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Abstract

Identifying factors that influence interactions at the surface is still an ac-

tive area of research. In this study, we present the importance of analyzing

bondlength activation, while interpreting Density Functional Theory (DFT) re-

sults, as yet another crucial indicator for catalytic activity. We studied the

adsorption of small molecules, such as O2, N2, CO, and CO2, on seven face-

centered cubic (fcc) transition metal surfaces (M = Ag, Au, Cu, Ir, Rh, Pt, and

Pd) and their commonly studied facets (100, 110, and 111). Through our DFT

investigations, we highlight the absence of linear correlation between adsorption

energies (Eads) and bondlength activation (BLact). Our study indicates the im-

portance of evaluating both to develop a better understanding of adsorption at

surfaces. We also developed a Machine Learning (ML) model trained on sim-

ple periodic table properties to predict both, Eads and BLact. Our ML model

gives an accuracy of Mean Absolute Error (MAE) ∼ 0.2 eV for Eads predictions

and 0.02 Å for BLact predictions. The systematic study of the ML features

that affect Eads and BLact further reinforces the importance of looking beyond

adsorption energies to get a full picture of surface interactions with DFT.
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1. Introduction

Investigating the activation of molecules on metal surfaces is a starting point

for understanding catalysis.[1, 2] Several studies have been conducted to under-

stand the various factors that govern the catalytic activity of transition metal

surfaces and this subject continues to draw attention.[3, 4, 5, 6, 7] Activation of5

molecules is an outcome of the charge transfer taking place from the metal sur-

face to the adsorbate. Numerous successful models and theories to this end have

been proposed and are still under the ambit of active research.[8, 6, 9, 10, 11]

The primary indicator to quantify the interaction of adsorbate with surfaces is

often the adsorption energy, Eads.Hence, efforts are geared in the direction of10

understanding factors that influence adsorption energies.[12, 13, 14] One such

successful model is the d-band center model proposed by Hammer and Norskov,

which correlates the adsorption strengths of adsorbate with the d-band center

energy of the participating metal surface.[8, 2, 15, 16] Although the model is

greatly useful in developing an understanding about the factors that influence15

surface interactions which in turn can be used to design better catalysts, there

are some exceptions to it.[17, 18, 19, 20, 21] Another geometrical parameter

of catalysis is the bondlength activation BLact that adsorbates undergo upon

adsorption.

In all these studies, although the amount of activation experienced by the20

adsorbate during interaction is always reported, it is seldom used as a parameter

to explain the extent of interaction.[22, 23, 24, 25] Often adsorption energies

are correlated with the participating d-band (or d-band center) of the metal

surface and the bondlength activations are attributed to the charge transfer.[3,

26] But the question that arises is, whether the distinction between the factors25

that influence each of these parameters discrete ? In their study Wang et.

al. investigated the key factors controlling the interaction of CO2 with metal

surfaces.[3] They found a linear correlation between the binding energies and the

charge transferred from the metal surface into chemisorbed CO2. This linear

relationship was even better than the relationship observed between the binding30
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energy of CO2 and the d-band centers of the metal surfaces. The two parameters

viz. Eads and BLact are expected to be correlated for any interaction between an

adsorbate and a catalyst surface. But a careful analysis of the literature proves

lack of linear correlation between the two.[27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 39] In our previous study of methanol activation on (220) and (311)35

facet of a mixed metal oxide (ZnAl2O4) surface, we observed that changing

orientation of methanol resulted in different extents of bondlength activation

for its O-H bond.[40] The distance from the nearest available surface oxygen

was attributed for the corresponding O-H bond activation. But at the same

time a clear lack of correlation between O-H bond activation of methanol and40

Eads values was evident on both the surfaces. Although we could successfully

point out the factors governing BLact, the missing correlation between BLact

and Eads remained unsolved. In another study Petersen et. al. reported that

the thermodynamically most favoured adsorption site for CO on Co(221) is fcc

3-fold with Eads of -1.77 eV and C-O bondlength of 1.20 Å.[41] Adsorption on45

another site i.e. the B5-B site is reported to be energetically less stable by 0.31

eV but C–O bondlength has an increased activation upto 1.28 Å. They also

reported that the lowest energy transition state for CO dissociation is located

at the B5-B site (the one with maximum BLact). Both these studies not only

bring out the missing correlation between Eads and BLact but they also highlight50

the importance of analyzing BLact as a quantitative indicator of interaction.

This makes the study of both Eads and BLact interesting and imperative to

understand/comment on the extent of interaction. In this work, we highlight

this lack of one-to-one correlation and bring out the factors that influence each of

the parameters separately during interaction by implementing Machine Learning55

(ML) methods.

Digging out hidden patterns in the dataset is among the many areas in

which ML is increasingly being applied.[42, 43, 44, 45, 46, 47, 48] Designing an

appropriate set of features that accurately represents the dataset is extremely

important for using ML effectively.[49, 50, 51, 52, 53] Establishing successful60

correlations between these input features and predicted values can advance our
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understanding of a problem at hand.[54, 55, 56, 57] Yang et. al. demonstrated

the use of simple substrate and adsorbate based intrinsic properties to study

CO2 reduction on transition metals and alloys.[58] The descriptors that were

used translate in terms of an activity indicator that provides a basis for the65

design of catalysts. With tree based methods in ML, the ability to analyze and

rank the features that greatly affect target value prediction is extremely useful in

understanding hidden trends in the dataset.[58, 59, 60, 61] In a recent study, Liu

et. al. through detailed DFT investigations show that Eads of a variety of small

molecules on 13 metal oxide surfaces correlates very well with adsorbate HOMO70

but not with LUMO. Further, they applied an ML based extra tree regressor

method and demonstrate HOMO to be the top-ranking feature for adsorption

energy prediction of small molecules on all surfaces. Such correlations between

the predicted value and feature ranking often help in gaining insights into the

factors governing catalysis. However, a problem associated with the design of75

features for an ML model is their complexity. If the designed set of features do

not translate in terms of the physical understanding of a system, then it limits

the use of ML model to a black box.[62] Therefore, developing features that can

be easily calculated and understood is an ongoing area of research. Another area

that remains untouched by ML methods assisting DFT is the prediction/analysis80

of BLact along with adsorption energy studies. [61, 63, 64, 65, 66]

In this work, we performed DFT calculations for adsorption of four small

molecules on twenty-one metal surfaces and investigated Eads and corresponding

BLact. While we understand that adsorption energy acts as an indicator of

catalytic activity, so does the corresponding bondlength activation. It not only85

tells us about the extent of interaction but also indicates the ease with which

adsorbate can possibly be converted into products. Hence, analyzing factors

that affect both the indicators differently is important in the process of catalyst

design. Therefore we further employed ML calculations to predict both Eads and

BLact separately but with the same set of features. The best ML model was90

chosen after testing it against seven other models from across three classes.

Easily calculable features along with periodic table properties were used to
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train our ML algorithms. Our best ML model not only performed well for

the prediction of Eads (MAE ∼ 0.2 eV) and BLact (MAE ∼ 0.02 Å) but also

highlighted the underlying factors that affect each of the target values differently.95

2. Computational Details

2.1. Adsorption energy calculations using DFT

We performed adsorption studies for O2, N2, CO, and CO2 on seven fcc

transition metal surfaces (M = Ag, Au, Cu, Ir, Rh, Pt, and Pd) and three

commonly studied facets (100, 110, and 111) for each metal. All the calcula-100

tions were carried out within the Kohn-Sham formulation of DFT. Projector

Augmented Wave potential [67, 68] was used, with Perdew–Burke–Ehrzenhof

(PBE) [69] approximation for the exchange-correlation and generalized gradi-

ent [70] approximation, as implemented in planewave, pseudopotential based

code, VASP [71, 72, 73]. For metal surfaces a (3 × 3) supercell, containing four105

layers of M atoms was used. The first three layers of surfaces were allowed

to relax during geometrical optimization; the geometry of the bottom layer was

fixed to the bulk configuration. The energies of isolated molecules were obtained

using the same parameters as those in the bare surface slab calculations. Cubic

simulation cell, with the image in each direction separated by 15 Å of vacuum,110

was used. Energy convergence criteria of 10−4 eV was used for SCF calcula-

tions. K-mesh of 7x7x1 was used for (100) and (111) facets of all metal surfaces

and 5x7x1 for (110) surfaces. The following formula was used to calculate the

adsorption energies:

Eads = Esystem − (EM + Emolecule) (1)

where, Esystem is the energy of metal surface + adsorbate, EM is the energy115

of the bare metal surface, and Emolecule is the energy of the bare adsorbate.

2.2. Machine Learning methods

The data collected from DFT calculations was then used to train ML models.

Data points for only adsorption (and not dissociation) were used while training
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and testing the model. It resulted in a total of 296 data points. Eight algorithms120

from three classes were tested before selecting the final model.

1. Linear Methods - Ordinary Linear Regression (OLR), Ridge Regression

(RR), and LASSO were tested from the linear class of methods.

Linear Regression methods assume a linear relation between the input features

Xi and target values yi while fitting the coefficients wi.125

y(w, x) = w0 + w1x1 + w2x2 + w3x3 + ... (2)

The objective function in Linear Regression is to optimize the residual sum of

squares between the true and ML predicted target values,

min
1

n

n∑
i=1

(y(pred)i − y(true)i)
2 (3)

Linear Regression often leads to overfitting of small datasets as it depends on

the collinearity of input features. Ridge Regression and LASSO take care of130

this by penalising the weights of modeled coefficients. While Ridge Regressor

tends to penalizes the model for the sum of squared value of the weights, LASSO

penalizes the sum of absolute values of the weights.

2. Kernel based - Kernel Ridge Regression (KRR) and Gaussian Process Re-

gression (GPR) methods were tested from among the kernel based methods.135

Kernel based methods use the ”kernel trick” in which the data is transformed

to a high-dimensional feature space and then the inner products between the

images of all pairs of data in the feature space are found. A ”kernel” is used to

transform the data in a higher dimensional feature space where a hyperplane

for classification of data can be easily found. Thus, Kernel Ridge Regression140

combines Ridge Regression and classification with the kernel trick.

3. Tree-based - Gradient Boosting Regression (GBR), Random Forest (RF),

and Extra Tree Regressor (ETR); three tree-based methods were tested.

Decision Trees are supervised learning methods in which the target values are

predicted by learning simple decision rules from the training data. The tree-145

based models finally develop into a sequence of trees with the right choice of
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descriptors positioned correctly at different nodes. Tree-based methods gener-

ally have a high variance associated with them. GBR is a regression technique

that uses decision tree-based classifiers as weak learners. In Random Forests,

two sources of randomness are introduced by drawing random samples with150

replacement from the training set and finding the best split from a random sub-

set of features. The reason to introduce these two sources of randomness is to

reduce the variance.

Table 1: Hyper-parameters and range tested with GridSearchCV to find the best values for

different estimators used.

Class Method hyper-parameter [ range ]

Linear OLR None

RR alpha ∈ [0.001, 0.01, 0.1, 0.5, 1, 5, 10]

LASSO alpha ∈ [0.001, 0.01, 0.1, 0.5, 1, 5, 10]

Kernel KRR kernel=’rbf’, alpha ∈ [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 0.1, 1],

gamma ∈ np.logspace(-2,2,5)

GPR alpha ∈ [0.001, 0.01, 0.1, 0.5, 1, 5, 10]

Tree GBR n estimators ∈ [100,200,300,400,500] , loss ∈ [ls, lad, huber],

min samples split ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10] ,

learning rate ∈ [0.001, 0.01, 0.1, 1], max depth ∈ [2, 3, 4, 5,

6, 7, 8, 9, 10]

RF n estimators ∈ [100,200,300,400,500], max depth ∈ [2, 3, 4,

5, 6, 7, 8, 9, 10], min samples split ∈ [2, 3, 4, 5, 6, 7, 8, 9,

10]

ETR n estimators ∈ [100,200,300,400,500], max depth ∈ [2, 3, 4,

5, 6, 7, 8, 9, 10], min samples split ∈ [2, 3, 4, 5, 6, 7, 8, 9,

10]

We used all the ML algorithms as implemented in the scikit-learn python

package.[74] Linear and Kernel based algorithms require pre-processing of data155

before applying an ML model to them. Three scalars viz. StandardScalar,
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MinMaxScalar, and MaxAbsScalar were applied for appropriate models and

the results were compared. Different train-test splits (50%-50%, 75%-25%, 85%-

15%) were tested and finally, the train and test datasets were split in 75%-25%.

To avoid bias, random shuffling of data points was carried out. To assess the160

performance of the models, Monte Carlo cross-validation was performed with

100 random test/training splits, i.e., 100 random leave-n-out trials. The MAE

of difference between predicted and true target values is calculated for each trial

and averaged to obtain mean MAE values and standard deviation. The cross-

validation assessment was performed for 100, 200, and 500 trials. It was observed165

that the 100 trial average was as good an estimate as the average of 200 and 500

trails. And hence, MAE averaged over 100 trials is reported. ML algorithms

need to be tuned for the best values of various hyper parameters. Exhaustive

GridSearchCV as implemented in sci-kit learn was carried out to find the best

parameter values of various estimators. Different hyper-parameters tuned and170

the range tested for each is reported in table 1. Validation curves were plotted

for each of them to make sure that the cross validation score remained high for

the finally used values of hyper-parameters. The learning curve was plotted to

test the model performance as shown in Figure SI-3.

3. Results and Discussion175

3.1. DFT calculations for adsorption energies and bondlength activation

The problem under investigation was to unravel the correlation between

bondlength activation of adsorbate and their adsorption energies. And hence,

activation of molecules like O2, N2, CO, and CO2 that are involved in most

of the chemical reactions were considered for calculations. Further, the late180

transition metals chosen for study were the ones which have been extensively

reported to show maximum catalytic activity towards these small molecules.

Two parameters viz. adsorption energies (Eads) and the amount of activation

that adsorbate bonds undergo upon interaction (BLact) were carefully analyzed.

It was generally noted that one-to-one correlation between Eads and BLact was185
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Table 2: Few selected cases of O2, N2, CO, and CO2 are shown to highlight the missing

correlation between adsorption energies and bondlength activation. Metal surface (M), facet,

and site of adsorption (site) are also mentioned. It can be seen from the last two columns in

the table that BLact of molecules upon adsorption and corresponding adsorption energy Eads

do not have a one-to-one correlation.

Ads M facet site BLact (Å) Eads (eV)

Cu 110 SB 1.39 -2.1258

Cu 110 T 1.42 -1.4411

O2 Rh 100 B 1.38 -3.0984

Rh 100 T 1.38 -1.7846

Ir 111 B 1.41 -2.4389

Ir 111 hcp 1.46 -2.3049

Pd 111 fcc 1.13 -0.5706

Pd 111 hcp 1.16 -0.2266

N2 Ag 110 T 1.12 -0.0742

Ag 110 LB 1.12 -0.0153

Pt 100 B 1.17 -0.6105

Pt 100 H 1.25 -0.4142

Ir 111 T 1.16 -2.2864

Ir 111 hcp 1.20 -2.0085

CO Pd 110 SB 1.18 -2.362

Pd 110 LB 1.22 -1.9619

Rh 100 B 1.19 -2.4766

Rh 100 H 1.21 -2.3852

Au 110 H 1.18 -2.0752

Au 110 T 1.18 -1.4153

CO2 Pt 110 H 1.18 -0.6477

Pt 110 T 1.23 -0.3562

Pd 111 B 1.18 -0.3449

Pd 111 fcc 1.25 -0.0284
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missing for all adsorbates i.e., cases of adsorption with the maximum value of ad-

sorption energy did not necessarily imply corresponding maximum bondlength

activation of adsorbate or vice versa. To demonstrate this we have tabulated a

few cases for all molecules in table 2. Data points shown in the table are across

three facets of various metal surfaces to show that the comments hold valid irre-190

spective of the metal or facet. Examples from all seven metal surfaces have been

picked up and tabulated for different molecules. In addition, while comparing

trends in between Eads and BLact we compare values on the same facet of one

metal surface to prove that the absence of linear correlation is not caused by

either of these variables. For instance, as reported in table 2, adsorption energy195

for oxygen molecule on short bridge (SB) site of Cu (110) surface is -2.13 eV

and corresponding bondlength elongation is 1.39 Å. When the molecule adsorbs

on the top (T) site of Cu (110) surface, the adsorption energy reduces by about

0.8 eV but the bondlength increases to 1.42 Å. Moreover, when we evaluated

the adsorption behaviour of oxygen on Rh (100) surface we observed that while200

the difference in adsorption energies on the bridge (B) site and top (T) site is

about 1.31 eV, the corresponding bondlength activation is the same on both the

sites. Similarly, for N2 adsorption on Pt (100) surface, we note that for bridge

(B) site where the adsorption energy is higher than that of the hollow (H) site,

the trends in bondlength activation are reversed (H site giving more elongation205

compared to B site). For CO2 on Pd (111), adsorption energy on the bridge

(B) site is -0.34 eV with no bond activation between the C-O bonds. But for

the fcc site where a significant average bondlength activation up to 1.25 Å is

witnessed, the value of adsorption energy is lesser (-0.0284 eV).

In figure 1 we present a detailed picture to highlight the point. Eads (in red)210

for two molecules (N2 and CO2) on all metal surfaces and their corresponding

BLact (in blue) are plotted. Eads are sorted in the order of reducing strength of

adsorption for each M and then plotted. The range of BLact (y2 axis) is common

for all metal surfaces for a molecule and is shown on rightmost plot i.e. on Pd

surface plot. Similar plots for O2 and CO are shown in SI (Figure-SI1). We can215

see that in figure 1(a) the bondlength activation (in blue) for N2 on Au surface
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Figure 1: Adsorption energy (Eads) as a function of the adsorption sites is plotted for (a) N2

and (b) CO2 molecules on 7 metal surfaces. Eads values are sorted for each M and plotted in

red on the y1 axis. Bondlength activation (BLact) for corresponding Eads values are plotted

in blue on the y2 axis. The y2 axis for BLact is kept common and shown in the plot for ’Pd’

surface for both molecules. Similar plots for O2 and CO are shown in fig. SI-1. The plots

highlight the missing one-to-one correlation between Eads and BLact.
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is negligible, but the corresponding Eads (in red) has a range of about 1.5 eV.

Also for Cu and Ag surfaces we notice that while there is a gradual increase in

Eads values, the corresponding BLact does not show equal variation. In the case

of CO2 shown in figure 1(b), while Pd surface shows some correlation between220

Eads and BLact, the correlation is absolutely missing for adsorption on Ir and

Rh surfaces. Even on Pt surface for CO2 adsorption, it can be seen that while

Eads has values spread over the range of -0.62 eV to -0.33 eV, corresponding

BLact maintains nearly the same value. In the case of CO adsorption, the range

for Eads on Cu and Rh is small (figure SI-1) but the corresponding range for225

BLact is still significant. Thus, we generally note that there is a lack of one-to-

one correlation between the two investigated parameters viz. Eads and BLact.

While one would expect some correlation between Eads and BLact, it is certainly

not linear. Knowing that both parameters are important for catalysis, we need

to understand the factors that influence both. Our DFT investigation brings230

out the fact that the factors affecting both the parameters are possibly different

and a combination of factors affecting both should be taken into consideration

while designing a catalyst. To test our hypothesis, we further used ML on the

given dataset and analyzed the results.

3.2. Designing descriptors for ML235

Designing the right set of features that correctly define the problem at hand

is central to any ML problem. In this section, we discuss the strategy for design-

ing descriptors to be used for training ML models. Three classes of descriptors

were designed to handle the three variables in our problem viz. transition metal

surface, facet, and adsorbate. Various periodic table properties for surface el-240

ement and adsorbate along with reported values like the d-band center of an

element, bond energy of adsorbate, and so on were tested. A total of thirty two

descriptors were tested and finally, the descriptor set was reduced to the top

twelve descriptors as mentioned below:

1. Elemental properties - Group of the metal atom (Group M), Melting point245

(MP M), Electronegativity (EN M), d-band center (dbc M), van der Waals radii
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(VR M), and Atomic mass (AM M).

2. Adsorbate/Molecular properties - HOMO-LUMO gap (HL a), electron

affinity of molecule (EA a), bond energy (BE a), and Melting point of molecule

(MP a).250

3. Facet - generalised cordination number (gcn f), and atomic density (AD f).

As mentioned before, since various classes of ML algorithms were tested before

Figure 2: Pearson’s correlation plot for final reduced set of 12 descriptors. Descriptors repre-

sent properties related to surface element, surface facet and adsorbate. While, some descriptors

are strongly correlated, most correlated descriptors were removed unless it was important to

retain both

.

finalising the best model it was important to deal with multicollinearity in the

feature space. Predictions for some algorithms (like linear regression models)

could be flawed if any sort of multicollinearity existed in the provided set of255

descriptors. Pearson correlation coefficient, a measure of linear correlation be-
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tween each pair of descriptors was calculated. It is essentially the covariance

of the two variables, divided by the product of their standard deviations. Al-

though it is important to remove multicollinear features, sometimes retaining

some features is equally important. For example, as shown in figure 2, the260

bond energy of a molecule has a high negative correlation with the electron

affinity of a molecule. But both are important factors to be considered while

understanding adsorption energy and also bondlength activation that molecules

undergo upon adsorption. Hence, removing either of them would mean un-

der representing the data in feature space. Nevertheless,knowing the correlated265

features in the dataset is important. Hence, after reducing as many collinear

features as possible we came up with a final set of twelve descriptors shown in

figure 2. We can see that some features like MP M have a high correlation with

Group M and also dbc M. MP a has a strong positive correlation with HL a.

While training the dataset with linear models, care was taken to eliminate as270

many correlated features from these top twelve as possible. Since, kernel and

tree-based methods are immune to multicollinearity in the feature set, having a

few correlated features does not affect the working of such ML algorithms. The

complete correlation plot for all the features tested is given in SI (figure SI-2).

3.3. Choosing the best ML method and parameters for Eads prediction275

We tested a total of 8 ML algorithms across three classes (linear, kernel,

and tree based) of methods. Figure 3 presents a summary of the train and test

MAE for adsorption energy predictions. The values of MAE are averaged over

100 random trials of train-test splits with 25% data held out as test data each

time. We observe that the range of error in Eads prediction varies from 0.44280

eV to 0.24 eV. Figure 4 shows how well the models fit DFT data. We plot

ML predicted values of Eads versus the DFT calculated values during one of

the trials with training performed on 75% data and tested on 25% data. We

clearly see improved performance for prediction by GPR and RFR in comparison

with the Ridge algorithm (linear method). While it is clear that linear methods285

give maximum error in prediction, kernel based and tree based methods perform
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Figure 3: Average MAEs for Eads prediction obtained over 100 trials for different methods.

It can be seen that the linear class of methods perform the worst for the given problem.

Kernel-based methods and tree-based methods perform competitively well.

competitively well. Since the bias is equally low for methods of both the classes,

we further computed the explained variance for kernel-based and tree-based

methods. To build a good model we need to find a good balance between bias

and variance such that it minimizes the error. The accuracy for variability in290

model prediction for tree-based methods was 85% whereas kernel-based methods

had a lower accuracy of about 80%. Tree-based methods have other benefits

too, like no scaling of data is required before training the model, and algorithms

like ETR and RFR are not sensitive to hyperparameter tuning which in turn

reduces the training time of the model significantly. Overall we noted that295

the tree based methods work the best and hence they were chosen for further

investigations.

Furthermore, the dataset used to train the ML model is small in size, and
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Figure 4: Comparison between DFT versus ML predicted Eads values methods from each

class, (a) Linear: Ridge regression, (b) Kernel: Gaussian process regressor, and (c) Tree:

Random tree regressor. MAE’s for each method are noted in the plot. Tree based methods

perform the best overall.

hence the prediction variance of the model could highly depend on which values

get classified into the test set. Upon changing the examples in the test set the300

model may end up performing badly due to large prediction variance. One way

to deal with this is by randomly splitting the dataset into train-test sets multiple

Table 3: Average MAEs for Eads prediction using Random Forest method. Averaged over

100, 200, and 500 trials and tested for different train-test split sizes viz. 50-50%, 75-25%, and

85-15%. 75-25% split gives the lowest average MAE as well as std over all their trial sizes.

Train-Test size 50-50% 75-25% 85-15%

no. trials mean std mean std mean std

100 0.27 0.026 0.24 0.028 0.24 0.036

200 0.27 0.023 0.24 0.030 0.24 0.040

500 0.27 0.023 0.24 0.030 0.24 0.040
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times and testing the model performance. Therefore, prediction of MAE was

tested on 200 and 500 (instead of 100) random splits of dataset along with

different train-test split sizes using RFR, which was the best model (see table305

3).

It is observed that MAE averaged over 100, 200, and 500 trials have a higher

value for 50%-50% train-test split. Although the average MAE for 85%-15%

train-test split is as much as that for 75%-25% split, it has a higher standard

deviation for prediction. The averaged values of MAE for all train-test splits310

are comparable for a greater number of trials (i.e. 200 and 500). Hence, we can

safely use the train-test split of 75%-25% with MAE averaged over 100 random

trials.

3.4. Comparison between Eads and BLact using ML

We investigated the descriptor ranking for Eads as computed by the tree-315

based random forest algorithm, as shown in figure 5. The feature importance

score as calculated by the methods can be analyzed to understand the fac-

tors that play an important role in predicting the Eads values. We calculated

and plotted both impurity-based (figure 6(a)) and permutation feature rank-

ing (figure 6(b)) for random forest method. Impurity based feature ranking is320

calculated while training the ML model based on the decisions taken at nodes

while splitting. On the other hand, the permutation importance is calculated

after the model is fitted. While performing permutation importance, data for

any one of the feature is randomly shuffled in the validation set keeping the rest

of the input and target values as they are. In this way the model is expected to325

perform worse, and the drop in accuracy indicates the importance of the feature

in predicting the target. Hence, permutation importance can deal with the bias

that impurity-based ranking can have towards highly important features that

have not seen the test data. Figure 5 shows the impurity based feature ranking

computed over 100 trials. The feature ranking plot in Figure 6, is for one of330

the instances out of the 100 train-test splits. We observe that out of the twelve

descriptors used to train the ML model, a mixture of adsorbate, element, and
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Figure 5: Impurity-based feature importance for prediction of Eads values using 25% test data

with Random Forest Regressor calculated over 100 trials. A mixture of adsorbate, element

and facet properties rank among the top features.

facet properties ranked among the top six descriptors. Bond energy, melting

point, and electron affinity of adsorbate were followed upon by electronegativity

of the element. While bond energy and electron affinity of adsorbate describe335

its capacity to take part in bond formation and indulge in the transfer of charge,

EN M describes the same for the element. We understand that for adsorption

to take place there has to be a transfer of electrons from the surface to the

adsorbate indicating interaction. The extent of this interaction/adsorption will

depend on both, the capacity of the element to donate electrons and at the340

same time the capacity of adsorbate orbitals to gain electrons. Hence, we no-

ticed that the properties indicating charge transfer capacities of element and

adsorbate rank higher than other features. We also observed that the atomic

density of the given facet (AD f), was among the top-ranking features. This

number changes by changing both, metal or facet. Hence, this feature defines345

the distribution of atoms on the surface available for interaction. The atomic
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Figure 6: (a) Impurity-based and (b) Permutation feature importance for prediction of Eads

values using 25% test data with Random Forest Regressor. A mixture of adsorbate, element

and facet properties rank among the top features. Set of top 6 features is the same for both

with some shuffling in the order.

arrangement is another important factor that is known to play an active role in

governing interactions at the surface. While the ranking shuffled a little, the set

of top 6 descriptors were the same for impurity-based ranking (see figure 6(a)),

permutation based ranking (see figure 6(b)) and also when averaged over 100350

trials (see figure 5) .

Finally, to test our hypothesis about finding factors that differently affect Eads

and BLact during adsorption, we trained our best ML model with the same set

of features but a different target value this time. We used the same set of 12 cho-

sen descriptors to train the Random Forest algorithm and predict bondlength355

activations for all molecules upon adsorption. It was observed that the model

performed well with an MAE of 0.019 ± 0.002 Å for BLact prediction. Fig-

ure 7 shows the ML prediction for corresponding DFT values. Although the

prediction errors are less than 10% (since the range of BLact prediction is 0.2

Å) there is still scope for further improvement. Not only predictions on the360

test data points but also training of the model can be improved. One way to

achieve this is with the inclusion of more descriptors that fit better for BLact
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Figure 7: ML predicted versus DFT calculated values for BLact using 25% test data with tree

based random forest regressor. MAE for BLact prediction with same set of 12 descriptors is

0.018 Å.

predictions. But since the problem under investigation was to unravel the lack

of linear correlation between Eads and BLact we use the same set of descriptors

to predict both.365

Investigations for feature ranking highlighted some interesting observations. We

note that bond energy of the molecule ranked invariably the highest for Eads

predictions, but that is not the case for BLact. Although bond energy still has a

significant ranking among the tested set of features, it does not retain its number

one position while predicting BLact values. Also, the ’HOMO-LUMO gap’ which370

was a significant feature for Eads prediction, ranked consistently low for BLact

prediction, as can be seen in figure 8 and figure 9. Further, element properties

like the d-band center and melting point show up among the top ranking features

for BLact prediction. While MP had about 5% importance for Eads prediction

as well, the d-band center ranked very low. In contrast, for BLact prediction we375

noticed that the d-band center of element ranks consistently high in all three

feature ranking plots (figure 8, figure 9(a) and figure 9(b)). The d-band center

is often related to adsorption energies of the element, but our results proved
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Figure 8: Impurity-based feature importance for prediction of Eads values using 25% test data

with the Random Forest Regressor calculated over 100 trials. Newer features like the d-band

center, Van der Waal’s radii, and Group of the element contributes non-trivially for BLact

prediction.

otherwise. Knowing that the d-band center as a descriptor has proven to be ex-

tremely successful for adsorption studies, our investigations showed that linking380

it with bondlength activation could probably yield better models. At this point

we would also like to point out the importance that melting point (both of the

adsorbate and the element) as a descriptor has for BLact as well as Eads predic-

tions. Not only our study, but many other studies where attempts are made to

link elemental properties with adsorption energies report high importance for385

the melting point of an element as a feature.[60, 57] This observation calls for

further investigations to understand the hidden correlation between the two. It

was also noted that an electronic descriptor VR (van der Waals radii) of the

element ranks higher than what it did for Eads. VR of the elements influence

their nearest neighbor arrangement on the surface. Upon adsorption the avail-390

ability of nearest atom from adsorption site and the local environment as seen

by the adsorbate gets reflected in this descriptor. Hence, we observed that an
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Figure 9: (a) Impurity-based and (b) Permutation feature importance for prediction of BLact

values using 25% test data with the Random Forest Regressor. The d-band center ranked

comparatively lower for Eads prediction. HLgap ranks consistently low for BLact prediction,

unlike Eads.

electronic feature influencing the surface geometry ranked consistently low for

Eads prediction, but contributed non-trivially for BLact prediction. Thus, we

observed that the set of features that influence Eads and BLact share some but395

not all common features. Understanding that both the parameters under inves-

tigation do not follow a linear relation, our ML investigations further highlight

the factors that affect each of the parameters differently. Overall we noted that

understanding interaction at surfaces is a multi-variate problem. In our study,

we highlighted the role of BLact as another important factor to be analyzed400

to get a better picture of these interactions. Also, the scope of improving ML

models further to predict bond length activation values calls for more attention

towards the parameter.

4. Conclusion

Understanding adsorption at transition metal surfaces requires a compre-405

hensive understanding of multiple factors that govern interactions. Adsorption

energy is often considered an important parameter to understand the extent of
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interaction of an adsorbate with the surface. While we do not debate the im-

portance of analyzing Eads, we emphasize the role of another important factor

i.e. bondlength activation of adsorbates. Our DFT investigations for more than410

one molecule adsorbed on multiple surfaces demonstrated the absence of linear

correlation between Eads and BLact. This makes the analysis of both the param-

eters important and interesting. ML methods were employed to understand the

factors that influenced Eads and BLa and also confirm that they were different

for both. Tree-based Random Forest Regression model was chosen to perform415

ML analysis, after checking its performance against 7 more ML algorithms. It is

interesting to note that our best performing ML model worked well with simple

descriptors and predicted Eads with an MAE of 0.2 eV and BLact with MAE

of 0.02 Å. Further investigations to understand the feature ranking highlighted

the difference between the factors that influence the prediction of each of the420

parameters using ML models. They not only point at the lacking one-to-one

correlation between Eads and BLact, but also bring out the differences in terms

of feature ranking. Charge transfer descriptors like the bond energy and electron

affinity of adsorbate along with the electronegativity of element were among the

top-ranking features for Eads predictions. While Eads correlated well with the425

HOMO-LUMO gap of the adsorbate, BLact did not. It was also noted that the

d-band center of the element correlated better with BLact values (resulting in

higher ranking) in comparison with Eads values. These observations success-

fully test our hypothesis and prove that the correlation between Eads and BLact

is not linear and analyzing both while studying interactions at the surface is430

imperative.
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