 Hie148 0.215 Leu167* 0.126 Lys53 0.103
Lys53* 0.117 Glu71* 0.212 Asp168 0.119 Arg67* 0.097

electrostatic interactions
Lys53 -0.092 Arg70 -0.158 Glu71* 0.079 Glu71* 0.043
Glu71 0.062 Met109 0.122 Lys53* -0.033 Lys53* -0.037

aTwo latent variables. bThree latent variables. cOne latent variable.
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Table S16: Number of binding modes from ensemble docking with root mean squared devia-
tion (RMSD) from the binding mode in the reference structure higher than 5 Å. Only heavy
atoms of the ligand were considered for the RMSD calculation. No flex.: docking with rigid
protein. Flex.: docking with flexible side chains (Ly53 and Glu71 for ligands 21, 23 and 24;
Ile84 for ligand 26).

inhibitor ID binding modes with RMSD > 5 Å
no flex. flex.

1 0\10 -a

2 0\10 -
3 0\10 -
5 0\10 -
6 0\10 -
7 0\10 -
8 0\10 -
9 0\10 -
11 0\10 -
12 0\10 -
13 0\10 -
14 2\10 -
15 0\10 -
16 0\10 -
17 1\10 -
18 0\10 -
20 1\10 -
21 10\10 7\10
22 1\10 -
23 8\10 9\10
24 9\10 10\10
25 2\10 -
26 9\10 8\10
27 0\10 -
28 2\10 -
29 3\10 -
30 2\10 -
31 2\10 -
32 0\10 -
33 1\10 -
34 0\10 -
35 1\10 -
36 0\10 -

aLigand not tested in flexible docking.
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Table S17: Statistical measures of previous studies which predicted koff values for inhibitors
of p38 MAP kinase. The table lists the coefficient of determination for the training and test
sets (R2tr and R2te), the number of inhibitors in the test set (N) and the computational
method used.

reference R2tr R2te N method
74 -a 0.88 8 steered MDb

77 0.82 0.82 10 Volsurf
this work 0.86 0.79 11 COMBINE
76 - 0.64 41c local-scaled MD
75 0.72 0.56 6 MD simulations + IFPd + PLSe

78 0.60f 0.43 28 random forest
aNo training set was used. bMD: molecular dynamics. cThe test set included complexes

with different types of kinases, not only p38 MAP kinase. dInteraction fingerprints.
ePartial least squares regression. fThe R2tr value reported is for a training set including

the 28 complexes used in the test set.
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S1 Equations for coefficient of determination, average

absolute error and root mean squared error

The coefficient of determination (R2, or Q2 for cross validation) was calculated as:

R2 =
[
∑N

i=1(yi − 〈y〉)(xi − 〈x〉)]2∑N
i=1(yi − 〈y〉)2

∑N
i=1(xi − 〈x〉)2

(S1)

where N is the number of data points, yi is the experimental value for point i, xi is the

predicted value for point i, 〈y〉 is the average of experimental values and 〈x〉 is the average

of predicted values.

The average absolute error (AAE) was calculated as:

AAE =
1

N

N∑
i=1

|xi − yi| (S2)

The root mean squared error (RME) was calculated as:

RME =

√∑N
i=1(xi − yi)2

N
(S3)
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S2 Script for ligand superimposition

For ligand superimposition, a custom script was written using Python 3.8 and the packages

RDkit 2020.03.353 and MDAnalysis 1.0.0.54,55

“Reference system” refers to the coordinates of the protein of interest bound to a ligand,

which will be used as a reference for the superimposition, and “new ligand” refers to the

small molecule that will be superimposed onto the structure. The user must supply the

reference system (variable “topology”), which should contain the fully prepared protein of

interest with the reference ligand onto which the new ligand will be superimposed.

The reference system is parsed from a topology or coordinate file in a format supported

by MDAnalysis (e.g. PDB format). The new ligand must be supplied as a RDkit mol object

by the user (variable “ligand new”). Hydrogens need to be present and the atoms in the

ligand must have coordinates specifying their positions.

The reference ligand is selected from the universe object by using its residue name (vari-

able “ligand old”), saved as a PDB file and parsed to a mol object. RDkit is then used to

calculate the Tanimoto similarity, find the maximum common fragment between the refer-

ence ligand and the new ligand, and extract it. The user can supply either additional atom

indices or a completely new set of indices if the maximum common fragment is unsatisfac-

tory. Both fragments are centered by subtracting the coordinates of their respective centers

of mass from their atom coordinates. MDAnalysis is then used to calculate the rotation ma-

trix that aligns the fragment in the new ligand optimally with the fragment in the reference

ligand. Atoms are weighted according to their mass.

The new ligand is centered, translated by the center of mass of the reference ligand

fragment and finally rotated using the calculated rotation matrix. The final output is the

coordinates of the new ligand in PDB format, after superimposition.

In order to validate the ligand superimposition procedure, RMSDs between the super-

imposed ligands (ligands 3-15, 17-18 and 34-36) and the reference ligand (ligand 16) were
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computed using the heavy atoms of the maximum common substructure for the ligands com-

pared and the web server ligRMSD.56 Table S18 shows that the RMSD values are low, as

expected.

Table S18: Root mean squared deviations (RMSDs) between the superimposed ligands (lig-
ands 3-15, 17-18 and 34-36) and the reference ligand (ligand 16). RMSDs were computed
using the heavy atoms of the maximum common substructure for the ligands compared and
the web server ligRMSD.

ligand ID RMSD (Å)
3 0.16
5 0.30
6 0.31
7 0.30
8 0.31
9 0.31
11 0.30
12 0.30
13 0.18
14 0.18
15 0.35
17 0.18
18 0.30
34 0.18
35 0.20
36 0.20
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