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Abstract 

 Thermoelectric generators (TEGs) convert waste heat to electricity and are a leading 

contender for improving energy efficiency at a range of scales. Ideal TE materials show a large Seebeck 

effect, high electrical conductivity, and low thermal conductivity. Alloying is a widely-used approach 

to engineering the heat transport in TEs, but despite many successes the underlying mechanisms are 

poorly understood. In previous work, first-principles modelling has successfully been used to study 

the thermodynamics of alloy formation and to investigate its effect on the electronic structure and 

phonon spectrum. However, it has so far only been possible to examine qualitatively the impact of 

alloying on the lattice thermal conductivity. In this work, we develop and test two new approaches to 

addressing this. The constant relaxation-time approximation (CRTA) assumes the primary effect of 

alloying is on the phonon group velocities, and allows the thermal conductivity to be calculated 

assuming a suitable constant lifetime. Alternatively, setting the three-phonon interaction strengths to 

a constant further enables an assessment of how changes to the phonon frequency spectrum 

influence the lifetimes. We test both approaches for the Pnma Sn(S1-xSex) alloy system and are able to 

account for the substantially-reduced thermal conductivity measured in experiments. 
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1. Introduction 

 Reducing greenhouse gas emissions to mitigate rising global temperatures is among the most 

pressing scientific and technological challenges of our time. Efforts to phase out coal- and gas-fired 

power plants in favour of nuclear power and renewables mean an increasingly large proportion of 

emissions are due to industry and transportation.1 Around two thirds of the energy consumed in these 

sectors is wasted as heat, and thus strategies to improve energy efficiency are an important part of 

the fight against climate change.2 Thermoelectric generators (TEGs), which harness the Seebeck effect 

in a thermoelectric material to extract electrical energy from a temperature gradient, are among the 

most promising solutions. TEGs are widely used in the aerospace industry3,4 and have potential 

applications at scales from low-power Internet of Things (IoT) devices such as wireless sensors,5,6 to 

heat recovery in automobile engines,7,8 to augmenting the power output of nuclear reactors and 

repurposing decommissioned offshore oil platforms for geothermal power.1 

 The performance of a thermoelectric material is typically expressed by the dimensionless 

figure of merit 𝑍𝑇:2 

 

𝑍𝑇 =
𝑆2𝜎𝑇

𝜅latt + 𝜅el
 (1) 

 

where 𝑆 = −
𝑑𝑉

𝑑𝑇
 is the Seebeck coefficient, 𝜎 is the electrical conductivity, 𝑆2𝜎 is the power factor, 

and 𝜅latt and 𝜅el are the lattice (phonon) and electronic components of the thermal conductivity 𝜅. 

The electrical properties 𝑆, 𝜎 and 𝜅el are interdependent through the carrier concentration 𝑛 such 

that the best 𝑍𝑇 are typically found in doped semiconductors,2 and the figure of merit can be tuned 

to a target operating temperature by chemical doping. In most high-performance TEs the electronic 

thermal conductivity is negligible and thus the 𝜅latt represents the bulk of the denominator. 𝜅latt is 

independent of 𝑛, and most high-performance TEs are materials with large intrinsic phonon 

anharmonicity and naturally low thermal conductivity. As for the electrical properties, the 𝜅latt can 

also be tuned to some extent by alloying,9–11 chemical doping12 and hierarchical nanostructuring.13  

 Commercial TEGs are currently based on doped Bi2Te3, which shows a 𝑍𝑇 of ~1 at room 

temperature corresponding to a 2-3 % heat recovery.1 PbTe is also a well-established standard for 

high-temperature TEGs,14 and endotaxial nanostructuring with SrTe has been shown to yield a 𝑍𝑇 > 2 

above 800 K.13 However, both materials are unsuitable for widespread application for a number of 

reasons, chief among them the low natural abundance of Te and the environmental toxicity of Pb.1 
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This has prompted interest in a range of alternative material systems including oxides and other 

chalcogenides,15 half-Heuslers,16 Zintl compounds,17 and "phonon-glass electron-crystal" framework 

materials such as clathrates18 and skutterudites.19  

 Reports of a high-temperature 𝑍𝑇 up to 2.6 in SnSe20,21 have led to considerable interest in 

this system for thermoelectric applications. Despite its relatively simple structure and the low atomic 

masses of its constituent atoms, SnSe has unusually low thermal conductivity due to the strongly-

anharmonic lattice dynamics associated with its high-temperature Pnma-to-Cmcm phase transition.22–

24 However, despite a low 𝜅latt and similar anharmonic lattice dynamics,25,26 the isostructural SnS has 

much lower performance than SnSe.27,28 Various studies have therefore looked at Sn(S,Se) alloys and 

reported that the 𝑍𝑇 is optimised for 80-85 % Se content, due in part to a reduction in the 𝜅latt.
9–11 

 Since the terms in Eq. 1 are amenable to calculation, first-principles modelling e.g. with 

density-functional theory has played an instrumental role in our current understanding of the material 

features that favour high thermoelectric performance. In particular, it has recently become feasible 

to accurately model lattice dynamics29 and thermal transport,30–32 and insight from studying highly-

anharmonic materials is helping to establish structure/property relationships for identifying new high-

performance TEs and optimising the performance of existing materials.23,24,33,34 More recently, high-

throughput modelling studies have been applied to identify potentially promising but previously-

overlooked TEs from known materials.35–37 However, the inherent difficulty of modelling solid 

solutions means that comparatively little modelling work has been done to understand the impact of 

alloying on thermoelectric properties. 

 In our previous work, we developed first-principles models for four Snn(S1-xSex)m solid solutions 

and investigated the effect of alloying on the optoelectronic properties.38 This was subsequently 

extended to investigate the effect of alloying on the lattice dynamics of the Pnma Sn(S1-xSex) system 

and to obtain qualitative insight into the impact of alloying on the thermal transport.39 In this work, 

we extend these studies to quantify the thermal transport in the Se-rich Sn(S0.1875Se0.8125). Using 

analysis techniques developed in our previous work,34 we show that the difference in the 𝜅latt of the 

SnS and SnSe endpoints is a balance of reduced phonon group velocities and longer lifetimes. We find 

that Sn(S0.1875Se0.8125) shows near-ideal mixing behaviour, with the mixing free energy dominated by 

entropy and a near-homogenous distribution of chalcogen atoms over the lattice sites. We investigate 

several models for calculating the thermal transport of the solid solution and demonstrate that 

alloying reduces the 𝜅latt by 40-60 % compared to SnSe, due to a large reduction in the group velocity 

of the heat-carrying modes and a small secondary reduction in the phonon lifetimes. These results lay 

a foundation for future theoretical studies to improve our fundamental understanding of the impact 
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of alloying on lattice thermal conductivity, and thereby design new high-performance alloys for future 

thermoelectric applications. 

 

2. Methods 

 The starting point for this work was our previous calculations on the Pnma Sn(S1-xSex) alloy 

system.38,39 The alloy model is based on a 32-atom 2 × 1 × 2 supercell of the eight-atom Pnma unit 

cell, which has 2,446 unique configurations in 17 compositions between the 𝑥 = 0 (SnS) and 𝑥 = 1 

(SnSe) endpoints. A set of optimised structures and lattice energies were taken from the dataset 

published with Ref. 38,40 and new phonon and thermal-transport calculations were performed on the 

SnS and SnSe endpoints together with the 23 unique structures with composition 𝑥 = 0.8125 (i.e. 

Sn(S0.1875Se0.8125)). We note that this composition was not included in our previous study on the 

structural dynamics of the Pnma Sn(S1-xSex) system.39 

 Our calculations were performed using periodic pseudopotential plane-wave density-

functional theory (DFT) as implemented in the Vienna Ab initio Simulation Package (VASP) code.41 The 

technical parameters used were as in our previous work.38,39 The PBEsol functional42 with the DFT-D3 

dispersion correction43 (i.e. PBE+D3) was used to model electron exchange and correlation. A plane-

wave basis with a 600 eV kinetic-energy cutoff and a 4 × 4 × 4 Monkhorst-Pack 𝐤-point sampling 

mesh44 were used to represent the electronic structure of the alloy supercell. Projector augmented-

wave (PAW) pseudopotentials45,46 were used to treat the core electrons, with the Sn 5s, 5p and 4d, 

the S 3s and 3p, and the Se 4s and 4p electrons in the valence region. The electronic wavefunctions 

were optimised to a tight tolerance of 10-8 eV on the total energy. The precision of the charge-density 

grids was set automatically to avoid aliasing errors, and a support grid with 8 × the number of points 

was used to evaluate the augmentation chares. The PAW projection was performed in reciprocal 

space, and non-spherical contributions to the gradient corrections inside the PAW spheres were 

accounted for. These settings minimise the numerical noise in the forces, which is required to compute 

accurate force constants. 

 Lattice-dynamics and thermal-conductivity calculations were carried out using the Phonopy29 

and Phono3py31 codes with VASP as the force calculator. The second- and third-order interatomic 

force constants were computed using the supercell finite-displacement approach with step sizes of 

10-2 and 3 × 10-2 Å respectively. 2 × 2 × 2 supercells of the 32-atom alloy cells (256 atoms) were used 

to calculate the second-order interatomic force constants (IFCs), while the single alloy cells were used 

to compute the third-order IFCs. These are equivalent respectively to 4 × 2 × 4 and 2 × 1 × 2 

supercells of the eight-atom Pnma unit cell. Explicit testing showed that with this setup the calculated 
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300 K 𝜅latt of SnS and SnSe are both converged to within 6 % of the values obtained using larger 3 × 

2 × 3 and 2 × 1 × 2 second- and third-order expansions of the alloy cell, with 576 and 128 atoms. The 

𝐤-point meshes used for the alloy cells were reduced proportionally for the supercell calculations. 

Phonon density of states (DoS) curves were computed by interpolating the phonon 

frequencies onto uniform Γ-centered 𝐪-point meshes with 16 × 8 × 16 and 8 × 8 × 8 subdivisions for 

the primitive and alloy supercells respectively. The DoS curves were generated using a Gaussian 

smearing with a width 𝜎 = 0.032 THz, corresponding to a full-width at half-maximum of 2.5 cm-1. To 

calculate the vibrational contributions to the free energy, phonon frequencies were computed on 

denser 32 × 16 × 32 or 16 × 16 × 16 grids. Dispersions of Pnma SnS and SnSe were obtained by 

interpolating frequencies along a path passing through all the high-symmetry wavevectors in the 

Pnma Brillouin zone. Dispersions of the alloy model were computed by using the band-unfolding 

algorithm in Ref. 47 to project the dispersions back to the Pnma primitive cell. To compute the thermal 

conductivity, the modal properties were computed on the same grids as used for the DoS, which were 

found by testing to be sufficient to converge the 300 K 𝜅latt of SnS and SnSe to within 1 % of the values 

obtained using denser 24 × 12 × 24 meshes with ~3 × as many mesh points. In these calculations, 

the linear tetrahedron method was used for the Brillouin zone integration. 

 

3. Results and Discussion 

 

a. Structure and lattice dynamics of SnS and SnSe 

 The orthorhombic Pnma structure (Fig. 1) is the ground state phase of SnS and SnSe under 

ambient conditions.48,49 The Sn(II) oxidation state favours a distorted tetrahedral coordination 

environment in which each Sn atom forms three bonds to chalcogen atoms and the fourth 

coordination site is occupied by a steteochemically-active 5s2 lone pair of electrons. This results in a 

layered structure composed of 2D sheets held together with dispersion interactions facilitated by the 

Sn lone pairs projecting into the interlayer spacing. The layers stack along the long crystallographic 

axis (here the b direction), with stronger but anisotropic covalent bonding along the perpendicular in-

plane (a/c) directions. 
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Figure 1 Structure of Pnma SnS shown through the ab (a) and bc (b) planes, illustrating the layering 

along the b axis and the anisotropic chemical bonding along the perpendicular in-plane a and c axes. 

S and Sn atoms are shown in yellow and grey, respectively. These images were prepared using the 

VESTA software (Ref. 50). 

 

 The optimised lattice constants of the two models are listed and compared to experimental 

neutron-scattering measurements51 in Table 1. As found in our previous work, the PBEsol+D3 

functional gives a good description of the structure, with lattice constants and cell volumes within 0.4-

2.7 % and ~4.5 % of the experimental measurements. The calculations parameters are technically 

athermal (0 K) values, whereas the experimental structures were collected at 295 K and are therefore 

expected to include some degree of thermal expansion, so  we consider these discrepancies to be 

reasonable.  

 

 

Expt. Calc. (this work) 

a [Å] b [Å] c [Å] V [Å3] a [Å] b [Å] c [Å] V [Å3] 

SnS 4.336 11.143 3.971 192 
4.218 

(-2.7 %) 
10.974 
(-1.5 %) 

3.957 
(-0.35 %) 

183 
(-4.5 %) 

SnSe 4.445 11.501 4.153 212 
4.342 

(-2.3 %) 
11.338 
(-1.4 %) 

4.121 
(-0.77 %) 

203 
(-4.4 %) 

Table 1 Comparison of the calculated lattice parameters and cell volume of Pnma SnS and SnSe 

obtained in these calculations to the 295 K neutron-scattering measurements in Ref. 51. The % 

difference between the calculated and measured values are given in parentheses. 
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 The calculated phonon dispersion and density of states (DoS) curves of SnS and SnSe are 

shown in Fig. 2. The eight atoms in the Pnma primitive cell result in 3𝑛𝑎 = 24 phonon bands at each 

wavevector 𝐪. The phonon spectra of SnS and SnSe can be partitioned into lower-and upper- 

frequency regions with equal numbers of modes, which the atom-projected DoS (PDoS) curves 

indicate can be assigned predominantly to motions of the Sn and chalcogen atoms respectively. These 

two groups of modes are separated by a so-called "phonon bandgap", which is more prominent in 

SnS. Due to the heavier chalcogen and weaker chemical bonding, the phonon spectrum of SnSe spans 

a smaller frequency range of 0-6 THz compared to the 0-9 THz frequency range of the SnS spectrum. 

In both systems, the acoustic mode frequencies range from ~0-1.5 THz and overlap with some of the 

optic modes in the low-frequency region of the spectrum. Finally, the comparatively flat dispersion 

along the 𝑋-𝑆 and 𝑅-𝑈 segments of the dispersion, which correspond to the b direction in real space, 

highlights the weaker interlayer interactions along this direction. 

 

 

Figure 2 Calculated phonon dispersion and phonon density of states (DoS) curves for SnS (a) and SnSe 

(b). In each of the DoS plots, the projections onto Sn and S/Se atoms are shown as overlaid blue and 

red/orange shaded curves. 
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b. Lattice thermal conductivity of SnS and SnSe 

 Using the single-mode relaxation-time approximation (RTA) solution to the phonon 

Boltzmann transport equations, the 𝜅latt is computed according to:31 

 

𝜿latt =
1

𝑁𝑉0
∑ 𝜿𝜆

𝜆

=
1

𝑁𝑉0
∑ 𝐶𝜆𝒗𝜆 ⊗ 𝒗𝜆𝜏𝜆

𝜆

 (2) 

 

where the sum runs over phonon modes 𝜆 with wavevector 𝐪 and band index 𝑗, each of which have a 

modal thermal conductivity 𝜿𝜆, heat capacity  𝐶𝜆, group velocity 𝒗𝜆 and lifetime 𝜏𝜆. 𝑉0 is the unit-cell 

volume, and 𝑁 is the number of phonon wavevectors 𝐪 included in the summation. In the RTA model, 

the 𝐶𝜆 and 𝒗𝜆 are calculated within the harmonic approximation, using the second-order interatomic 

force constants (IFCs), while the 𝜏𝜆 are obtained perturbatively using the second- and third-order IFCs. 

We refer readers to Ref. 31 for full details of the method.  

Figs. 3a and 3b show the calculated 𝜅latt of SnS and SnSe as a function of temperature. The 

thermal transport of the orthorhombic Pnma structure is anisotropic, so we consider separately the 

three diagonal elements 𝜅𝑥𝑥, 𝜅𝑦𝑦, and 𝜅𝑧𝑧, which correspond to transport along the a, b and c axes 

respectively, together with the average 𝜅ave =
1

3
Tr[𝜿latt] =

1

3
(𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧). Calculated values 

at 𝑇 = 300 K are listed in Table 2. 

For SnS we calculate room-temperature conductivities of 1.88, 1.36 and 3.22 W m-1 K-1 along 

the crystallographic a, b and c axes, giving an average value of 𝜅ave = 2.15 W m-1 K-1. In our model, the 

b and c axes correspond respectively to the layering direction and the direction of strongest in-plane 

bonding (c.f. Fig. 1), and thus have the smallest and largest 𝜅latt. We note that these values are 

considerably higher than in our previous calculations,52 where we obtained values of 𝜅𝑥𝑥 = 0.74, 𝜅𝑦𝑦 

= 0.36, 𝜅𝑧𝑧  = 1.10 and 𝜅ave = 0.73 W m-1 K-1. This discrepancy can be attributed to differences in the 

supercells used to compute the second- and third-order force constants, to the inclusion of the DFT-

D3 dispersion correction in the present calculations, and also to some convergence issues in the 

previous calculations. From a technical perspective, we expect the present results to be more 

accurate. 
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Figure 3 Calculated thermal conductivity of SnS (left) and SnSe (right) as a function of temperature 

analysed using the constant relaxation time approximation (CRTA) model defined in Eqs. 3/4. (a)/(b) 

Thermal conductivity 𝜅latt. (c)/(d) Harmonic component 𝜅latt 𝜏CRTA⁄ . (e)/(f) Lifetime component 

𝜏CRTA. On each subplot, the tensor components along the a (xx, blue), b (yy, red) and c (zz, green) 

directions are shown together with the average 
1

3
(𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧) (ave, black).  
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SnS SnSe 

𝑥𝑥 𝑦𝑦 𝑧𝑧 ave 𝑥𝑥 𝑦𝑦 𝑧𝑧 ave 
𝜅latt [W m-1 K-1] 1.88 1.36 3.22 2.15 1.62 0.94 2.16 1.58 

𝜅latt 𝜏CRTA⁄  [W m-1 K-1 ps-1] 0.786 0.442 0.925 0.718 0.415 0.212 0.490 0.372 

𝜏CRTA [ps] 2.40 3.07 3.48 3.00 3.91 4.42 4.42 4.23 

𝜏𝜆̅ [ps] 3.69 4.34 

𝑃̃ [10-11 eV2] 4.87 4.60 3.99 4.37 1.92 1.98 1.85 1.90 

𝑃̅𝜆 [10-11 eV2] 24.6 9.81 

Table 2 Analysis of the 300 K lattice thermal conductivity 𝜅latt of SnS and SnSe. Rows 1-3 compare the 𝜅latt components and the 𝜅latt 𝜏CRTA⁄  and 𝜏CRTA values 

defined in Eqs. 3/4. Row 4 lists the (scalar) phonon lifetimes 𝜏̅𝜆 averaged over all modes for comparison to the 𝜏CRTA. Row 5 lists the average phonon-phonon 

interactions strengths 𝑃̃ that reproduce the 𝜅latt components when used with the model in Eq. 8, and Row 6 lists the interaction strengths 𝑃̅𝜆 averaged over 

all modes, which are again scalar values. 
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For SnSe we calculate room-temperature conductivities of 1.62, 0.94 and 2.16 W m-1 K-1 along 

the a, b and c axes and an average of 1.58 W m-1 K-1. As for SnS, the 𝜅latt is strongly anisotropic with 

the smallest and largest components along the b and c axes respectively. These are also larger than, 

albeit similar to, the values we obtained in our previous calculations,23 viz. 1.44, 0.53 and 1.88 W m-1 

K-1 along the three axes and an average of 1.28 W m-1 K-1. This discrepancy can again be attributed to 

differences in the technical parameters used in the two sets of calculations. The dispersion correction 

reduces the lattice constants and cell volume by ~0.7 and 2.1 %, respectively, and is likely to result in 

stronger non-bonded interactions along the b axis where the discrepancy with previous results is 

largest. As for SnS, we again expect the present results to be technically more accurate. 

Ref. 20 reports single-crystal 𝜅latt measurements on SnSe of 0.67, 0.46 and 0.70 W m-1 K-1 

along the equivalent directions to the a, b and c axes in our calculations. It was subsequently noted 

however that that the density of these crystals was ~10 % lower than the expected theoretical value.53 

The aggregated room-temperature 𝜅latt measurements in Ref. 53 span a range of ~0.7-1.4 W m-1 K-1 

along the in-plane a and c directions and ~0.5-0.9 W m-1 K-1 along the layered b axis. This ~2 × spread 

in measured results clearly highlights the sensitivity of the 𝜅latt to the material preparation and 

handling. However, the upper range of these values are reasonably comparable to our calculations. 

Possible origins of the discrepancy between different measurements are a typical 15-20 % error in 

measurements of the thermal diffusivity,21 the presence of vacancies and interstitials,53 microcracks 

caused by the high-temperature phase transition,54 and oxidation at high temperatures.55 It is also 

likely that the RTA calculations we perform here will overestimate the 𝜅latt to some extent due to a 

neglect of thermal expansion at finite temperature, higher-order (e.g. 4th order) phonon-phonon 

interactions,56 and non-perturbative anharmonicity associated with the high-temperature phase 

transition.22–24 

We were unable to find any reports of single-crystal 𝜅latt measurements on SnS. Refs. 27 and 

10 report polycrystalline values of ~1.25 and 1.15-1.30 W m-1 K-1 at 300 K, which are again lower than 

but reasonably comparable to our calculations. It is of course likely that the two sets of experimental 

measurements would be subject to the same issues as measurements on SnSe. In the same vein, SnS 

also shows a high-temperature Pnma → Cmcm phase transition and the same non-perturbative 

anharmonicity as SnSe,26,48 which may result in our calculations overestimating the 𝜅latt. 

The effect of grain boundaries in polycrystalline samples (or present as defects in single 

crystals) can be investigated using a simple boundary-scattering model to limit the mean-free paths 

of the long-wavelength phonon modes (see Supporting Information). We find that the lower range of 
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experimental values on SnSe can be recovered by imposing a boundary limit of ~10 nm, while a 𝜅ave 

comparable to measurements on SnS can be recovered with a limit of around 10-20 nm. 

To investigate the difference in the 𝜅latt of SnS and SnSe, we used the constant relaxation-

time approximation (CRTA) model developed in Ref. 34 in which the 𝜏𝜆 are replaced with a constant 

𝜏CRTA such that the 𝜅latt can be written: 

 

𝜿latt ≈ 𝜏CRTA ×
1

𝑁𝑉0
∑

𝜿𝜆

𝜏𝜆
𝜆

= 𝜏CRTA ×
1

𝑁𝑉0
∑ 𝐶𝜆𝒗𝜆 ⊗ 𝒗𝜆

𝜆

 (3) 

 

We further modify Eq. 3 to replace the scalar 𝜏CRTA with a tensor so that individual components of 

𝜅latt are computed as follows: 

 

𝜅latt(𝛼𝛽) ≈ 𝜏CRTA(𝛼𝛽) ×
1

𝑁𝑉0
∑

𝜅𝜆(𝛼𝛽)

𝜏𝜆
𝜆

= 𝜏CRTA(𝛼𝛽) ×
1

𝑁𝑉0
∑ 𝐶𝜆𝑣𝜆(𝛼)𝑣𝜆(𝛽)

𝜆

 (4) 

 

where the indices 𝛼 and 𝛽 label the Cartesian 𝑥, 𝑦 and 𝑧 directions. While this formulation is perhaps 

counter-intuitive since the 𝜏𝜆 in Eq. 2 are scalars, in an anisotropic system such as Pnma SnS/SnSe we 

might expect some variation in the lifetimes of modes responsible for transport along different 

directions. 

The temperature dependence of the harmonic component 𝜅latt 𝜏CRTA⁄  on the right-hand side 

of Eqs. 3/4 and the lifetime component 𝜏CRTA are shown in Figs. 3c/3d and 3e/3f respectively. This 

analysis clearly shows that the harmonic term is much smaller in SnSe than SnS, which can be 

attributed to the weaker bonding and lower group velocities. Interestingly, this is offset by longer 

𝜏CRTA in SnSe. Comparing the values at 𝑇 = 300 K (Table 2) shows the harmonic terms along the three 

principal directions are reduced by 47-52 % in SnSe while the lifetimes are increased by 27-63 %, which 

leading to an overall decrease of 14-33 % in the 𝜅latt components. We made a similar qualitative 

conclusion in our previous work39 based on data from previous calculations.23,52 Although the longer 

𝜏CRTA in SnSe indicate it to be less anharmonic than SnS, the 𝜏CRTA in both are on the order of ps and 

are very short in comparison to other systems - for example, a similar CRTA analysis on CoSb3 yields 

an order-of-magnitude larger 𝜏CRTA of 36.6 ps.34 Figs. 3c/3d also show that the anisotropy in the 

thermal transport is again largely due to differences in the harmonic term, as there is a 2.1-2.3 × 
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variation in the 𝜅latt 𝜏CRTA⁄  but a much smaller 1.1-1.5 × variation in the 𝜏CRTA. This confirms that 

the anisotropy in the chemical bonding has a large effect on the group velocities and hence the 

thermal transport. 

We note that a similar constant relaxation-time model is often used to model the electronic 

transport properties of thermoelectric materials (as implemented in e.g. the BoltzTraP code57), but 

there are few if any examples of its application to modelling lattice thermal conductivity. However, a 

key difference is that whereas the relaxation time in electronic transport calculations is often assumed 

to be independent of temperature and energy, in the present model the 𝜏CRTA are independent of 

energy (i.e. phonon frequency) but not temperature. Comparison of Figs. 3a/b and 3e/f clearly shows 

that the temperature dependence of the 𝜅latt is strongly linked to the temperature dependence of 

the phonon lifetimes, particularly above the Dulong-Petit limit where the 𝐶𝜆 and hence the 

𝜅latt 𝜏CRTA⁄  saturate, and thus a temperature-dependent 𝜏CRTA is required in order for this model to 

be reasonable. 

 While the origin of the differences in the harmonic components 𝜅latt 𝜏CRTA⁄  can be 

understood by the stronger/weaker chemical bonding in SnS/SnSe, the origin of the longer phonon 

lifetimes in SnSe require further investigation. As outlined in Ref. 31, the lifetimes are computed from 

the inverse of the phonon linewidths Γ𝜆 according to: 

 

𝜏𝜆 =
1

2Γ𝜆
 (5) 

 

The Γ𝜆 are computed as a sum of contributions from three-phonon interactions using the expression: 

 

Γ𝜆 =
18𝜋

ℏ2
∑ |Φ−𝜆𝜆′𝜆′′|2

𝜆′𝜆′′

× {(𝑛𝜆′ + 𝑛𝜆′′ + 1)𝛿(𝜔𝜆 − 𝜔𝜆′ − 𝜔𝜆′′)
+ (𝑛𝜆′ − 𝑛𝜆′′)[𝛿(𝜔𝜆 + 𝜔𝜆′ − 𝜔𝜆′′) − 𝛿(𝜔𝜆 − 𝜔𝜆′ + 𝜔𝜆′′)]} 

(6) 

 

where Φ𝜆𝜆′𝜆′′ are the three-phonon interaction strengths, which enforce (crystal) momentum, the 𝛿 

functions in the summand enforce conservation of energy, and 𝑛𝜆 are the phonon occupation 

numbers given by the Bose-Einstein distribution: 
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𝑛𝜆 =
1

exp(ℏ𝜔𝜆 𝑘B𝑇⁄ ) − 1
 (7) 

 

Following Ref. 31, an approximate linewidth Γ𝜆 can be written as: 

 

Γ̃𝜆 =
18𝜋

ℏ2
𝑃𝜆𝑁2(𝐪𝜆, 𝜔𝜆) (8) 

 

where the 𝑃𝜆 is the averaged phonon-phonon interaction strength for modes 𝜆 and 𝑁2(𝐪, 𝜔) is a 

weighted two-phonon joint density of states (w-JDoS) that counts the number of energy-conserving 

scattering pathways available to a phonon with wavevector 𝐪 and frequency 𝜔: 

 

𝑃𝜆 =
1

(3𝑛𝑎)2
∑ |Φ−𝜆𝜆′𝜆′′|2

𝜆′𝜆′′

 (9) 

 

𝑁2(𝐪, 𝜔) = 𝑁2
(1)(𝐪, 𝜔) + 𝑁2

(2)(𝐪, 𝜔) (10) 

 

The 𝑁2(𝐪, 𝜔) is the sum of separate functions for collision (Type 1) and decay (Type 2) events: 

 

𝑁2
(1)(𝐪, 𝜔) =

1

𝑁
∑ ∆(−𝐪 + 𝐪𝜆′ + 𝐪𝜆′′)

𝜆′𝜆′′

× (𝑛𝜆′ − 𝑛𝜆′′)[𝛿(𝜔 + 𝜔𝜆′ − 𝜔𝜆′′) − 𝛿(𝜔 − 𝜔𝜆′ + 𝜔𝜆′′)] 

(11) 

 

𝑁2
(2)(𝐪, 𝜔) =

1

𝑁
∑ ∆(−𝐪 + 𝐪𝜆′ + 𝐪𝜆′′) × (𝑛𝜆′ + 𝑛𝜆′′ + 1)𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆′′)

𝜆′𝜆′′

 (12) 

 

Collisions correspond to phonon absorption through the coalescence of two modes, i.e. 𝜆 + 𝜆′ → 𝜆′′ 

or 𝜆 + 𝜆′′ → 𝜆′, while decay processes correspond to emission, i.e. 𝜆 → 𝜆′ + 𝜆′′. For comparing 
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between materials it is convenient to average the 𝑁2(𝐪, 𝜔) over wavevectors to obtain a function of 

frequency only, which we denote 𝑁̅2(𝜔) with corresponding components 𝑁̅2
(1)(𝜔) and 𝑁̅2

(2)(𝜔): 

 

𝑁̅2(𝜔) = 𝑁̅2
(1)

(𝜔) + 𝑁̅2
(2)

(𝜔) =
1

𝑁
∑ 𝑁2

(1)
(𝐪, 𝜔)

𝐪

+
1

𝑁
∑ 𝑁2

(2)
(𝐪, 𝜔)

𝐪

 (13) 

 

 Figs. 4a/4b and 4c/4d compare respectively the 𝑁̅2(𝜔) and spectra of 𝑃𝜆 for SnS and SnSe. At 

frequencies below ~2 Thz in both systems there are very few decay (emission) pathways and the 

phonon scattering is dominated by collisions (absorption). At higher frequencies, decay pathways 

become available and become the dominant scattering mechanism from around 3 THz. Across most 

of the frequency spectrum the 𝑁̅2(𝜔) are 1.5-2 × higher in SnSe than in SnS, indicating that the smaller 

range of frequencies in the former leads to a higher density of energy-conserving scattering pathways. 

The 𝑃𝜆 of SnS and SnSe both form two clear groups, spanning a range of 10-11-10-10 eV2 at low 

frequency and 10-10-10-9 eV2 at high frequency, indicating that the high-frequency modes interact an 

order of magnitude more strongly with other modes than the low-frequency phonons. This analysis 

also clearly shows that the phonon-phonon interaction strengths for both groups of modes are 

considerably weaker in SnSe than in SnS. Given the longer 𝜏CRTA in SnSe, the weaker 𝑃𝜆 therefore 

counteract the larger 𝑁̅2(𝜔) and lead to longer lifetimes, at least for the dominant heat-carrying 

modes, This analysis is again in line with our previous work.39 

 We previously demonstrated that finding a constant value 𝑃̃ such that replacing the 𝑃𝜆  in Eq. 

8 reproduces the 𝜅latt provides a useful metric for comparing the relative phonon-phonon interaction 

strengths in different materials.34 From the relationships in Eqs. 2, 5 and 8, the 𝜅latt is inversely 

proportional to 𝑃̃, and a suitable value can be estimated from a simple linear fit (Fig. 4e/4f, Table 2). 

For SnS and SnSe, we obtain values of 3.99-4.87 × 1011 and 1.85-1.98 × 1011  eV2, respectively. These 

are heavily weighted toward the 𝑃𝜆 of the lower-frequency modes (c.f. Figs. 4c/4d), which can be 

understood from the fact that the majority of the heat transport in semiconductors is typically through 

acoustic and low-lying optic modes. This analysis thus reaffirms that the phonon-phonon interactions 

in SnSe are weaker than in SnS. 
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Figure 4 Analysis of the phonon lifetimes/linewidths in SnS (left) and SnSe (right). (a)/(b) Two-phonon 

weighted join density-of-states (w-JDoS) functions 𝑁̅2(𝜔) defined in Eq. 13. (c)/(d) Spectra of modal 

phonon-phonon interaction strengths 𝑃𝜆 defined in Eq. 9. The average phonon-phonon interaction 

strengths 𝑃̃ that reproduce the average thermal conductivity 𝜅ave at 𝑇 = 300 K are indicated by dashed 

black lines. (e)/(f) Dependence of the principal thermal conductivity components 𝜅𝑥𝑥/𝜅𝑦𝑦/ and 𝜅ave 

at 300 K on the averaged phonon-phonon interaction strength 𝑃̃. The values of  𝑃̃ that reproduce the 

calculated 𝜅𝑥𝑥, 𝜅𝑦𝑦 and 𝜅𝑧𝑧 and 𝜅ave are indicated by dashed lines. 
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Overall, our calculations indicate that the 𝜅latt of SnS and SnSe are similar and both ultra-low. 

A comparison of the room-temperature 𝜅latt of SnS and SnSe using the CRTA model shows that SnSe 

has lower group velocities but longer lifetimes than SnS, resulting in an overall decrease in the thermal 

transport of 14, 31 and 33 % along the a, b and c directions, respectively. Considering the w-JDoS 𝑃𝜆/𝑃̃ 

and we can further attribute the differences in lifetimes to the larger number of energy-conserving 

scattering pathways enabled by the smaller range of frequencies in SnSe being counteracted by 

weaker phonon-phonon interaction strengths. The fact that SnS and SnSe have similar 𝜅latt and that 

the difference from a balance of two opposing effects means it would not be entirely unexpected if 

the qualitative ordering was sensitive to the theoretical methodology employed. Certainly, the spread 

in experimental measurements highlighted for SnSe in Ref. 53 suggests that it is difficult to make a 

conclusive ordering on the basis of experiments alone. 

 

c. Statistical thermodynamics of the Sn(S0.1875Se0.8125) solid solution 

 We previously developed a structural model for the Pnma Sn(S1-xSex) alloy following the 

approach in Ref. 58.38 The model comprises a set of 17 compositions between the SnS (𝑥 = 0) and SnSe 

(𝑥 = 1) endpoints, where each composition is a set of 𝑛𝑥 symmetry-inequivalent chalcogen 

arrangements in a 32-atom 2 × 1 × 2 supercell expansion of the eight-atom Pnma unit cell. In this 

work, we examine the Sn(S0.1875Se0.8125) composition (i.e. 𝑥 = 0.8125), for which there are 𝑛𝑥 = 23 

independent configurations. This is a manageable number for performing accurate phonon 

calculations, and the composition is within the 80-85 % Se range where the 𝜅latt is reported to reach 

a minimum.9–11 

For each of the structures we calculate a lattice internal energy 𝑈latt, which we equate to the 

DFT total energy 𝐸, and a temperature-dependent constant-volume (Helmholtz) free energy 𝐴(𝑇) 

including contributions from the phonons: 

 

𝐴𝑖(𝑇) = 𝑈𝑖
latt + 𝐴𝑖

vib(𝑇) = 𝑈𝑖
latt + 𝑈𝑖

vib(𝑇) − 𝑇𝑆𝑖
vib(𝑇) (14) 

 

where 𝐴vib(𝑇) = 𝑈vib(𝑇) − 𝑇𝑆vib(𝑇) is the vibrational contribution to the Helmholtz energy and 

𝑈vib and  𝑆vib are the vibrational internal energy and entropy respectively. 𝐴vib is computed directly 

from the vibrational partition function 𝑍vib(𝑇) using the bridge relation from statistical mechanics: 
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𝑍vib(𝑇) = ∏
exp[−ℏ𝜔𝜆 2𝑘B𝑇⁄ ]

1 − exp[−ℏ𝜔𝜆 𝑘B𝑇⁄ ]
𝜆

 (15) 

 

𝐴vib(𝑇) = −
1

𝑁
𝑘𝐵𝑇 ln 𝑍vib(𝑇) (16) 

 

where as in Eq. 2 the product runs over phonon modes 𝜆 with wavevector 𝐪 and band index 𝑗, 𝑁 is 

the number of phonon wavevectors 𝐪 included in the product, and 𝑘B is the Boltzmann constant. 

Given the lattice internal and Helmholtz energies for each of the 𝑛𝑥 structures for composition 

𝑥, analogous thermodynamic partition functions 𝑍(𝑥; 𝑇) and free energies 𝐴(𝑥; 𝑇) can be computed 

as: 

𝑍(𝑥; 𝑇) = ∑ 𝑔𝑖exp[−𝑈𝑖
latt 𝑘B𝑇⁄ ]

𝑛𝑥

𝑖=1

 (17) 

 

𝐴(𝑥; 𝑇) = −𝑘B𝑇 ln  𝑍(𝑥; 𝑇) = 𝑈̅latt(𝑥; 𝑇) − 𝑇𝑆conf
(𝑥; 𝑇) (18) 

 

𝑍(𝑥; 𝑇) = ∑ 𝑔𝑖exp[−𝐴𝑖 𝑘B𝑇⁄ ]

𝑛𝑥

𝑖=1

 (19) 

 

𝐴(𝑥; 𝑇) = −𝑘B𝑇 ln  𝑍(𝑥; 𝑇) = 𝐴̅(𝑥; 𝑇) − 𝑇𝑆conf(𝑥; 𝑇)

=  𝑈latt(𝑥; 𝑇) + 𝑈̅vib(𝑥; 𝑇) − 𝑇 [𝑆̅vib(𝑥; 𝑇) + 𝑆conf
(𝑥; 𝑇)] 

(20) 

 

In these expressions, the degeneracies 𝑔𝑖 are the number of alternative chalcogen arrangements that 

are equivalent under the symmetry operations of the parent Pnma structure, 𝑈̅latt/𝐴̅ are the weighted 

average lattice/Helmholtz energies of structures for the composition 𝑥, and 𝑆conf is the vibrational 

entropy. 

Once the 𝐴(𝑥; 𝑇) has been calculated, a mixing free energy 𝐴mix(𝑥; 𝑇) can be computed with 

reference to the free energies of the endpoints 𝐴(𝑥 = 0; 𝑇) and 𝐴(𝑥 = 1; 𝑇) according to: 
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𝐴mix(𝑥; 𝑇) = 𝐴(𝑥; 𝑇) − [(1 − 𝑥)𝐴(𝑥 = 0; 𝑇) + 𝑥𝐴(𝑥 = 1; 𝑇)] (21) 

 

Given a 𝑍(𝑥; 𝑇), the occurrence probabilities 𝑃𝑖 of each of the 𝑛𝑥 structures can also be computed 

from: 

 

𝑃𝑖(𝑥; 𝑇) =
1

𝑍(𝑥; 𝑇)
𝑔𝑖exp[−𝑈𝑖

latt 𝑘B𝑇⁄ ] (22) 

 

𝑃𝑖(𝑥; 𝑇) =
1

𝑍(𝑥; 𝑇)
𝑔𝑖exp[−𝐴𝑖 𝑘B𝑇⁄ ] (23) 

 

These weights can then be used to compute the thermodynamic average 𝑋̅ of a general physical 

property 𝑋 as: 

 

𝑋̅(𝑥; 𝑇) = ∑ 𝑃𝑖(𝑥; 𝑇) × 𝑋𝑖

𝑛𝑥

𝑖=1

 (24) 

 

For example, the 𝑈̅latt and 𝐴̅ in Eqs. 18/19 are computed by averaging the 𝑈𝑖
latt and 𝐴𝑖  using Eq. 24 

and the appropriate 𝑃𝑖 from Eqs. 22/23. It is typically assumed that the distribution of configurations 

is kinetically trapped when the alloy is formed, and the 𝑃𝑖 are therefore computed at the formation 

temperature 𝑇F.58 In our previous work, we used a value of 𝑇F = 900 K.38,39  

In previous work we compared the 𝐴mix(𝑥; 𝑇) and 𝑃𝑖(𝑥; 𝑇) system obtained using the 𝑈𝑖
latt 

and 𝐴𝑖(𝑇) for several compositions of the Sn(S1-xSex) alloy and found that differences in phonon 

frequencies both disfavoured the mixing (i.e. predicted more positive 𝐴mix) and resulted in 

substantially different distributions of occurrence probabilities.39 However, the 𝐴𝑖
vib were determined 

from force constants obtained in the 32-atom alloy supercells, as the number of configurations made 

this a necessary approximation. Given that a larger 256-atom supercell expansion is required to 

converge the 𝜅latt of the endpoints, we investigated the extent to which the supercell used to compute 

the force constants influences the free energies. 
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Fig. 5a compares the calculated mixing energy of Sn(S0.1875Se0.8125) as a function of 

temperature based on 𝐴(𝑥; 𝑇) computed from the lattice energies and Helmholtz energies with 

phonon frequencies obtained using the 32-atom alloy supercells and 256-atom expansions. We find 

that the Helmholtz energies calculated using the larger supercell yield very similar mixing energies to 

the lattice energies, whereas the Helmholtz energies calculated using the alloy supercell result in a 

very different temperature dependence. 

For the SnS and SnSe endpoints, calculations using the 32-atom alloy supercell underestimate 

the 900 K 𝐴vib by 0.3 and 0.15 kJ mol-1 atom-1, respectively, compared to larger 256-atom supercells. 

Among the 23 configurations in the alloy model, the range of 𝑈𝑖
latt is 0.07 kJ mol-1 atom-1, whereas the 

ranges in the 𝐴𝑖
vib computed using the small and large supercell are 1.13 and 0.06 kJ mol-1 atom-1 

respectively. This suggests the error associated with the small supercell is even larger for structures in 

the mixed-composition model. 

 

 

Figure 5 Thermodynamics of the Sn(S0.175Se0.825) solid solution: (a) mixing free energy 𝐴mix as a 

function of temperature computed from Eq. 21; and (b) cumulative distribution of occurrence 

probabilities 𝑃𝑖 as a function of the percentage of structures in the alloy model at a formation 

temperature 𝑇F = 900 K computed using Eqs. 22/23. Each plot compares calculations using the lattice 

energies 𝑈𝑖
latt and the constant-volume (Helmholtz) free energies 𝐴𝑖(𝑇), which include vibrational 

contributions to the internal energy and entropy calculated using force constants obtained with the 

32-atom alloy supercells and 256-atom supercell expansions. 

 

We also compared the individual contributions to the mixing free energy at 𝑇F = 900 K from 

the lattice and vibrational internal energy, 𝑈mix
latt/𝑈mix

vib , and from the configurational and vibrational 
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entropy, 𝑆mix
config

/𝑆mix
vib  (Table 3). Using the 𝑈𝑖

latt, the 𝑈mix
latt and −𝑇𝑆mix

config
 terms are 0.28 and -1.48 kJ 

mol-1 atom-1, respectively, and the small increase in internal energy is compensated by the much larger 

configurational entropy to produce an overall negative 𝐴mix of -1.20 kJ mol-1 atom-1. Using the 𝐴𝑖  from 

the smaller alloy supercell predicts that differences in the 𝑈mix
vib  and 𝑆mix

vib  combine to disfavour the 

mixing by 0.64 kJ mol-1 atom-1, while the contribution from configurational entropy is also reduced by 

around 13 % presumably due to the more skewed distribution of 𝑃𝑖 in Fig. 5b.  Together, these result 

in a much less negative predicted 𝐴mix of -0.37 kJ mol-1 atom-1. On the other hand, when the 𝐴𝑖  are 

computed using the larger phonon supercell expansions, the 𝑃𝑖 and thus the 𝑆mix
config

 are very close to 

the result obtained using the lattice energies, and the vibrational contributions to the mixing are very 

small, with differences in vibrational entropy favouring mixing by an additional 0.06 kJ mol-1 atom-1. 

 

[kJ mol-1 atom-1] 𝑈𝑖
latt 

𝐴𝑖  
Alloy Cell 2 × 2 × 2 SC 

𝐴mix  -1.20 -0.37 -1.26 

𝑈mix  0.28 -0.18 0.28 

−𝑇𝑆mix  -1.48 -0.19 -1.53 

𝑈mix
latt  0.28 0.28 0.28 

𝑈mix
vib   - -0.46 0.00 

−𝑇𝑆mix
vib   - 1.09 -0.06 

−𝑇𝑆mix
config

  -1.48 -1.29 -1.48 

Table 3 Comparison of the calculated mixing free energy 𝐴mix of Sn(S0.1875Se0.8125) at 𝑇F = 900 K 

obtained using the lattice energies 𝑈𝑖
latt and the constant-volume (Helmholtz) free energies 𝐴𝑖  

calculated with force constants obtained in the 32-atom alloy cells and 256-atom supercell 

expansions. Also shown are the separate contributions to 𝐴mix from the lattice and vibrational internal 

energy, 𝑈mix
latt/𝑈mix

vib , and the configurational and vibrational entropy, 𝑆mix
config

/𝑆mix
vib . 

 

 The clear implication of this result is that the force constants obtained using the 32-atom alloy 

supercell do not yield sufficiently accurate frequencies to compute accurate Helmholtz energies. As a 

result, our previous conclusion that differences in vibrational frequencies disfavour the mixing and 

skew the distribution of occurrence probabilities in the Pnma Sn(S1-xSex) alloy may not be correct. 

Indeed, the present finding suggests that it is not necessary to consider the phonon contributions to 

the free energy in order to obtain a reasonable thermodynamic model for this system. However, we 

previously found that the full range of Snm(S1-xSex)n systems form near-ideal solid solutions, based on 

alloy models using the lattice energies, and it is entirely possible the lattice dynamics would have a 

more significant impact on the thermodynamics of less ideal systems. Either way, our findings clearly 
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highlight the need carefully to check the convergence of the free energies with respect to the accuracy 

of the force constants. 

 

d. Thermal conductivity of Sn(S0.1875Se0.8125) 

 We now consider the thermal conductivity of the Sn(S0.1875Se0.8125) alloy model. Fig. 6 shows 

the unfolded dispersion and atom-projected DoS of Sn(S0.1875Se0.8125), computed as a thermodynamic 

average using Eq. 24 at a formation temperature 𝑇F = 900 K. 

 

 

Figure 6 Unfolded dispersion and atom-projected density of states (PDoS) of Sn(S0.1875Se0.8125). The 

colour scale in the unfolded dispersion represents the spectral weight and runs from blue (low weight) 

to yellow (high weight). 

 

The PDoS is similar to that of SnSe but with an additional feature above ~6 THz comprising 

modes predominantly associated with S vibrations. The lower-frequency part of the unfolded 

dispersion, which consists predominantly of Sn-based modes, retains considerable structure, albeit 

with some smearing, suggesting that the Sn sublattice is largely unaffected by the alloying. On the 

other hand, the mid-frequency Se-based bands show considerably more broadening, and the 

dispersion of the high-frequency S bands has very little structure. Since the low-frequency modes are 

the dominant heat carriers, and the corresponding part of the dispersion remains similar to SnSe, it is 

not clear from this analysis to what extent the alloying will affect the thermal conductivity through 

changes to the group velocities. 

We also note that, unlike in our previous work, we see no evidence of imaginary modes in the 

unfolded dispersion, which we also confirmed by inspecting of the phonon frequencies at the 



 - Page 23 -  

commensurate wavevectors for each of the alloy configurations. This again highlights the importance 

of using a sufficiently large supercell for computing the force constants. 

Since Sn(S0.1875Se0.8125) is close to the SnSe endpoint, a very simple reference point for the 𝜅latt 

is to use the SnSe force constants and adjust the mass of the chalcogen atoms to a weighted average: 

 

𝑚ave = ∑ 𝑎𝑖 × 𝑚𝑖

𝑖

 (25) 

 

where 𝑎𝑖 are the site occupations and 𝑚𝑖 = 𝑚S/𝑚Se are the masses of the occupying atoms. The 

change in mass affects the 𝐶𝜆/𝒗𝜆 in Eq. 2 directly, and also indirectly affects the 𝜏𝜆 via the three-

phonon interaction strengths and conservation of energy expression in Eq. 6. In addition, the 

increased mass variance at the chalcogen site also affects the 𝜅latt, and this can be modelled as an 

isotope effect using the approach in Ref. 59 and a mass variance parameter calculated as: 

 

𝑚var = ∑ 𝑎𝑖 × (1 −
𝑚𝑖

𝑚ave
)

2

𝑖

 (26) 

 

We previously used this technique to investigate the thermal conductivity of the Li(Ni,Mn,Co)O2 (NMC) 

alloy system.60  

Fig. 7 compares the 𝜅latt obtained from these models with the thermal conductivity of SnSe 

computed in the alloy supercell, the latter of which gives a thermal conductivity within 5 % of the 

value computed using the primitive cell. Instead of considering transport along the a, b, and c 

directions separately, as we did for the endpoints, we discuss the in-plane and out-of-plane thermal 

conductivity perpendicular and parallel to the layering direction, respectively, which we denote 𝜅⊥ =

1

2
(𝜅𝒙𝒙 + 𝜅𝒛𝒛) and 𝜅∥ = 𝜅𝒚𝒚, as well as the average 𝜅ave =

1

3
(2𝜅⊥ + 𝜅∥) =

1

3
(𝜅𝒙𝒙 + 𝜅𝒚𝒚 + 𝜅𝒛𝒛). This is 

because we would not necessarily expect the bonding anisotropy along the a and c axes to be retained 

in the alloy models. 

Increasing the average mass to 𝑚ave = 0.1875 𝑚S + 0.8125 𝑚Se predicts a ~2-4 % increase 

in the 𝜅latt compared to SnSe. This is readily understood given the larger group velocities in SnS (c.f. 

Fig. 3). Including the isotope scattering, on the other hand, predicts a surprisingly large 40 % reduction 
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in the 𝜅latt of the alloy, with the 𝜅⊥, 𝜅∥ and 𝜅ave reduced from 1.82, 0.93 and 1.53 W m-1 K-1 in SnSe to 

1.11, 0.55 and 0.93 W m-1 K-1 at 𝑇 = 300 K (Table 4). The isotope scattering model in Ref. 59 is usually 

used to model the effect of natural isotope variation on the 𝜅latt. For Sn, S and Se, the natural 𝑚var 

computed using Eq. 26 are 3.34, 1.65 and 4.63 × 10-4, respectively, and we previously found that 

isotope scattering has very little effect on the thermal conductivity of SnS.25 On the other hand, the 

𝑚var parameter computed for Sn(S0.1875Se0.8125) is 6.85 × 10-2, i.e. two orders of magnitude larger 

(Table 4). 

 

 

Figure 7 Impact of mass variation at the chalcogen site in SnSe on the thermal conductivity 𝜅latt. The 

solid lines show the in-plane (𝜅⊥, blue), out-of-plane (𝜅∥, red) and average 𝜅latt (𝜅ave, black) of SnSe. 

The corresponding values obtained by changing the average mass 𝑚ave at the chalcogen site to mimic 

the Sn(S0.1875Se0.8125) solid solution are shown by dashed lines, and the values obtained by additionally 

including isotope scattering due to the change in mass variance 𝑚var are shown by dotted lines. 

 

 To obtain the calculated 𝜅latt in Fig. 2 required a total of 16 accurate force calculations on 

256-atom cells and 2,580 calculations on 32-atom cells to obtain the second- and third-order force 

constants, respectively, using the supercell finite-displacement method. For the 23 configurations in 

our Sn(S0.1875Se0.8125) model, obtaining the second-order force constants required 3,536 calculations 

on 256-atom cells, which was challenging but possible. To obtain the third-order force constants, 

however, would require 649,096 calculations on 32-atom cells, which is not feasible. 
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Sn(S0.1875Se0.8125) SnSe 

⊥ ∥ ave ⊥ ∥ ave 

Mass Var. 

𝑚ave [amu] 70.2 79.0 

𝑚var  6.85 × 10-2 - 

𝜅latt [W m-1 K-1] 1.11 0.55 0.93 1.82 0.93 1.53 

CRTA 

𝜅latt 𝜏CRTA⁄  [W m-1 K-1 ps-1] 0.215 ± 0.014 0.088 ± 0.005 0.173 ± 0.010 0.433 0.212 0.360 

𝜏CRTA [ps] 3.96 4.17 4.03 4.18 4.41 4.24 

𝜅latt [W m-1 K-1] 0.85 ± 0.06 0.37 ± 0.02 0.70 ± 0.04 1.82 0.93 1.53 

Const. 𝑃̃ 
𝑃̃ [10-12 eV2] 1.47 1.17 1.24 1.18 

𝜅latt [W m-1 K-1] 0.73 ± 0.03 0.39 ± 0.01 0.62 ± 0.02 1.82 0.93 1.53 

Table 4 Model parameters and calculated thermal conductivity 𝜅latt at 𝑇 = 300 K for the Sn(S0.1875Se0.8125) alloy for the three models discussed in the text. 

Where appropriate, values are given for the in-plane (⊥), out-of-plane (∥) and average (ave) thermal transport. Note that some of these values differ from 

those in Table 2 as these SnSe calculations were performed using an equivalent alloy supercell to Sn(S0.1875Se0.8125) instead of the eight-atom primitive cell. 
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Figure 8 Thermal conductivity of Sn(S0.1875Se0.8125) (left) and SnSe (right) predicted using the constant 

relaxation-time approximation (CRTA) model defined in Eqs. 3/4. (a)/(b) Harmonic component 

𝜅latt 𝜏CRTA⁄ . (c)/(d) Lifetime component 𝜏CRTA. (e)/(f) Thermal conductivity 𝜅latt. On each subplot, 

the in-plane (⊥, red), out-of-plane (∥, blue) and average values (ave, black) are shown. The shaded area 

in plots (a) and (e) mark ± one weighted standard deviation. The 𝜏CRTA in (c) are obtained by 

interpolating between the SnS and SnSe endpoints. 

 

Returning to the CRTA model defined in Eqs. 3/4, we can use the second-order force constants 

to compute an averaged 𝜅latt 𝜏CRTA⁄  for the alloy and thereby quantify the impact of changes to the 

frequencies and group velocities on the 𝜅latt. As shown in Figs. 8a/8b, the alloying is predicted to 
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reduce the harmonic term by 2-2.5 × compared to SnSe, with the in-plane and out-of-plane values 

falling from 0.433 and 0.212 to 0.215 and 0.088 W m-1 K-1 ps-1 at 𝑇 = 300 K (Table 4). The estimates of 

the spread of values, given by the weighted standard deviations, are on the order of 5 %. If we assume 

that the lifetime term 𝜏CRTA can be interpolated between the SnS and SnSe endpoints, we obtain the 

temperature dependence in Fig. 8c and hence the predicted 𝜅latt in Fig. 8e, which can be compared 

to the corresponding reference calculations on SnSe shown in Fig. 8d/8f. The reduced harmonic terms 

of the alloy models, coupled with the 5 % shorter interpolated lifetime, yield a predicted 300 K 𝜅⊥, 𝜅∥ 

and 𝜅ave of 0.85, 0.37 and 0.70 W m-1 K-1, which are overall 50-60 % reductions compared to SnSe. 

These reductions are larger than predicted using the isotope-scattering model and suggest substantial 

changes in the phonon group velocities of the alloys due to local variation in chemical bonding/force 

constants. 

A third possible model is to note that the w-JDoS functions 𝑁2(𝐪, 𝜔) in Eq. 10 can be 

computed using the second-order force constants, and to use the model in Eq. 8 with the interaction 

strengths 𝑃𝜆 substituted by a constant 𝑃̃ interpolated between the endpoints. It is perhaps more 

physically intuitive to assume the weighted average interaction strength can be interpolated between 

the endpoints than it is to assume the averages in the CRTA model can be interpolated. 

For the 32-atom alloy models SnS and SnSe the 𝑃̃ that reproduce the 𝜅ave at 𝑇 = 300 K are 

2.705 × 10-12 and 1.184 x 10-12 eV2 respectively (see Supporting Information). These are 16 × larger 

than the values obtained by analysing the eight-atom primitive cells as they are computed over (3𝑛𝑎)2 

= 9,216 instead of 576 pairwise interactions. We therefore calculate an interpolated 𝑃̃ of 1.469 x 10-12 

eV2 for Sn(S0.1875Se0.8125). 

We note in passing that although the 𝑃𝜆 are temperature independent, it is unlikely to be 

possible to choose a single 𝑃̃ that reproduces the 𝜅latt at all temperatures. However, the temperature 

variation in the 𝑃̃ obtained by fitting, as in Fig. 4, was found to be on the order of 1 % between 300 

and 600 K in CoSb3,34 so we do not expect this to be a large source of error. 

Fig. 9 compares the averaged 𝑁̅2(𝜔) of Sn(S0.1875Se0.8125) and the averaged 𝜅latt computed 

using the interpolated 𝑃̃ to the corresponding data for the SnSe alloy cell. 

Two of the 23 structures were each calculated to have one unphysically large 𝜅latt component 

(𝜅𝒙𝒙 = 6.13 and 𝜅𝒚𝒚 = 1.89 W m-1 K-1, respectively), which had a disproportionate effect on the 

calculated average and standard deviation. We put this down to numerical issues, but we were unable 

to correct for them and therefore opted instead to omit these structures from our analysis. A version 

of Fig. 9 including these two structures is provided as Supporting Information. 
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Figure 9 Thermal conductivity of Sn(S0.1875Se0.8125) predicted using the model defined in Eq. 8 with the 

phonon-phonon interaction strengths replaced by a constant value 𝑃̃ = 1.469 x 10-12 eV2. (a)/(b) Two-

phonon weighted join density-of-states functions 𝑁̅2(𝜔) defined in Eq. 13. (c)/(d) Predicted in-plane 

(𝜅⊥, blue), out-of-plane (𝜅∥, red) and average thermal conductivity (𝜅ave, black). Plots (a) and (c) show 

calculations on the Sn(S0.1875Se0.8125) alloy model, and the shaded areas indicate ± one standard 

deviation. Plots (b) and (d) show calculations on SnSe for comparison. 

 

The 𝑁̅2(𝜔) of Sn(S0.1875Se0.8125) is very similar to the SnSe endpoint, and suggests a reduction 

in the number of scattering channels in some parts of the frequency spectrum. We note, however, 

that the averaging over wavevectors may of course mask stronger variations in the individual 

𝑁2(𝐪, 𝜔). Combined with the interpolated 𝑃̃ in Table 4, we obtain a 300 K 𝜅⊥, 𝜅∥ and 𝜅ave of 0.73, 

0.39 and 0.62 W m-1 K-1, which are a ~60 % smaller than those calculated for SnSe. Excluding the 

obvious outliers, as noted above, the weighted standard deviations indicate a spread of ~5 % in the 

calculated 𝜅latt. Alongside the results from the CRTA, this model suggests changes in the number of 

energy-conserving scattering channels and a small increase in the phonon-phonon interaction 
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strengths may have a small secondary effect on thermal transport in addition to the reduced group 

velocity. 

 To complete our discussion, we compare the predicted 𝜅ave obtained from the three methods 

tested above with SnSe in Fig. 10. At 𝑇 = 300 K, the calculated 𝜅ave of SnSe is 1.53 W m-1 K-1, and the 

values calculated for Sn(S0.1875Se0.8125) using the three models are 0.93, 0.70 ± 0.04 and 0.62 ± 0.02 W 

m-1 K-1. All three models predict a large reduction in the thermal conductivity due to alloying. The 

experimental measurements in Ref. 11 on Ag0.01Sn0.99Se1-xSx reported a large drop from ~0.55 to 0.2 

W m-1 K-1 at room temperature at 15-20 % S content, which suggests that the magnitude of the 

reduction predicted by the calculations is reasonable. (We note that this study used pressed pellets, 

and thus we might expect a reduced 𝜅latt due to defects, as discussed for SnS and SnSe in a previous 

section.) 

 

 

Figure 10 Predicted averaged thermal conductivity 𝜅ave of SnSe (black) and the 𝜅ave of 

Sn(S0.1875Se0.8125) obtained using the three models considered in this section: the mass-variance model 

(blue), the CRTA model defined in Eqs. 3/4 with an interpolated lifetime 𝜏CRTA (red), and the model 

defined in Eq. 8 with the interaction strengths 𝑃𝜆 replaced by an interpolated constant 𝑃̃ (orange). 

 

Within the CRTA model, the majority of the reduction in the 𝜅latt is due to a reduced harmonic 

term which, to the extent that thermodynamic model for the alloy is reasonable, is not approximated 

in this work. The small difference between the CRTA and constant 𝑃̃ then points to a small potential 

secondary effect from changes in the phonon lifetimes due to changes in the phonon frequency 

spectrum. While we cannot rule out changes in the phonon-phonon interaction strengths in the alloy, 
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for a near-ideal solid solution like Sn(S1-xSex) it seems reasonable to assume that the averaged 𝑃̃ can 

be interpolated. The performance of the simple mass-variance model is remarkable given that it is 

much less computationally demanding than either of the other two approaches, and suggests it may 

be a good initial approach to predicting the 𝜅latt of alloy systems. 

Finally, we should also note that the virtual crystal approximation (VCA) might be a useful 

"middle ground" between the simple mass-variance model and the more sophisticated CRTA and 

constant interaction-strength models. In the VCA, the force constants for an alloy are built from 

appropriate linear combinations of the force constants of the endpoints, which in principle improves 

on the average mass model by accounting for changes in the second- and third-order force 

constants.32 Unfortunately, this technique is presently not implemented in the Phono3py software, so 

we were not able to test it alongside the other methods. 

 

4. Conclusions 

 In summary, we have performed a detailed characterisation of the thermal conductivity of SnS 

and SnSe and of the Sn(S0.1875Se0.8125) alloy. 

 In these calculations, we find that SnS and SnSe have similar, ultra-low 𝜅latt, and the difference 

between them is down to a subtle balance of decreased group velocities but longer lifetimes in the 

selenide. The longer lifetimes are due to weaker phonon-phonon interaction strengths, and negate an 

increase in the number of energy- and momentum-conserving scattering pathways due to the smaller 

range of phonon frequencies. 

 Our thermodynamic model of Sn(S0.1875Se0.8125) indicates near-ideal behaviour, with the mixing 

free energy dominated by entropy and a close-to homogenous distribution of occurrence probabilities 

over the 23 independent chalcogen arrangements in our 32-atom alloy supercell. In contrast to our 

previous work, we find that vibrational contributions to the free energy have a relatively small impact 

on the thermodynamics. While this result may be taken as an indication that vibrational effects need 

not be taken into account in alloy models, further work is required to determine whether this 

generalises to less ideal solid solutions. 

 By performing harmonic phonon calculations on the alloy model, we investigated three 

possible approaches to quantifying the impact of alloying on the thermal transport and predicted a 

substantial 40-60 % drop in the 𝜅latt compared to the SnSe endpoint. Our analysis suggests the 

majority of this is due to a reduction in the group velocities, which is also manifests as a "smearing" of 

the phonon dispersion, together with a small additional effect from a reduction in the phonon 
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lifetimes. We also found that a simple isotope-scattering model provided a good reproduction of the 

results obtained using more sophisticated - and more computationally-demanding - models, and it is 

therefore of interest to investigate whether this is more generally applicable. 

 Overall, this study has provided useful insight into how alloying reduces the thermal 

conductivity of SnS and SnSe, and we hope these theoretical models will be of use to modelling studies 

on other widely-used thermoelectrics in the future. Ultimately, we hope that microscopic insight from 

first-principles calculations such as these will be able to inform the future selection of alloy systems 

to optimise the thermoelectric performance of existing and novel TEs. With regard to the SnS/SnSe 

system, the preservation of the structure in the low-frequency dispersion of Sn(S0.1875Se0.8125), together 

with the large impact of changes in group velocity in reducing the 𝜅latt, suggests that it may be of 

interest to consider (Ge1-xSnx)S or (Ge1-xSnx)Se alloys as alternatives. 
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Figure S1 Calculated thermal conductivity 𝜅latt of SnS (a) and SnSe (b) at 𝑇 = 300 K as a function of the 

crystal grain size, modelled using a boundary-scattering model to limit the phonon mean free paths. 

Each plot shows the principal 𝜅𝑥𝑥, 𝜅𝑦𝑦 and 𝜅𝑧𝑧 components of the 𝜅latt tensor, corresponding to 

transport along the crystallographic a, b and c axes, together with the diagonal average 𝜅ave =

1

3
Tr[𝜿latt] =

1

3
(𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧). 

 

 

Figure S2 Dependence of the in-plane (𝜅⊥, blue), out-of-plane (𝜅∥, red) and average thermal 

conductivity (𝜅ave =
1

3
[2𝜅⊥ + 𝜅∥], black) of SnS (a) and SnSe (b) at 𝑇 = 300 K, computed in 32-atom 

alloy supercells, on the averaged phonon-phonon interaction strength 𝑃̃. The values of  𝑃̃ that 

reproduce the calculated 𝜅⊥, 𝜅∥ and 𝜅ave are indicated by dashed lines. 
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Figure S3 Thermal conductivity of Sn(S0.1875Se0.8125) predicted using the model defined in Eq. 8 in the 

text with the phonon-phonon interaction strengths replaced by a constant value 𝑃̃ = 1.469 x 10-12 eV2. 

(a)/(b) Two-phonon weighted join density-of-states functions 𝑁̅2(𝜔) defined in Eq. 13 in the text. 

(c)/(d) Predicted in-plane (𝜅⊥, blue), out-of-plane (𝜅∥, red) and average thermal conductivity (𝜅ave, 

black). Plots (a) and (c) show calculations on the Sn(S0.1875Se0.8125) alloy model, and the shaded areas 

indicate ± one standard deviation. Plots (b) and (d) show calculations on SnSe for comparison. This 

plot is identical to Fig. 9 in the text but includes the two alloy structures for which the 𝜅latt was deemed 

unphysically large. 

 


