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Abstract

Fragmentation methods based on the many-body expansion offer an attractive ap-

proach for the quantum-chemical treatment of large molecular systems, such as molec-

ular clusters and crystals. Conventionally, the many-body expansion is performed for

the total energy, but such an energy-based many-body expansion often suffers from a

slow convergence with respect to the expansion order. For systems that show strong

polarization effects such as water clusters, this can render the energy-based many-body

expansion infeasible. Here, we establish a density-based many-body expansion as a

promising alternative approach. By performing the many-body expansion for the elec-

tron density instead of the total energy and inserting the resulting total electron density

into the total energy functional of density-functional theory, one can derive a density-

based energy correction, which in principle accounts for all higher order polarization

effects. Here, we systematically assess the accuracy of such a density-based many-body

expansion for test sets of water clusters. We show that already a density-based two-

body expansion is able to reproduce interaction energies per fragment within chemical

accuracy, and is able to accurately predict the energetic ordering as well as the relative

interaction energies of different isomers of water clusters.
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1 Introduction

Fragmentation methods offer an attractive approach for the quantum-chemical treatment of

large molecular systems.1–6 By replacing a single, full quantum-chemical calculation for the

supermolecular system by many individual calculations for smaller fragments, the scaling

of the computational effort with system size can be reduced, thus enabling the treatment

of large systems that might be otherwise infeasible. Moreover, as the individual fragment

calculations are in general independent of each other, these can be performed in a mas-

sively parallel fashion.7–10 As they are naturally partitioned into their molecular building

blocks, molecular clusters and molecular crystals present ideal use cases for the application

of quantum-chemical fragmentation methods.11–14 Water clusters provide a particularly in-

teresting and intensely studied test case, as their interaction energies are determined by the

hydrogen-bond network, in which considerable polarization and other cooperative effects can

be present.13,15–17

The many-body expansion (MBE) probably constitutes the most straightforward frag-

mentation method.18–23 In its simplest variant, the total energy of the full, supermolecular

system is expanded as a sum of one-body, two-body etc. contributions,

Etot =
∑
I

E
(1)
I +

∑
I<J

∆E
(2)
IJ +

∑
I<J<K

∆E
(3)
IJK + · · · (1)

which are obtained from calculations for the isolated monomers, dimers, trimers, etc. Here,

E
(1)
I is the total energy of the I-th monomer, ∆E

(2)
IJ is the dimer interaction energy of the

I-th and J-th monomer, ∆E
(3)
IJK is the trimer interaction energy of the I-th, J-th, and K-th

monomer, and so on (see below for details). As only total energies of the fragments enter

in Eq. (1), any quantum-chemical method can be directly used within such an energy-based

MBE (eb-MBE).

While the MBE is by construction exact if all n-body contributions up to the total

number of fragments N are included, it only offers a computational advantage if it can

3



be truncated at low order. If all contributions up to order n are included, the number

of quantum-chemical fragment calculations scales as O(Nn). This scaling can be reduced

by a suitable screening of higher-order contributions, for which various strategies have been

developed.23–26 For water clusters of increasing size, Herbert and coworkers found that in the

eb-MBE the inclusion of three-body and four-body contributions is mandatory in order to

obtain chemical accuracy in the total interaction energies.23,27,28 However, the computational

effort for the inclusion of four-body and higher-order contributions (and possibly already of

the three-body contributions) is generally prohibitive.

Several strategies for accelerating the convergence of the MBE have been developed (see

Ref. 29 for a recent review). First, the MBE can be combined with embedding methods (em-

bedded MBE)24,30,31 that account for the effect of the environment in each of the fragment

calculations. Most common is the use of suitable point-charge embedding schemes,32 but re-

cently the use of more sophisticated quantum embedding schemes has also been explored.33,34

Second, multilevel composite methods can be constructed based on the MBE, in which a

cheaper low-level method (e.g., a polarizable force field) is used to calculate the higher-order

many-body contributions that are otherwise neglected in a truncated MBE.11,35–37 Third, the

MBE can be generalized to overlapping fragments38–40 and numerous fragmentation methods

have been developed following this strategy.41–46

Recently, we have proposed a density-based MBE (db-MBE),34 motivated by the obser-

vation that an MBE of the electron density,

ρtot =
∑
I

ρ
(1)
I +

∑
I<J

∆ρ
(2)
IJ +

∑
I<J<K

∆ρ
(3)
IJK + · · · (2)

converges significantly faster than the conventional MBE of the total energy [cf. Eq. (1)].

In Eq. (2), the monomer (one-body) electron densities ρ(1)I as well as the two-body, three-

body, and higher-order difference densities ∆ρ
(2)
IJ , ∆ρ

(3)
IJK , and so on, are defined analogously

to the corresponding energy terms. By inserting the MBE of the electron density into

4



the total energy functional of density-functional theory (DFT) and using explicit density

functionals for all nonadditive energy terms in the spirit of subsystem DFT,47–50 one can

derive a density-based correction to the energy-based MBE that accounts for higher-order

energy contributions. This density-based MBE formalism can be consistently combined with

different embedding schemes for the fragment calculations.

Ideally, the truncation error of any MBE scheme should be below chemical accuracy

already for a two-body approximation (pairwise additive approximation), which is rarely

achieved if an energy-based MBE is employed,29 even in combination with sophisticated em-

bedding schemes.33 Previously,34 we successfully applied the density-based MBE to selected

clusters of water and aspirin extracted from the respective crystal structures, but did not

systematically assess its accuracy. Here, we set out to close this gap by thoroughly bench-

marking the density-based MBE using water clusters as a challenging test case. We consider

both the error in the total interaction energies for clusters of increasing size (see Sect. 3) and

the error in relative interaction energies of different isomers of clusters of a given size (see

Sect. 4).

2 Computational Methodology

2.1 Energy-Based Many-Body Expansion

The conventional, energy-based many-body expansion (eb-MBE)22,29 decomposes the total

energy of a system consisting of N molecular fragments as [cf. Eq. (1)],

Etot = E(1) + ∆E(2) + ∆E(3) + · · · = E(1) +
N∑
i=2

∆E(i). (3)

Here, E(1) =
∑

I E
(1)
I are the one-body contributions obtained from calculations of the total

energies E(1)
I = EI of the N individual monomer, ∆E(2) =

∑
I<J ∆E

(2)
IJ are the two-body
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contribution obtained from calculations of the interaction energies

∆E
(2)
IJ = EIJ − EI − EJ , (4)

of the N(N − 1)/2 possible dimers, where EIJ is the total energy of the dimer consisting of

the I-th and the J-th molecular fragment, and ∆E(3) =
∑

I<J<K ∆E
(3)
IJK are the three-body

contributions obtained from the trimer interaction energies

∆E
(3)
IJK = EIJK −∆E

(2)
IJ −∆E

(2)
IK −∆E

(2)
JK − EI − EJ − EK , (5)

where EIJK is the total energy of the trimer consisting of the I-th, J-th, and K-th molec-

ular fragment. Higher-order interaction energies can be defined analogously, and general

definitions can be found in, e.g., Ref. 51.

A computational advantage compared to a supermolecular calculation for the full system

is only gained if the eb-MBE can be truncated at a sufficiently low order n� N , i.e.,

Etot ≈ E
(n)
eb-MBE = E(1) +

n∑
i=2

∆E(i). (6)

Such a truncation will introduce an error compared to a full, supermolecular treatment,

but ideally, this error is sufficiently small already at a low expansion order. For many

applications to molecular clusters, an accurate two-body expansion — with a computational

effort increasing as O(N2) — would be highly desirable.

In the simplest case, the individual single-point calculations for monomers, dimers,

trimers, etc. are performed for the respective isolated systems, i.e., the remaining molecu-

lar fragments are completely neglected. We will refer to this variant of the MBE as isolated

MBE. A commonly used strategy for accelerating the convergence of the MBE is the (approx-

imate) inclusion of this environment into the calculations for the monomer, dimer, trimers,

etc.24,30–32 For the subsystem composed of the molecular fragments {I, J, . . . }, the effect of
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this environment is included as a (local) embedding potential, v(IJ ··· )emb (r), which is due to the

remaining molecular fragments K /∈ {I, J, . . . }.

Here, we employ two variants of such an embedded MBE. First, we use an electro-

static point-charge embedding with the embedding potential commonly used in QM/MM

approaches,

v
(IJ ··· )
emb,PC(r) =

∑
K/∈{I,J,... }

∑
k∈K

qk
|r −Rk|

, (7)

where qk are suitable partial charges placed at the positions of the nuclei Rk. Second, we

consider the embedding potential of frozen-density embedding (FDE) theory,50,52

v
(IJ ··· )
emb,FDE(r) =

∑
K/∈{I,J,... }

v(K)
nuc (r) +

∑
K/∈{I,J,... }

∫
ρK(r′)

|r − r′|
d3r′

+
δTs[ρ]

δρ

∣∣∣∣
ρ=ρtot

− δTs[ρ]

δρ

∣∣∣∣
ρ=ρIJ···

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρtot

− δExc[ρ]

δρ

∣∣∣∣
ρ=ρIJ···

(8)

with ρtot = ρIJ ···+
∑

K/∈{I,J,... } ρK . This embedding potential depends on the electron densities

ρK(r) of the monomers constituting the environment, which are obtained from calculations

for the isolated monomers in the present study. It includes the full nuclear potentials v(K)
nuc (r)

of the monomers in the environment as well as their full Coulomb potential. In addition, it

also contains non-classical contributions due to the exchange–correlation and kinetic energy,

which are evaluated using an approximate exchange-correlation (xc) functional Exc[ρ] and

an approximate kinetic energy functional Ts[ρ].

It is important to note that when using an embedded MBE, the total energies of the

monomers, dimers, trimers, etc. that appear in Eq. (3) refer only to the active (embedded)

subsystem and must exclude the interaction of this active subsystem with the embedding

potential to avoid double-counting of interactions (see Ref. 34 for a detailed discussion).
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2.2 Density-Based Many-Body Expansion

Starting point for the density-based MBE (db-MBE)34 is a many-body expansion of the

electron density [cf. Eq. (2)],

ρtot(r) = ρ
(1)
tot(r) + ∆ρ

(2)
tot(r) + ∆ρ

(3)
tot(r) + · · · = ρ

(1)
tot(r) +

N∑
i=1

∆ρ
(i)
tot(r), (9)

which can be truncated at order n,

ρtot(r) ≈ ρ
(n)
tot (r) = ρ

(1)
tot(r) +

N∑
i=1

∆ρ
(i)
tot(r). (10)

Here, ρ(1)tot(r) =
∑

I ρ
(1)
I is the sum of the monomer densities and ∆ρ

(2)
tot(r) =

∑
I<J ∆ρ

(2)
IJ is

the sum of the dimer density corrections,

ρ
(2)
IJ = ∆ρ

(2)
IJ = ρIJ − ρ(1)I − ρ

(1)
J , (11)

where ρIJ is the electron density calculated for the dimer of the I-th and J-th fragment.

The three-body and higher-order contributions are defined analogously to the corresponding

energy corrections. As discussed for the eb-MBE above, an MBE of the electron density can

either be performed as an isolated MBE or as an embedded MBE. Previously,34 we noticed

that such a MBE of the electron density usually converges faster than the conventional MBE

of the total energy, in particular if a suitable embedding scheme is employed.

Within the framework of density-functional theory (DFT), the above (truncated) MBE

of the electron density can then be used to obtain an approximation of the total energy as34

Etot ≈ E
(n)
db-MBE = Etot

[
ρ
(n)
tot (r)

]
, (12)

where

Etot[ρ] = Ts[ρ] + Vnuc[ρ] + J [ρ] + Exc[ρ] + ENN (13)
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is the well known total energy functional of Kohn–Sham DFT. Here, Ts[ρ] is the nonin-

teracting kinetic energy functional, which is commonly evaluated with the help of the KS

orbitals {φi}, Vnuc[ρ] =
∫
ρ(r)vnuc(r) d3r is the electron–nuclei attraction energy, J [ρ] =

1
2

∫∫ ρ(r)ρ(r′)
|r−r′| d3rd3r′ is the Coulomb energy, Exc[ρ] is the exchange–correlation (xc) func-

tional, and ENN is the nuclear repulsion energy.

Eq. (12) can be re-expressed as

E
(n)
db-MBE = E

(n)
eb-MBE +

(
Etot

[
ρ
(n)
tot (r)

]
− E(n)

eb-MBE

)
= E

(n)
eb-MBE + E

(n)
db-corr, (14)

where E(n)
eb-MBE is the total energy obtained in a conventional, energy-based n-body expansion

and E
(n)
db-corr is a density-based interaction energy correction term. The first term can be

evaluated in the conventional way using any quantum-chemical method — either based on

DFT or wave-function theory — whereas the second term can be evaluated using approximate

kinetic-energy and xc density functionals in the spirit of subsystem DFT.50 Thus, the db-

MBE can be viewed as an ONIOM-style53,54 composite scheme in which orbital-free DFT is

used as the low-level method.

At first order (i.e., for a one-body expansion using only monomer calculations), one

obtains the density-based energy correction,

E
(1)
db-corr = Etot

[∑
I ρ

(1)
I

]
−
∑

I EI

=
∑
I 6=J

∫
ρ
(1)
I (r)v(J)nuc(r) d3r +

∑
I<J

∫∫
ρ
(1)
I (r)ρ

(1)
J (r′)

|r − r′|
d3rd3r′ +

∑
I<J

E
(IJ)
NN

+ Enadd
xc

[
{ρ(1)I }

]
+ T nadd

s

[
{ρ(1)I }

]
(15)

where v(J)nuc(r) =
∑

j∈J
Zj

|r−Rj | is the nuclear potential of the J-the molecular fragment and

E
(IJ)
NN =

∑
i∈I
∑

j∈J
ZiZj

|Ri−Rj | is the repulsion energy between the nuclei in the I-th and the
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J-th fragment. The nonadditive kinetic-energy and xc energy functionals are defined as

T nadd
s

[
{ρ(1)I }

]
= Ts

[∑
I ρ

(1)
I

]
−
∑

I Ts

[
ρ
(1)
I

]
(16)

Enadd
xc

[
{ρ(1)I }

]
= Exc

[∑
I ρ

(1)
I

]
−
∑

I Exc

[
ρ
(1)
I

]
. (17)

These nonadditive functionals need to be evaluated using suitable approximate density func-

tionals.50,55,56 If the underlying eb-MBE is performed using DFT with an xc functional de-

pending only on the electron density, such as a generalized-gradient approximation (GGA)

functional, the nonadditive xc contribution can be evaluated consistently using the same

approximate functional. If orbital-dependent xc functionals, such as hybrid or meta-GGA

functionals, are employed or if a wavefunction-based quantum-chemical method is used, the

nonadditive xc contribution has to be approximated using a GGA xc functional. In any

case, an approximate kinetic-energy density functional has to be used to evaluate the nonad-

ditive kinetic-energy contribution. The above first-order density-based energy correction is

equivalent to the interaction energy expression used in subsystem DFT,50,57 and when using

electron densities ρ(1)I obtained from calculations for the isolated fragments, corresponds to

the Harris functional.47,48

When going to higher orders (n ≥ 2), the density-based energy correction is given by,34

E
(n)
db-corr = Etot

[
ρ
(n)
tot (r)

]
− E(n)

eb-MBE

=
(
Vnuc

[
ρ
(n)
tot

]
− V (n)

nuc

)
+
(
J
[
ρ
(n)
tot

]
− J (n)

)
+ T nadd,(n)

s

[
{ρI}, {ρIJ}, . . .

]
+ Enadd,(n)

xc

[
{ρI}, {ρIJ}, . . .

]
(18)

Here, the n-body nonadditive kinetic and xc energy functionals are defined as

T nadd,(n)
s

[
{ρI}, {ρIJ}, . . .

]
= Ts

[
ρ
(n)
tot
]
− T (n)

s (19)

Enadd,(n)
xc

[
{ρI}, {ρIJ}, . . .

]
= Exc

[
ρ
(n)
tot
]
− E(n)

xc , (20)
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when can be evaluated using suitable approximate density functionals. In the above equa-

tions, T (n)
s and E(n)

xc are the truncated many-body expansions of the kinetic and xc energies

(evaluated using suitable approximate functionals), respectively, and V (n)
nuc and J (n) are the

truncated n-body expansions of the electron-nuclei attraction and the electronic Coulomb

energies, respectively, which are defined in analogy to corresponding expansions of the total

energy defined in Eq. (6). The electron-nuclei attraction energy and the Coulomb energy of

the many-body expanded electron density at n-th order, ρ(n)tot (r), can be evaluated recursively

as,

Vnuc
[
ρ
(n)
tot
]

= Vnuc
[
ρ
(n−1)
tot + ∆ρ

(n)
tot
]

= Vnuc
[
ρ
(n−1)
tot

]
+

∫
∆ρ

(n)
tot vnuc(r) d3r, (21)

and,

J
[
ρ
(n)
tot
]

= J
[
ρ
(n−1)
tot + ∆ρ

(n)
tot
]

= J
[
ρ
(n−1)
tot

]
+

∫∫
ρ
(n−1)
tot (r)∆ρ

(n)
tot (r

′)

|r − r′|
d3rd3r′ +

1

2

∫∫
∆ρ

(n)
tot (r)∆ρ

(n)
tot (r

′)

|r − r′|
d3rd3r′.

(22)

Note that the evaluation of E(n)
db-corr only requires the knowledge of the electron densities of

the monomers, dimers, trimers etc. and is thus completely independent of the details of the

quantum-chemical calculations employed in the underlying eb-MBE.

2.3 Computational Details

All quantum-chemical calculations have been performed using DFT as implemented in

the Amsterdam Density-Functional (ADF) program package58,59 in combination with the

PyADF scripting framework.60 The BP8661,62 and B3LYP63–65 xc functionals and a double-

zeta plus polarization (DZP) basis set of Slater-type orbitals66 as well as a Becke integration

grid of “very good” accuracy67 have been used throughout. All total energies have been

obtained with ADF’s total energy implementation.68
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For the point-charge embedded MBEs we used TIP3P69 point-charges (qH = +0.417 and

qO = −0.834) for the environment water molecules. The frozen-density embedded MBE

calculations made use of ADF’s implementation of FDE70 with the PW91k nonadditive

kinetic-energy functional.71 For the BP86 calculations, the same xc functional was used

for the nonadditive xc contributions, whereas for the B3LYP calculations, the BLYP xc

functional was chosen for these terms. In these FDE calculations, ADF’s default integration

grid as described in Ref. 72 has been employed.

The density-based energy correction of arbitrary order can be obtained with PyADF

and its PyEmbed module, which provides a stand-alone implementation of the subsystem

DFT embedding potential and interaction energy terms. The n-body nonadditive xc and

kinetic energy [see Eqs. (19) and (20)] have been evaluated using the XCFun library73,74

with the approximate functional specified above. The electrostatic interaction energies are

calculated in PyEmbed by numerical integration from the electron densities and the nuclear

and Coulomb potentials exported from ADF according to Eqs. (15), (21), and (22). Here,

we used the supermolecular integration grid for the evaluation of all contributions to the

density-based energy correction. Further details on the implementation are given in Ref. 34.

The most recent release version of PyADF, which contains our implementation of the

density-based many-body expansion and which can be used in combination with the ADF

program package to reproduce all calculations included in the present manuscript, is available

at Ref. 75.

Cartesian coordinates of all molecular clusters used as test cases in this work are included

as Supporting Information.
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Figure 1: Molecular structures of (a) (H2O)20, (b) (H2O)30, and (c) (H2O)40 taken from the
test set of water clusters of increasing size. All structures in this test set correspond to the
global minima as obtained in Ref. 77 using the TIP4P force field.

3 Benchmarking the db-MBE for water clusters of in-

creasing size

As our first test case, we consider water clusters of increasing size, consisting of 6 to 55 water

molecules. For each cluster size, we employ the global minimum structure determined using

the TIP4P force field,76,77 as available from Ref. 77. As examples, the considered structures

of (H2O)20, (H2O)30, and (H2O)40 are shown in Fig. 1. This test set has previously been

used extensively by Herbert and co-workers22,27–29 to assess the accuracy of many-body

expansions.

For each cluster size, we have calculated the total interaction energy,

EMBE
int, tot = E

(n)
MBE −

∑
I

EI , (23)

using different MBEs (see below) and compared it to the total interaction energy obtained

with the help of a full, supermolecular calculations of the respective water cluster,

Esuper
int, tot = Esuper

tot −
∑
I

EI . (24)
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In Fig. 2, we plot the error in the total interaction energy for different MBEs

∆EMBE
int = EMBE

int,tot − E
super
int,tot. (25)

as a function of the cluster size n = 6, . . . , 55. Here, we have performed DFT calculations

using the BP86 GGA functional (upper part of Fig. 2) as well as the B3LYP hybrid func-

tional63–65 (lower part of Fig. 2) in combination with a DZP basis set. The data underlying

the plots in Fig. 2 are given in Section S2 of the Supporting Information.

Note that we take the supermolecular calculations for the respective water clusters as

our reference, and do not correct for basis-set superposition error, which is only significant

for the accuracy of MBEs if large basis sets containing diffuse functions are used.23,78 Thus,

while the total interaction energies might not accurately agree with the results of high-

level calculations, our comparison is internally consistent and allows us to assess the error

introduced by the truncated MBEs. Generally, the errors observed for low-order MBEs have

been found to be size-extensive.29 Here, we consider an error in the total interaction energy

below 1 kcal/mol (or 4.2 kJ/mol) per monomer, corresponding to chemical accuracy for the

interaction energy per monomer, as a reasonable target. Of course, this can still result in a

substantial error in the total energies for larger clusters, and different accuracy targets (such

as “dynamical accuracy” of 0.37 kJ/mol per monomer79) might be needed depending on the

applications at hand, in particular if larger clusters are considered.

Fig. 2a plots the error in the total interaction energy for the isolated MBEs, i.e., the

MBEs have been performed using calculations for the isolated monomers and dimers. For the

conventional energy-based two-body expansion [eb-MBE(2), cyan squares] the error increases

roughly linearly with the number of fragments. For BP86/DZP (upper panel), it amounts

to 10.3 kJ/mol per monomer for (H2O)10 and to 14.0 kJ/mol per monomer for (H2O)55,

whereas for B3LYP/DZP the error is 7.9 kJ/mol per monomer for (H2O)10 and 9.9 kJ/mol

per monomer for (H2O)55. We note that while our general trend of a roughly linear increase

14



Figure 2: Error in the total interaction energy ∆E
(n)
int for (H2O)N clusters of increasing size

(N = 6, . . . , 55) for an energy-based two-body expansion [eb-MBE(2), cyan squares] as well
as for a density-based many-body expansion of first [db-MBE(1), blue triangles] and second
[db-MBE(2), red circles] order. Our target accuracy of 1 kcal/mol per monomer is indicated
by the black line. The MBEs have been performed using (a) calculations of the isolated
monomers and dimers (“Iso”), (b) using electrostatic point-charge embedding (“PC”), and
(c) using a frozen-density embedding potential (“FDE”). All results have been obtained in
DFT calculations with the BP86 GGA functional (upper panels) and the B3LYP hybrid
functional (lower panels) in combination with a DZP basis set.
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agrees with the previous results of Herbert and coworkers,28 the magnitude of the errors

differs. For B3LYP/cc-pVDZ, Ref. 28 reports an average error of only 4.4 kJ/mol per

monomer, but the results presented in Ref. 28 also show a strong basis-set dependence.

The errors in the total interaction energy for a density-based MBE of first order [db-

MBE(1), blue triangles] and second order [db-MBE(2), red circles] are also included in

Fig. 2a. The first-order db-MBE(1), which requires only calculations for the monomers, leads

to results that are clearly worse than for the eb-MBE(2), with an error of 25.2 kJ/mol per

monomer for (H2O)55 in the BP86/DZP calculations, respectively. However, the second-order

db-MBE(2) drastically improves upon the eb-MBE(2), with an error in the total interaction

energy per monomer that is well below the threshold of chemical accuracy. For BP86/DZP,

the error is 0.7 kJ/mol per monomer for (H2O)10 and 1.4 kJ/mol per monomer for (H2O)55.

Fig. 2b shows the errors in the total interaction energies for the corresponding MBEs

performed in the presence of an electrostatic point-charge embedding potential in the cal-

culations of the monomers and dimers. Here, we used the charges provided by the TIP3P

water model.69 First, we note that the inclusion of the point-charge embedding significantly

improves the performance of the eb-MBE(2) compared to the isolated MBE, with errors

of 7.3 kJ/mol per monomer for (H2O)10 and 10.3 kJ/mol per monomer for (H2O)55 in the

BP86/DZP calculations. Also for the first-order db-MBE(1), the errors are significantly re-

duced and become roughly comparable to those of the eb-MBE(2). For the second-order

db-MBE(2), the errors are again drastically reduced and the error per fragment remains be-

low chemical accuracy. For BP86/DZP, it amounts to 0.9 kJ/mol per monomer for (H2O)10

and 1.9 kJ/mol per monomer for (H2O)55. We note that this error is slightly larger than for

the isolated db-MBE(2).

Finally, the results for the MBEs using a frozen-density embedding potential in the

monomer and dimer calculations are plotted in Fig. 2c. They largely agree with those ob-

tained with point-charge embedding. For BP86/DZP, errors amounts to 7.7 kJ/mol per

monomer for (H2O)10 and 10.2 kJ/mol per monomer for (H2O)55 with the eb-MBE(2), com-

16



pared to 1.0 kJ/mol per monomer for (H2O)10 and 1.9 kJ/mol per monomer for (H2O)55

with the db-MBE(2). This indicates that the use of such a more sophisticated embedding

potential does not improve compared to the use of well-chosen point charges. We note that

for the eb-MBE(2), Herbert and co-workers found a strong sensitivity on the choice of the

embedding charges.28 Thus, the use of a frozen-density embedding potential might offer an

unbiased alternative in cases where no point-charge parametrization is available or where

the choice of suitable charges is ambiguous.

Comparing the BP86/DZP (upper panels) and the B3LYP/DZP results (lower panels), we

notice that the errors of the eb-MBE are lower in the case of B3LYP. This can be attributed

to the strong method dependence of the interaction energies as well as their errors in eb-

MBEs for water clusters.28 For the density-based MBEs, the errors are slightly larger for

the B3LYP calculations compared to BP86. This is most likely related to the fact that

for hybrid functionals such as B3LYP, the non-additive xc energy contributions have to be

approximated using a pure GGA functional, whereas for BP86, the xc energy contributions

are handled consistently using the same functional in the db-MBE and in the supermolecular

calculation. Results of additional test calculations assessing the influence of the choice of

the nonadditive xc functional can be found in Section S1 of the Supporting Information.

Overall, our results for the considered test set of water clusters of increasing size with

up to 55 monomers show that a two-body db-MBE(2) outperforms the conventional eb-

MBE(2), while requiring the same number of single-point calculations for monomers and

dimers. Both for an isolated db-MBE(2) and when using a suitable embedding potential in

the db-MBE(2), the error per monomer is well below the threshold of chemical accuracy (1

kcal/mol or 4.2 kJ/mol), even though it does not reach the threshold of dynamical accuracy

(0.37 kJ/mol).79 We further note that already the first-order db-MBE(1), which requires

only single-point calculations for the monomers, yields errors that are comparable to those

of the eb-MBE(2) if a suitable embedding scheme is used.
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4 Benchmarking the db-MBE for isomers of selected wa-

ter clusters

While the calculations presented in the previous section allow us to judge the absolute error

in the total interaction energy, for many applications relative stabilities across a set of similar

molecular systems are more relevant, and present another challenging test case for MBEs.33

Therefore, in this section we assess the ability of MBEs to accurately predict the relative

interaction energies of different isomers of water clusters of the same size. We consider

the low-energy isomers identified in previous studies for (H2O)6,80 (H2O)16,81 (H2O)17,81

and (H2O)20.82 The relative stabilities of the different isomers depend on the structure of

the respective hydrogen-bonding networks as well as the strengths of the intermolecular

hydrogen bonds. These, in turn, intricately depend on cooperative polarization effects,15

which are difficult to capture in conventional eb-MBEs.

For our test set, we used the coordinates of the different isomers available in Refs. 80–82

and performed calculations using both the eb-MBE and the db-MBE of increasing order

with BP86/DZP, considering both the isolated and point-charge embedded case. Results

for the frozen-density embedded MBEs are very close to those obtained with point-charge

embedding and are, therefore, not discussed in the following. Similarly, no significantly

different observations are made when applying B3LYP/DZP. These additional results can

be found in Section S3 of the Supporting Information.

For each cluster size, we consider the total interaction energies of the different isomers,

relative to the one of the lowest-energy isomer, i.e.,

Eisomer A
int,rel = Eisomer A

int,tot − Eisomer 0
int,tot , (26)

where Eint,tot is calculated according to Eq. (23) and where the superscripts “isomer A” and

“isomer 0” denote the considered isomer as well as the lowest-energy isomer, respectively.
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Table 1: Interaction energies (BP86/DZP, in kJ/mol) of the book, ring, cage, and prism
isomers of the water hexamer (H2O)6 relative to the book isomer as calculated with the
energy-based MBE up to forth order [eb-MBE(n), n = 2, 3, 4] as well as the density-based
MBE up to forth order [db-MBE(n), n = 1, 2, 3, 4]. The relative interaction energies from
supermolecular calculations are given as reference. Included are results from the isolated
MBEs (“iso”) as well as embedded MBEs using point charges (“PC”).

isomer Esuper
int,rel E

eb-MBE(n)
int,rel E

db-MBE(n)
int,rel

n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

iso Book 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ring +2.14 +9.22 +7.16 +3.23 +11.34 +3.09 −0.68 +1.47

Cage +3.65 −2.33 −1.01 +3.43 −9.61 +4.11 +6.34 +3.46

Prism +5.89 −0.05 +1.15 +5.45 −13.69 +6.55 +8.21 +6.18

PC Book 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ring +2.14 +3.84 +5.47 +2.87 +5.79 +4.16 +1.56 +2.15

Cage +3.65 +1.63 0.00 +3.51 −3.26 +2.79 +4.76 +3.32

Prism +5.89 +3.71 +1.68 +5.89 −6.11 +4.80 +7.07 +5.40

Note that this relative interaction energy differs from the commonly considered relative

total energy,

Eisomer A
rel = Eisomer A

tot − Eisomer 0
tot

=
(
Eisomer A

int,tot +
∑
I

Eisomer A
I

)
−
(
Eisomer 0

int,tot +
∑
I

Eisomer 0
I

)
= Eisomer A

int,rel +
(∑

I

Eisomer A
I −

∑
I

Eisomer 0
I

)
. (27)

Here, the difference,
∑

I E
isomer A
I −

∑
I E

isomer 0
I is due to differences in the geometries of

the water monomers for the two isomers. However, since this term is calculated consistently

with all MBEs we do not include it in our comparison, as it might otherwise obscure the

relative accuracy of the MBEs.

First, we consider the book, ring, cage, and prism isomers of the water hexamer (cf. Ref.

80). These structures are shown in Fig. 3b. The interaction energies of these (H2O)6 isomers,

19



Figure 3: (a) Interaction energies (BP86/DZP) of the book (blue circles), ring (red squares),
cage (orange up-triangles), and prism (green down-triangles) isomers of the water hexamer
(H2O)6 relative to the book isomer as calculated with the energy-based MBE [eb-MBE(n),
n = 2, 3, 4, left panels] as well as the density-based MBE [db-MBE(n), n = 1, 2, 3, 4, right
panels]. The horizontal dashed lines indicate the corresponding reference values from su-
permolecular calculations. Included are results from both the isolated MBEs (“iso”, upper
panels) and the embedded MBEs using point charges (“PC”, lower panels). (b) Molecular
structures of the book, cage, prism, and ring isomer of the water hexamer.
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relative to the book isomer, are given in Table 1 and are visualized in Fig. 3a. In the

supermolecular BP86/DZP calculations, the interaction energy is the largest for the book

isomer, while the other three considered isomers show slightly smaller interaction energies.

The ring isomer has the second largest interaction energy, which is 2.14 kJ/mol smaller than

for the book isomer. This is followed by the cage and prism isomers, with interaction energies

that are 3.65 kJ/mol and 5.89 kJ/mol smaller than for the book isomer. Reproducing these

small differences in interaction energies is challenging for MBEs, in particular as these are

not correlated with the number of intermolecular hydrogen bonds. For instance, the ring

isomer only exhibits six hydrogen bonds (compared to eight for the cage isomer), but is

significantly stabilized by cooperative polarization effects.

The energy-based two- and three-body expansions fail to reproduce the correct order

of interaction energies in the isomers, both for the isolated and for point-charge embedded

eb-MBE. In all cases, the ring isomer is predicted to have the lowest interaction energy,

whereas the interaction energy of the cage isomer is overestimated. Only with the four-body

eb-MBEs the correct ordering is reproduced, with errors in the relative interaction energies

that are smaller than 1 kJ/mol for all isomers for the embedded eb-MBE(4). These findings

for the eb-MBE are in agreement with previous calculations for water hexamers83 and with

the general finding that at least a four-body eb-MBE(4) is necessary to achieve accurate

results for water clusters.23,29

At first order (i.e., using only monomer calculations), the db-MBE also fails dramati-

cally and the resulting ordering only reflects the number of intermolecular hydrogen bonds.

However, already for a two-body db-MBE the results are significantly improved compared

to the eb-MBE(2). Both the isolated and the embedded db-MBE(2) correctly identify the

book isomer as the one with the largest interaction energy. Moreover, they correctly predict a

larger interaction energy for the ring isomer than for the prism isomer and correctly find that

despite its larger number of hydrogen bonds, the prism isomer has the smallest interaction

energy. The db-MBE(3) further improves upon the two-body expansions. For the isolated
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Figure 4: (a) Interaction energies (BP86/DZP) of five isomers of (H2O)16 relative to the
boat-a isomer as calculated with the energy-based MBE [eb-MBE(n), n = 2, 3, left panels]
as well as the density-based MBE [db-MBE(n), n = 1, 2, 3, right panels]. The horizontal
dashed lines indicate the corresponding reference values from supermolecular calculations.
Included are results from both the isolated MBEs (“iso”, upper panels) and the embedded
MBEs using point charges (“PC”, lower panels). (b) Molecular structures of the considered
isomer of (H2O)16

db-MBE(3), the ring isomer is over-stabilized, but for the embedded db-MBE(3) the correct

ordering of the interaction energies is obtained. Finally, for the embedded db-MBE(4), the

errors in the relative interaction energies drop below 0.5 kJ/mol for all four isomers.

As a second test case, we consider the five isomers of (H2O)16 studied in Ref. 81. Previous

results for this test set using the eb-MBE can be found in Ref. 84. The interaction energies

obtained in supermolecular BP86/DZP calculations as well as the corresponding eb-MBEs

and db-MBEs are given in Table 2 and are visualized in Fig. 4, which also shows the molecular

structures of the considered isomers. In the supermolecular calculations, the boat-a and boat-

b isomers show the largest interaction energies, with a difference of only 1.39 kJ/mol between

the two. For the anti-boat isomer, a slightly lower interaction energy is found, which differs

by only 4.92 kJ/mol from the one of the boat-a isomer. The 4444-a and 4444-b isomers show

almost identical interaction energies (differing by only 0.31 kJ/mol), which are ca. 25 kJ/mol
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Table 2: Interaction energies (BP86/DZP, in kJ/mol) of five isomers of (H2O)16 relative
to the boat-a isomer as calculated with the energy-based MBE of second and third order
[eb-MBE(n), n = 2, 3] as well as the density-based MBE of first, second, and third order [db-
MBE(n), n = 1, 2, 3]. The relative interaction energies from supermolecular calculations are
given as reference. Included are results from the isolated MBEs (“iso”) as well as embedded
MBEs using point charges (“PC”).

isomer Esuper
int,rel E

eb-MBE(n)
int,rel E

db-MBE(n)
int,rel

n = 2 n = 3 n = 1 n = 2 n = 3

iso boat-a 0.00 0.00 0.00 0.00 0.00 0.00

boat-b +1.39 +4.05 +1.99 +1.62 +0.91 +0.95

anti-boat +4.92 +8.53 +9.74 +4.93 +6.34 +0.86

4444-a +25.22 +7.19 +12.26 −20.43 +26.95 +27.81

4444-b +25.53 +15.16 +12.60 −12.19 +27.40 +28.09

PC boat-a 0.00 0.00 0.00 0.00 0.00 0.00

boat-b +1.39 +4.30 +1.91 +0.68 +1.74 +1.58

anti-boat +4.92 +6.52 +7.65 +2.98 +4.97 +3.39

4444-a +25.22 +7.89 +13.37 +1.19 +22.05 +25.76

4444-b +25.53 +15.55 +13.02 +2.52 +22.89 +26.85
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lower than for the boat-a structure.

The eb-MBE(2) fails to correctly reproduce the relative interaction energies. It largely

underestimates the energy splitting between the boat-a and the two 4444 isomers, and finds

an interaction energy difference of ca. 8 kJ/mol between the almost isoenergetic 4444-a

and 4444-b isomers. This energy difference found in the eb-MBE(2) calculations reflects the

differences in the electrostatic interaction between the dipole moments of the water molecules.

While in the 4444-a isomer, the four stacked tetramers are aligned in an electrostatically

favorable antiparallel fashion (abab), they are arranged in an aabb configuration with a

parallel alignment of the dipoles between the first and second as well as the third and fourth

layer.

Going to the eb-MBE(3) significantly improves by yielding the correct ordering, but still

fails to reproduce the interaction energy differences between the isomers accurately. While

the energy difference between the boat-a and boat-b isomers is accurate to within 0.6 kJ/mol

for both the isolated and the embedded eb-MBE(3), the relative interaction energy of the

anti-boat isomer is too low by 4.83 kJ/mol and 2.73 kJ/mol for the isolated and the embedded

expansion, respectively. The interaction energy splitting between the 4444-a and the 4444-

b isomer is now smaller than 0.35 kJ/mol. Both isomers are overstabilized compared to

the boat isomers, with a relative interaction energy that is about half as large as in the

supermolecular calculation. This failure of the eb-MBE to accurately reproduce the relative

energies of the considered (H2O)16 isomers is in agreement with the previous studies.84

In contrast, already the two-body db-MBE(2) correctly reproduces both the ordering

of the interaction energies for the different isomers and the relative interaction energies

themselves, including for the splitting between the 4444-a and 4444-b isomers. The maximum

error of the relative interaction energies amounts to 1.9 kJ/mol and 2.64 kJ/mol for the

isolated and for the point-charge embedded db-MBE(2), respectively. While compared to

the isolated db-MBE(2) the embedded db-MBE(2) improves for the low-lying boat and anti-

boat isomers, it overestimates the interaction energies of the 4444-a and 4444-b isomers.
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Figure 5: (a,c) Interaction energies (BP86/DZP) of isomers of (a) (H2O)17 and (c) (H2O)20
relative to the respective lowest-energy isomer, as calculated with the energy-based MBE
[eb-MBE(n), n = 2, 3, left panels] as well as the density-based MBE [db-MBE(n), n =

1, 2, 3, right panels] using point-charge embedding. The horizontal dashed lines indicate the
corresponding reference values from supermolecular calculations. (b,d) Molecular structures
of the considered isomer of (b) (H2O)17 and (d) (H2O)20.

When going to the three-body db-MBE(3), the accuracy further improves, and for the case

of the embedded db-MBE(3), the maximum error in the relative interaction energies amounts

to only 1.32 kJ/mol.

As our third test case, we chose the four isomers of (H2O)17 investigated in Ref. 81

(see Fig. 5b). Our results for the point-charge embedded eb-MBE and db-MBE are given

in Table 3 and are shown in Fig. 5a. The results for the isolated MBEs can be found

in the Supporting Information. In our BP86/DZP supermolecular calculations, the 552-5

isomer is the one with the largest interaction energy, followed by the sphere isomer with an

interaction energy that is smaller by 10.57 kJ/mol, and the l-shape and 441-44 isomers that

are 14.56 kJ/mol and 15.89 kJ/mol, respectively, above the most stable one.

The two-body as well as three-body eb-MBEs dramatically fail to reproduce both the
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Table 3: Interaction energies (BP86/DZP, in kJ/mol) of isomers of (H2O)17 and (H2O)20
relative to the respective lowest-energy isomer, as calculated with the energy-based MBE
of second and third order [eb-MBE(n), n = 2, 3] as well as the density-based MBE of first,
second, and third order [db-MBE(n), n = 1, 2, 3] using point-charge embedding.

isomer Esuper
int,rel E

eb-MBE(n)
int,rel E

db-MBE(n)
int,rel

n = 2 n = 3 n = 1 n = 2 n = 3

(H2O)17 552-5 0.00 0.00 0.00 0.00 0.00 0.00

sphere +10.57 +17.48 +4.44 +0.63 +10.48 +14.38

l-shape +14.56 +6.03 +3.79 +1.29 +12.30 +19.23

441-44 +15.89 −0.68 +3.03 −3.38 +14.70 +17.77

(H2O)20 20-A 0.00 0.00 0.00 0.00 0.00 0.00

20-E +14.27 +3.42 +7.11 −5.68 +10.81 +17.65

20-C +14.79 −0.75 +6.75 −8.30 +13.55 +16.25

20-F +24.63 +8.17 +17.02 −3.48 +22.80 +26.71

20-D +24.96 +15.15 +17.70 +0.14 +23.38 +27.08

20-B +42.23 +28.68 +34.79 +12.34 +36.19 +48.69

ordering and the energy differences between all pairs of isomers. In contrast, the db-MBE(2)

and db-MBE(3) show a substantial improvement compared to the eb-MBE. For the two-

body db-MBE(2), the ordering of the four isomers is reproduced correctly, with the relative

interaction energies of the l-shape and 441-44 isomers overestimated by 2.26 kJ/mol and

1.19 kJ/mol, respectively. For the three-body db-MBE(3), the overall accuracy becomes

slightly worse. Now, the 552-5 isomer is overstabilized compared to the other three isomers

and the order of the l-shape and 441-44 isomers is reversed, while at the same time the

interaction energy difference between the sphere isomer and the l-shape and 441-44 isomers

becomes more accurate.

Finally, we consider the six low-energy isomers of (H2O)20, which have been identified

and optimized by Gadre and coworkers.82 Following Ref. 82, we label these isomers 20-A

to 20-F (see Fig. 5d). The corresponding results are included in Table 3 and are visualized

in Fig. 5c. With supermolecular BP86/DZP calculations, 20-A has the largest interaction
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energy. The pairs 20-E and 20-C as well as 20-F and 20-D are almost isoenergetic, with an

interaction energy of ca. 14.5 kJ/mol and ca. 24.8 kJ/mol, respectively, lower than for 20-A.

While again, the two-body eb-MBE(2) fails to correctly reproduce this correct ordering of

the isomers, the three-body eb-MBE(3) yields the correct pattern, even though the order

is reversed for the pair 20-C and 20-E. However, the magnitude of the interaction energy

differences is severely underestimated also with the eb-MBE(3).

In contrast, the db-MBE(2) yields the correct ordering for all six isomers and significantly

improves for the interaction energy differences compared to the eb-MBE(3). Still, the relative

interaction energies are too low for all isomers by up to 6 kJ/mol, and the splitting between

20-E and 20-C is too large by 2.22 kJ/mol. With the db-MBE(3), the overall picture is

slightly improved, even though all relative interaction energies are now overestimated by up

to 6.5 kJ/mol.

Overall, for interaction energy differences between different isomers of water clusters

(H2O)n with n = 6, 16, 17, 20 we find that in general, the eb-MBE is not able to correctly

reproduce the interaction energy differences between the different isomers as obtained from

a supermolecular calculation. Mostly, even the ordering of the considered isomers is not

described correctly. This even holds if a point-charge embedded eb-MBE is employed. Our

findings for the eb-MBE are in agreement with previous results that demonstrated the need

for including four-body or even higher-order contributions for challenging systems such as

water clusters (see, e.g., Ref. 29 and references therein). These shortcomings of the eb-MBE

are rectified already by the two-body db-MBE(2), which generally accurately reproduces both

the energy ordering of the considered isomers as well as the interaction energy differences.

Overall, the results obtained with the db-MBE(3) are comparable in accuracy to those from

the db-MBE(2), and show not clear improvement in most cases.

Across our test set, we find a mean unsigned error in the relative interaction energies

of 0.13 kJ/mol per fragment and of 0.14 kJ/mol per fragment for the db-MBE(2) and db-

MBE(3), respectively. The maximum errors amount to 0.34 kJ/mol per fragment and of
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0.32 kJ/mol per fragment for the db-MBE(2) and db-MBE(3), respectively, and are thus

below the threshold of dynamical accuracy.79

5 Conclusions and Outlook

Conventionally, the many-body expansion is performed based on the total energies of monomer,

dimer, trimer etc. fragments, but this energy-based MBE suffers from a slow convergence

with the expansion order. For systems such as water clusters, that show strong polariza-

tion and other cooperative effects, it has been previously demonstrated that the inclusion of

three- and four-body contributions is mandatory to reach a sufficient accuracy.23,27,28 This

still holds if the eb-MBE is combined with suitable embedding schemes for the fragment

calculations.

To alleviate this shortcoming, the MBE can be performed for the electron density, which

provides a density-based energy correction that accounts for many-body polarization effects

already at low expansion orders.34 In fact, with an exact embedding scheme (e.g., with

frozen-density embedding in combination with an exact treatment of the nonadditive kinetic

energy85,86), the correct total electron density could in principle already be reproduced at

the one-body level, i.e., as the sum of (embedded) monomer densities. While even in this

case, the eb-MBE fails to reproduce the supermolecular total energy, the db-MBE becomes

exact if the MBE of the electron density agrees with the supermolecular electron density,

assuming that exact nonadditive density functional are used.

From a more practical point of view, the db-MBE can be considered as an ONIOM-style

hybrid scheme, in which an eb-MBE is used as the high-level method, whereas an orbital-free

DFT treatment is used as the low-level method. This is similar to hybrid schemes such as

the hybrid-many body interactions (HMBI) method of Beran and coworkers,11,36 which uses

a polarizable force field as low-level method. Here, the db-MBE offers the advantage that it

treats the many-body polarization effect fully quantum-chemically and does not rely on any
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parametrization.

In the present study, we have assessed the accuracy of the db-MBE for test sets of water

clusters. For water clusters of increasing size, we could show that already at second order

(i.e., for a two-body expansion) the db-MBE yields errors that are below the threshold

of chemical accuracy for the interaction energy per fragment. For the considered isomers

of water clusters, the second-order db-MBE(2) is able to accurately predict the energetic

ordering of as well as the energy differences between the different isomers.

While already an isolated db-MBE drastically improves compared to an eb-MBE, we find

that in general the use of a suitable embedding scheme in the fragment calculations further

improves the accuracy of the db-MBE. Here, we found that for water clusters a point-charge

embedding is generally sufficient and that the use of a frozen-density embedding potential

does not yield further improvements.

We note that the db-MBE does not require any additional quantum-chemical calculations

compared to an eb-MBE of the same order. The evaluation of the density-based energy

correction only requires the calculation of the electron densities and electrostatic potentials

of all fragments on a suitable numerical integration grid. This step adds some computational

overhead, but does not alter the overall scaling of the MBE.

In the present study, we have only considered MBEs based on DFT calculations, which

allow for a consistent comparison to supermolecular results. However, the formalism of

the db-MBE is not restricted to DFT. The calculation of the density-based interaction en-

ergy correction E
(n)
db-corr only requires the fragments’ electron densities and their associated

Coulomb potentials, and it can thus be calculated using any quantum-chemical method that

is able to provide an electron density. We will explore the combination of the db-MBE with

the use of accurate wave-function based quantum-chemical methods in our future work.
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