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Accurate and efficient simulation of the thermodynamics and kinetics of protein-ligand inter-
actions is crucial for computational drug discovery. Multiensemble Markov Model (MEMM)
estimators can provide estimates of both binding rates and affinities from collections of short
trajectories, but have not been systematically explored for situations when a ligand is decou-
pled through scaling of non-bonded interactions. In this work, we compare the performance of
two MEMM approaches for estimating ligand binding affinities and rates: (1) the transition-
based reweighting analysis method (TRAM) and (2) a Maximum Caliber (MaxCal) based
method. As a test system, we construct a small host-guest system where the ligand is a
single uncharged Lennard-Jones (LJ) particle, and the receptor is an 11-particle icosahe-
dral pocket made from the same atom type. To realistically mimic a protein-ligand binding
system, the LJ ε parameter was tuned, and the system placed in a periodic box with 860
TIP3P water molecules. A benchmark was performed using over 80 µs of unbiased simula-
tion, and an 18-state Markov state model used to estimate reference binding affinities and
rates. We then tested the performance of TRAM and MaxCal when challenged with limited
data. Both TRAM and MaxCal approaches perform better than conventional MSMs, with
TRAM showing better convergence and accuracy. We find that subsampling of trajectories
to remove time correlation improves the accuracy of both TRAM and MaxCal, and that in
most cases only a single biased ensemble to enhance sampled transitions is required to make
accurate estimates.

Keywords: Markov Model, molecular kinetics, multiensemble, Maximum Caliber, TRAM,
MBAR, free energy estimators

INTRODUCTION

Estimating both the thermodynamics and kinetics of
protein-ligand binding is essential for understanding bi-
ological function and for the rational design of ther-
apeutics. In the last decade, alchemical free energy
perturbation—a technique which relies on sampling from
multiple thermodynamic ensembles—has emerged as the
main tool to accurately estimate binding thermodynam-
ics from molecular simulations.1–8 Along with the grow-
ing recognition of the importance of binding rates in drug
discovery (in particular, the residence time9–11), there
has also been increased interest in estimating the kinet-
ics of protein-ligand binding using molecular simulation.
Although different methods to estimate on- and off-rates
of ligand-binding have been developed,12–21 most of them
estimate rates separately from (or at the expense of) ther-
modynamics.

Markov State Models (MSMs) of molecular kinetics,
which describe conformational dynamics as a network
of transitions between metastable states,22–26 can pro-
vide combined estimates of the thermodynamics and ki-
netics of ligand binding from large ensembles of short
trajectories.27–31 In practice, however, estimates of slow
dissociation rates are limited by the sampling of rare
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events, because a key assumption is that the trajectories
are sampled at equilibrium.32,33 Although rare events can
be sampled in ultra-long trajectories using specialized
hardware,34 a more general approach would be desired.

A great improvement to this situation has come from
the introduction of so-called multi-ensemble Markov
Model (MEMM) estimators, which use trajectory
data collected from multiple thermodynamic ensem-
bles to make MSM estimates of thermodynamics and
kinetics.35–39 The essential idea, as applied to ligand
binding, is to collect energy snapshots and metastable
state transitions in biased thermodynamic ensembles
that are not limited by rare event sampling, in order to
make more statistically significant estimates of rates and
affinities for the unbiased ensemble. One of these esti-
mators, the transition-based reweighting analysis method
(TRAM) of Wu et al.,37 has been used to estimate the
slow dissociation of small-molecule and peptide ligands
using harmonic bias potentials.40,41 Less explored has
been the use of TRAM with ensembles of scaled non-
bonded protein-ligand interactions, as is common in al-
chemical free energy methods.

Another MSM approach that utilizes multiple thermo-
dynamic ensembles to infer binding affinities and rates
is the Maximium Caliber (MaxCal) based method de-
scribed in Wan et al.42 In this approach, the principle of
maximum path entropy (caliber) is used to infer changes
in inter-state transition rates from changes in the equi-
librium populations.43–49 Like TRAM, the MaxCal ap-
proach relies on the ability to collect many transitions
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in a biased thermodynamic ensemble, enabling more sta-
tistically significant estimation of transition rates for an
unbiased ensemble. As with TRAM, the use of MaxCal
with ensembles where non-bonded protein-ligand inter-
actions are scaled has not been systematically explored.

In this manuscript, our goal is to test the performance
of TRAM and MaxCal vs. conventional MSM approaches
in estimating ligand binding rates and affinities, for a set
of thermodynamic ensembles with decoupled ligand in-
teractions, when challenged with limited sampling. To
do this, we first constructed a toy host-guest system that
realistically mimics protein-ligand association, and per-
formed thorough sampling to obtain a reference bench-
mark for comparison. We then test the performance of
TRAM and MaxCal estimators using as input a collec-
tion of short trajectories sampled in each thermodynamic
ensemble.

I. METHODS

A. Simulation system

In our toy model of ligand-receptor binding, the re-
ceptor is an 11-particle icosahedral binding pocket com-
posed of atoms with the same Lennard-Jones (LJ) pa-
rameters as a CT carbon atom in the AMBER force
fields: σ = 0.339967 nm, ε = 0.457730 kJ mol−1 (Fig-
ure 1). Equilibrium bond lengths, bond force constants,
and dihedral potentials were kept the same as a CT-CT
AMBER bond type, with a soft harmonic angle potential
(θ0 = 180.0◦, kθ = 150.0 kJ mol−1 rad−2 ) to enforce the
icosahedral shape. The ligand is a single uncharged LJ
particle of the same type, where we varied the ε param-
eter from 0.0 to 10.0 kJ mol−1 in increments of 0.5 kJ
mol−1.

All simulations used the GROMACS 5.1.4 molecular
dynamics package.50 The system was solvated in a cu-
bic periodic box and equilibrated in the NPT ensemble
at 300 K and 1 atm using a Berendsen thermostat with
860 TIP3P waters, two Na+ ions, and two Cl+ ions to
determine the box volume (3.00859 nm)3 to be used for
production runs in the NVT ensemble. For the produc-
tion run, the stochastic dynamics thermostat was used to
control the temperature (300 K) in the simulations with a
2 fs time step, hydrogen bonds constrained using LINCS,
and Particle Mesh Ewald (PME) electrostatics. System
topologies and simulation parameters can be found at
https://github.com/yunhuige/toy_model_paper.

To choose the value of ε used in all subsequent tests,
we simulated 10 trajectories of length 1 µs for each of the
21 different values of ε, resulting in 210 µs of aggregate
trajectory data. Snapshots were recorded every 100 ps.
After inspecting the apparent residence times of the lig-
and for each of these simulations (Figure 2), we chose an
ε value of 2.5 kJ mol−1 for our reference system, result-
ing in a bound-state population of πbound = 81.9% and
residence times in the range of tens of nanoseconds.

After establishing the value of ε to use in our refer-
ence system, we performed further sampling to generate
an exhaustive set of trajectory data to be used for mak-

FIG. 1. A toy host-guest system that mimics protein-ligand
binding. The receptor is an icosahedral binding pocket of
Lennard-Jones (LJ) particles (beige) that binds a single LJ
particle ligand (cyan) in its central cavity. This system is
solvated in a periodic box with counterions. Particles are
labeled with their atom indices.
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ε = 0.0 kJ/mol
πbound = 0.05 % 

ε = 1.5 kJ
πbound = 26.2 % 

ε = 2.5 kJ/mol
πbound = 81.9 % 

ε = 4.0 kJ/mol
πbound = 99.0 % 

FIG. 2. Trajectory traces of ligand distance from the center
of the binding pocket, shown for selected ε values: (a) 0.0
kJ mol−1, (b) 1.5 kJ mol−1, (c) 2.5 kJ mol−1, and (d) 4.0
kJ mol−1, labeled with the apparent bound-state population
πbound in each 1-µs trajectory. The value ε = 2.5 kJ mol−1

was chosen for all subsequent tests,

ing high-quality reference estimates of binding rates and
affinities. Twenty trajectories were generated, each of
length 4 µs, for an aggregate of 80 µs. Coordinates were
saved at a frequency of 1 ps to preserve kinetic informa-
tion at high temporal resolution.

1. Ligand decoupling simulations

The free energy perturbation (FEP) functionality of
GROMACS was used to perform simulations in which
the ligand was decoupled by scaling non-bonded interac-
tions (in this case, van der Waals interactions, because
the ligand is uncharged). Separate simulations were per-
formed for scaling constants λ = 0.5, 0.6, 0.7, 0.8, 0.9,
and 1.0, where λ = 1.0 represents the unbiased thermo-
dynamic ensemble with full vdW interactions. Two start-
ing configurations were used to initialize the simulations:
one where the ligand is in the bound state, and another
where the ligand is unbound in solution. For each of the
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two starting configurations, trajectories of length 400 ns
were generated, with snapshots recorded every 1 ps. Soft-
core interactions were used for non-bonded interactions
(sc-alpha = 0.5, sc-power = 1, and sc-sigma = 0.3).
In total, 4.8 µs (6 × 2 × 400 ns) of trajectory data were
collected—800 ns data for each λ value. Velocity-verlet
integration was performed using a velocity-rescaling ther-
mostat.

B. Multiensemble dynamical estimators

1. Conventional Markov State Models

PyEMMA software package51 was used to construct
conventional MSMs. This process involves first assign-
ing trajectory snapshots to discrete metastable states.
Here, the toy binding system is simple enough that we
can manually assign metastable states. From inspection
of the distribution of sampled conformations (Figure 3),
we identify 18 metastable states that partition confor-
mational space: a bound state (0) where the ligand is
strongly bound inside the receptor, encounter-complex
states (1-10) where the ligand is weakly bound to one
of the faces of the icosahedron, a state where the ligand
associates with entrance of the binding site (16), and an
unbound state (17).

State indices i are assigned based on the ligand position
vector ~x where the origin is the center of the binding site
(computed as the mean position of the receptor atoms,
excluding atom 9 in Figure 1), and its distance from the
origin |~x|. If |~x| > 0.85 nm, it is considered unbound
(state 17); if |~x| < 0.2 nm it is considered bound (state
0). Otherwise, it is assigned to the state i having the

smallest angular distance to the vectors ~fi normal to each
isocahedral face (the entrance is also considered a face):

arg max
i

[(~x/|~x|) · (~fi/|~fi|)] (Figure 4).

We also examined a two-state decomposition bound vs.
unbound states, defined by a radial cutoff of 0.2 nm (see
Results). This coarse grained state decomposition pro-
vided an opportunity to test state decomposition effect
on kinetic and thermodynamic predictions.

Using the state assignments described above, a con-
ventional MSM is constructed by first compiling the ma-
trix of the observed transition counts cτij , the number of
times the system is in state i at time t and in state j
at time t + τ) for a suitable lag time τ . To infer the
matrix of transition probabilities pij , we use the stan-
dard maximum-likelihood estimator (MLE) enforcing a
constraint on detailed balance. The transition matrix
contains full information about the thermodynamics and
kinetics. Equilibrium populations πi are obtained as the
stationary eigenvector of the transition matrix. Inverse
mean first passage times between bound and unbound
states are used to compute binding (kon) and unbinding
(koff) rates.

state 16

state 0

Bound state

states 1-10

Unbound 
state

state 17

FIG. 3. The sampled distribution of the distance between the
ligand and the center of mass of the binding pocket. Peaks in
the probability density correspond to particular metastable
states, representative snapshots of which are shown.
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FIG. 4. Metastable state indices used in the construction of
an 18-state MSM.

2. Transition-based reweighting analysis method (TRAM)

The TRAM estimator37 as implemented in the
PyEMMA software package51 was used to construct mul-
tiensemble Markov Models from the simulation trajec-
tory data. TRAM attempts to simultaneously optimize
(1) the transitions pij between state i and j for given
free energies fki for all conformational states i at each
thermodynamic ensemble k and (2) the free energies fki
for all thermodynamic ensembles at each conformational
state i. This is achieved by maximizing a joint likelihood
function LTRAM that is the product of a reversible MSM

estimator likelihood function L
(k)
MSM and a free energy

estimator likelihood function L
(k)
LEQ:
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LTRAM =

K∏
k=1

∏
i,j

(
p

(k)
ij

)c(k)
ij


︸ ︷︷ ︸

L
(k)
MSM

 m∏
i=1

∏
x∈X(k)

i

µ(x)ef
(k)
i −b

(k)(x)


︸ ︷︷ ︸

L
(k)
LEQ

(1)

where p
(k)
ij is the transition probability between state i

and j given observed transition counts c
(k)
ij in ensemble

k, µ(x) is the normalized equilibrium distribution (such
that

∑
x µ(x) = 1) of samples x assigned to state i in

the kth ensemble (x ∈ X(k)
i ), fki is the local free energy

of state i in ensemble k and b(k)(x) is the bias poten-
tial. The TRAM solution is identical to the reversible
MSM estimator when only a single thermodynamic en-
semble is available. In the limit of infinite sampling,
TRAM is equivalent to multistate Bennett acceptance
ratio (MBAR) estimator37,52.

3. Maximum-caliber (MaxCal) method

In the Maximum-caliber (MaxCal) method of Wan et
al.42, a conventional MSM is first constructed from tra-
jectory data sampled in thermodynamic ensemble k, to

obtain equilibrium populations π
(k)
i and transition prob-

abilities p
(k)
ij . Given estimates of perturbed equilibrium

populations π
(l)
i in thermodynamic ensemble l, the Max-

Cal method infers transition probabilities p
(l)
ij by maxi-

mizing the path entropy, or caliber C,

C =
∑
i,j

−πip(l)
ij ln

( p(l)
ij

p
(k)
ij

)
, (2)

with a restraint on detailed balance. The solution to this
maximization problem is the self-consistent iteration of
two equations involving a set of weights wi:

p
(l)
ij ← wip

(k)
ij

(π(l)
j p

(k)
ji wj

π
(l)
i p

(k)
ij wi

) 1
2

, (3)

wi ← wi/
∑
j

p
(l)
ij , (4)

(Note that that the solution of Wan et al.42 applies to
discrete-time kinetic networks; a more general solution
for continuous rate equations is provided by Dixit et
al.53)

In our context, thermodynamic ensemble k is one in
which the ligand is sufficiently decoupled so as to observe
many transitions, and ensemble l is the unbiased thermo-

dynamic ensemble. To obtain estimates of π
(l)
i , we use

the MBAR free energy estimator52 as implemented in the
PyEMMA software package.51

kon(×109 M−1s−1) koff(×107 s−1) πbound(%) KD(mM)
18-state 3.165 ± 0.488 3.294 ± 0.588 84.4 ± 0.4 10.66 ± 2.61
2-state 3.269 ± 0.516 3.672 ± 0.640 84.4 ± 0.4 11.54 ± 2.87

TABLE I. Reference values of ligand binding rates and affini-
ties estimated from conventional MSMs.

II. RESULTS

A. Determination of reference rates and affinities for the
toy ligand binding system.

After choosing the value ε = 2.5 kJ mol−1 to be used
in our tests (see Methods), we performed a series of
long simulations (aggregate trajectory data of 80 µs) to
precisely determine reference values for the bound-state
equilibrium population πbound, kon, and koff rates, via the
construction of a conventional MSM.

To determine a suitable lag time τ for the construc-
tion of the MSM, a series of MSMs were constructed for
lag times up to 4 ns, and the slowest implied timescale
t2 = −τ/(lnµ2) computed, where µ2 < 1 is the second-
largest eigenvalue of the transition probability matrix.
This timescale corresponds to the slowest dynamical mo-
tion observed in the simulations, which in this case cor-
responds to ligand binding and unbinding. Thus, t2 very
closely approximates (kon + koff)−1.

The implied timescale plots of t2 versus the lag time
τ plateaus after a few 100 ps, indicating the dynamics
is sufficiently Markovian (Figure 5a). Based on this re-
sult, we chose a lag time of τ = 1 ns to construct an
18-state MSM to compute reference rates and affinities
(Table I). Association and dissociation rates koff and kon

were computed from inverse mean first passage times,
and bound-state populations πbound were estimated from
the equilibrium populations of the MSM, with uncer-
tainties estimated using the standard deviation of the
results across 20 independent trajectories. The dissocia-
tion constant KD was estimated from the computed rates
as koff/kon, with uncertainty estimates from 10000 trials
with normally distributed error. We also tried construct-
ing a two-state MSM (bound and unbound states, Table
I and Figure 5b), and found that both kon and koff were
larger than the 18-state MSM estimates, likely due to
discretization error.24

a b

FIG. 5. Slowest MSM implied timescale t2 versus MSM lag
time for (a) an 18-state MSM, and (b) a 2-state MSM.

To explore how these (18-state MSM) estimates de-
pend on the amount of trajectory data sampled, we di-
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vided the trajectories into 10 blocks and constructed
MSMs using cumulatively increasing amounts of data
(e.g. 10%, 20%, ..., 100%). The estimated bound state
populations in Figure 6 shows 20% data (800 ns for each
independent run) is necessary for reasonably accurate es-
timates, with converged values obtained after about 60%
of the trajectory. The estimated binding and unbind-
ing rates, however, converge faster, requiring only 25%
of the trajectory data. (Similar results were found for
the two-state MSM, data not shown.)

These results illustrate the difficulty of estimating both
thermodynamics and kinetics of ligand binding. Even in
this simple model with a residence time of (koff)−1 = 30.3
ns, a large amount of trajectory data (1.6 µs) is required
for converged estimation using MSMs. When it comes
to realistic all-atom simulations of ligand binding to pro-
tein receptors proteins, the amount of total data required
will surely exceed the limits of typical available comput-
ing time. For our purposes in this paper, we will keep
in mind the value of (1.6 µs) as an upper bound for the
trajectory dataset required for an unbiased simulation,
which we will compare to the trajectory datasets needed
for accurate multiensemble estimations, as described be-
low.

a b

FIG. 6. Estimated bound-state populations (a) and rates (b)
as a function of the amount of input data.

B. A single additional λ-scaled ensemble can efficiently
estimate binding affinities and rates

With converged estimates of ligand binding rates and
affinities in hand for our reference system, we now can as-
sess the performance of multiensemble estimators. First,
we examine the accuracy of TRAM and MaxCal estima-
tors in the case where we are allowed to include one ad-
ditional biased thermodynamic ensemble. Whereas our
reference calculation used 80 µs of aggregate trajectory
data (20 trajectories of 4 µs each), in this test we limit
the trajectory data from the unbiased ensemble (i.e.,λ =
1.0) to only 1% of that used for the reference calcula-
tions (2 trajectories of 400 ns each). Combined with the
one additional biased thermodynamic ensemble, the total
data we used here (2 × 2 × 400 ns) is only 2% of the ref-
erence calculations (80 µs) and 10% of the data required
for converged results from the reference calculations (1.6
µs).

λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0
all 400001 400001 400001 400001 400001 400001
subsampled 3602 1602 802 802 802 802

TABLE II. Number of samples used in the calculation before
and after subsampling. The maximum amount of subsam-
pling is for a stride equal to the lag time, resulting in 802
subsamples.

We used data from λ = 1.0 simulation as the unbiased
ensemble and include one more ensemble with λ value
taken from the set (0.5, 0.6, 0.7, 0.8, 0.9). For compar-
ison, we also built MEMMs using trajectory data from
all λ values. For the MaxCal estimator, our protocol was
to first build a conventional MSM using only unbiased
(λ=1.0) trajectories to estimate equilibrium state popu-

lations π
(k)
i and transition rates p

(k)
ij . Then, we used the

same data as used in MEMM construction (unbiased +
one biased ensemble, or all ensembles) as input to MBAR
to make improved estimates of equilibrium state popula-

tions π
(l)
i in the λ=1.0 ensemble. Using these new popu-

lations, MaxCal was used to infer improved estimates of

the transition rates p
(l)
ij .

It is well-known that subsampling of trajectory
data to remove time-correlated data is important to
make accurate estimates of free energies and their
uncertainties.8,52,54,55 We suspected that such consid-
erations are similarly important for MEMM estimators
TRAM and MaxCal. To remove time-correlation in our
trajectory data, we subsampled trajectories generated
in each thermodynamic ensemble at a time interval of
(2τc + 1) steps, where τc is an estimate of the integrated
correlation time calculated from the distance of the lig-
and from the origin (the center of the pocket, see Meth-
ods) over time.

After subsampling, we find that the number of effec-
tively independent samples decreases dramatically (Table
II). For thermodynamic ensembles λ ≥ 0.7, correlation
times are so long that subsampling would be at intervals
longer than the MSM lag time of 1 ns. Therefore, we
limit subsampling of trajectories from these ensembles to
a maximum interval of 1 ns.

The performance of different estimators using subsam-
pled and non-subsampled data are shown in Figure 7.
These results clearly show the success of using simula-
tions performed in λ-scaled thermodynamic ensembles to
make multiensemble estimates of binding affinities and
rates. Whereas conventional MSM estimates (using only
the unbiased λ=1 ensemble) underestimate bound-state
populations and off-rates, multiensemble estimates using
only one additional thermodynamic ensemble more accu-
rately predict the reference values.

In particular, thermodynamic ensembles with the most
decoupling (λ=0.5 and λ=0.6) are best at reproducing
populations and dissociation rates. It is in these ensem-
bles that more frequent binding and unbinding transi-
tions are observed, contributing most favorably to the
statistical precision of affinity and rate estimates. Specif-
ically, the use of trajectory data from λ=0.6 ensembles
appears to give the best results, which, apart from fi-
nite sampling issues, may be a consequence of fewer re-
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FIG. 7. Estimated rates and affinities from conventional
(MSM) vs. multiensemble (TRAM and MaxCal) estimators
applied to various trajectory data sets. Each data set consists
of two 400-ns trajectories biased using a particular value of
λ (e.g. λ=0.5) and two 400-ns unbiased trajectories (λ=1.0).
Also considered were data sets in which trajectories from all λ
values were included. Shown are estimated bound-state pop-
ulations from (a) subsampled and (b) non-subsampled data,
estimated values of kon from (c) subsampled and (d) non-
subsampled data, and estimated values of koff from (e) sub-
sampled and (f) non-subsampled data. The red and line and
shaded region represent the values computed from our ref-
erence simulations, and their uncertainties, respectively. In
all panels, the estimated uncertainties are smaller than the
marker size.

binding events in the λ=0.5 ensemble. Indeed, simula-
tions at small λ values spend the majority of time in the
unbound state, which is less useful for rate estimation
(data not shown).

While MaxCal produces improved estimates of affini-
ties and rates compared to those of a conventional MSM,
estimates from TRAM consistently outperform MaxCal.
TRAM is able to make particularly accurate predictions
of koff. A potential explanation is that while free en-
ergy estimated from TRAM are informed by both sam-
pled energies and transition counts, MaxCal free energy
estimates (calculated by MBAR) are only informed by
sampled energies.

For both TRAM and MaxCal estimates, inclusion of
trajectory data from all thermodynamic ensembles re-
sults in only modest improvement in estimated quanti-
ties, rivaled by the results when only trajectory data from

λ=0.6 and λ=1.0 ensembles are used. This suggests that
bias from finite sampling is quite important; including
more trajectory data from ensembles where few transi-
tions are observed is less effective than including data
where many transitions are observed. A similar conclu-
sion can be made from the comparison of subsampled vs.
non-subsampled data. Despite the severe reduction in the
number of samples used in the calculation, predictions us-
ing subsampled trajectory data consistently outperform
predictions made using non-subsampled data.

C. Convergence of multiensemble estimates with
increasing amounts of trajectory data

To assess the robustness of conventional and multi-
ensemble estimators in dealing with limited input data,
we performed tests in which different subsets of data (af-
ter subsampling) are used in the estimations. In these
tests, we randomly select a given extent of λ=0.6 and
λ=1.0 trajectory data (e.g. 10%, 20%, ..., 90% of the
full trajectory) as a block segment, to be used as input
to conventional and multiensemble estimators. This op-
eration is repeated 10 times, resulting in 10 independent
trials for statistical analysis.

As stated in the original TRAM paper37, unlike
MBAR, a global equilibrium sampling is not required for
TRAM estimation, because of its efficient use of simula-
tion data. Our results, which suggest that multiensemble
esitmates from TRAM converges faster than the other es-
timators we evalutated, corroborate this statement. Us-
ing only 20% of the trajectory from ensembles λ=0.6 and
λ=1.0, TRAM can accurately estimate bound-state pop-
ulations, with faster convergence than MaxCal (Figure
8).

To highlight the reduction of uncertainty as the
amount of trajectory data is increased, the magntitude
of the uncertainty estimates (error bars in Figures 8a,c,e)
are plotted separately (Figures 8b,d,f). It is clear that
TRAM estimates have the smallest uncertainties among
all estimators studied, and the fastest convergence with
increasing amounts of trajectory data. Using only 10%
of the trajectory data, the uncertainties of MaxCal esti-
mates are large, becoming comparable with TRAM un-
certainties when at least 30% of the trajectory data is
used.

III. DISCUSSION

We have constructed a novel toy binding system that
has several advantages. The system is small enough (2596
atoms) that it can be used to generate large amounts of
trajectory data. Despite its simplicity, the system realis-
tically mimics protein-ligand binding, with a well-defined
binding site, encounter-complex conformations, and re-
alistic solvation through the use of explicit water with
counterions. It is straightforward to apply any number
of enhanced sampling techniques to this system (e.g. um-
brella simulations, free energy perturbation, metadynam-
ics, etc), and very easy to tune the LJ ε parameter to
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FIG. 8. Estimated bound-state populations (a), kon (c), and
koff (e) as a function of increasing amounts of subsampled
input data for ensembles (λ = 0.6, 1.0). Uncertainties in
bound-state populations (b), kon (d), and koff (f) (the error
bars shown in panels a,c,e), estimated by computing standard
deviations from 10 independent trials.

increase or decrease the ligand affinity to suit particular
problems of interest. The metastable state decomposi-
tion is well-defined and does not require any specialized
dimensionality reduction or featurization. Thus, we ex-
pect this toy binding system to find many uses in future
studies.

In this work, we specifically address how multiensemble
estimators of ligand binding rates and affinities perform
when used with thermodynamic ensembles where the lig-
and is decoupled by scaling its non-bonded interactions.
To our knowledge, this study is the first application of
TRAM and MaxCal to this problem, and the first to di-
rectly compare TRAM with MaxCal. The use of ligand
decoupling as a bias potential has several advantages over
umbrella sampling, a biasing technique that has has been
used in the many of first applications of TRAM.37,40,41

For one, ligand decoupling can take advantage of vast
array of existing simulation tools to perform these cal-
culations (for example, soft-core potentials). Moreover,
whereas umbrella sampling is good at focusing sampling
on a certain region, ligand-decoupling in effect serves to
“de-focus” sampling away from the bound state, pre-
serving the ability to sample transitions between many
metastable states, a key requirement for the success of
multiensemble estimators.

In our tests, we find that multi-ensemble estimators
TRAM and MaxCal are superior to conventional MSM
estimators, and that TRAM yields the most accurate es-
timates when faced with limited trajectory data. Max-
Cal takes a close second place to TRAM, achieving com-
parable results (Figure 7). In some applications, how-
ever, a MaxCal approach might be preferred to TRAM.
One of the limitations of the TRAM estimator is that it
is somewhat computationally demanding, requiring that
key states be sampled in the unbiased ensemble for the
calculation to be performed. Depending on the nature
of the trajectory data being analyzed, this requirement
may be too stringent, especially when there is poor phase
space overlap between thermodynamic ensembles. In
constrast, MBAR and MaxCal approaches are not lim-
ited by this requirement.

As is known to be case for free energy estimators, we
find that TRAM and MaxCal estimates are sensitive to
presence of time-correlated input data, and that these
estimates can significantly improve when subsampled to
remove this correlated samples. This is not surprising,
since TRAM is itself a free energy estimator, and the
MaxCal approach we use relies on free energy estimates
from MBAR. Still, this finding underscores the need for
careful curation of trajectory data to achieve accurate
results.

IV. CONCLUSION

In this work, we have introduced a novel toy model that
realistically mimics a protein-ligand binding system. Af-
ter tuning and thoroughly benchmarking the affinities
and binding rates in this model, we used it to study
the performance of multiensemble MSM estimators when
used with ligand decoupling. The key idea in this work is
that many more binding and unbinding events can be ob-
served in decoupled thermodynamic ensembles, enabling
better statistical estimation of rates and affinities. In-
deed, we find that TRAM and MaxCal estimators out-
perform conventional MSM estimators at this task, and
the TRAM is the most accurate and efficient overall. We
find that accuracy is improved when subsampling is per-
formed to remove time-correlation.

These results suggest that multiensemble methods
used with ligand decoupling simulations may be highly
valuable to simultaneously obtain accurate predictions
of ligand binding affinities and rates. In the future, we
anticipate the growing use of these methods in computa-
tional drug discovery.
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