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Abstract

Since known approved drugs like liponavir and ritonavir failed to cure SARS-CoV-2
infected patients, it is high time to generate new chemical entities against this virus.
3CL main protease acts as key enzyme for the growth of a virus which acts as
biocatalyst and helps to break protein and ultimately in the growth of coronavirus.
Based on a recently solved structure (PDB ID: 6LU7), we developed a novel
advanced deep Q-learning network with the fragment-based drug design
(ADQN-FBDD) along with variational autoencoder with KL annealing and circular
annealing for generating potential lead compounds targeting SARS-CoV-2 3CLpro.
Structure-based optimization policy (SBOP) is used in reinforcement learning. The
reason for using variational autoencoders is that it does not deviate much from actual
inhibitors, but since VAE suffers from KL diminishing we have used KL annealing
and circular annealing to address this issue. Researchers can use this compound as
potential drugs against SARS-CoV-2.

1. Introduction

SARS-CoV2 coronavirus has caused pandemic worldwide which causes disease
Covid-19. The number of cases and deaths is increasing day by day. This virus is
similar to SARS-Covid for which there is no approved treatment. The virus becomes
deadly when it causes severe acute respiratory syndrome. So, there is an urgent need
to create inhibitors for this. This approach works by adding fragments instead of
atoms which is not only computationally efficient but also chemically more
reasonable. The rate of a reaction is defined by � t h�� ���th where k is rate
constant, �� is the activation energy, R molar gas constant and T is the absolute
temperature.

When the kinetic energy of the reactant molecules is greater than the activation
energy, the reaction occurs. The reaction between inhibitor and protease is given by:



k1, k2, k3 and k4 are the rate constants. For inhibition to occur k1 must be greater
than k2 for non-covalent bonding. After this step covalent bonding takes place such
that k3>>k4 and the reverse reaction does not happen. We generated molecules using
Variational Autoencoder using transfer learning on inhibitors, then applied
reinforcement learning by adding fragments and calculating reward, so that molecules
with the desired property are obtained which includes drug likeness, specific fragment
containment and pharmacophores scores.

Figure1. SARS-CoV-2 main protease with unliganded active site.
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2. Related Work

Bowen Tang, Fengming He, Dongpeng Liu, Meijuan Fang, Zhen Wu have used
Reinforcement learning on SARS-CoV-2 3CLPro main protease inhibitors and
defined reward function which includes other properties like fragment containment
and pharmacophores score and applied efficient and novel advanced deep Q-learning
network with the fragment-based drug design.

Navneet Bung, Sowmya Ramaswamy Krishnan, Gopalakrishnan Bulusu and Arijit
Roy from Tata Consultancy Services Limited have trained RNN on 1.6 million data
points from ChEBL dataset to learn the grammar of smile representation of
molecules ,then used transfer learning on 2515 inhibitors from the same dataset and
applied reinforcement learning to force generator generate molecules with desired
Synthetic accessibility score, quantitative estimate of drug-likeness, partition
coefficient and molecular weight.

IBM has generated 3000 novel molecules using generative models against three
targets. In addition, the Hong Kong-based pharmaceutical research company, InSilico
Medicine has rolled out a list of 97 potential candidate molecules designed to inhibit
the 3CL protease of SARS-CoV-2.

3. Results

Table1:Docking Results using Covid19 Docking Server(which uses
AutodockVina program) with 3 CL protease as target

Molecule Score

m1 -8.40

m2 -7.80

m3 -8.20

M3 -8.10

Description:The scoring function that combines certain advantages of
knowledge-based potentials and empirical scoring functions.

Table2:Docking Results using Covid19 Docking Server(which uses
AutodockVina program) with RdRp(RTP site) as Target

https://insilico.com/ncov-sprint/
https://insilico.com/ncov-sprint/


Molecule Score

m1 -9.0

m2 -8.40

m3 -10.0

M3 -8.80

Table3:Docking results of generated molecules with 3CL main protease.

Molecules Affinity Total
Energy

VdW

Energy

Elec.

Energy

m1 -8.815 55.511 -26.251 -4.554

m2 -8.786 32.002 -25.460 -10.323

m3 -8.401 44.086 -20.373 -8.075

M3 -8.537 28.338 -21.283 -12.288

Table4:Druglikeness properties according to Lipinki’s rule

Id Mw(g/mol) Logp(Concensus) HBA HBD

m1 421.49 3.85 3 0

m2 447.53 2.16 6 3

m3 454.42 0.17 8 3

M3 438.49 3.90 5 2



Table:5 Water Solubility

Id Log S (ES
OL)

Solubility Class

m1 -5.21 2.58e-03 mg/ml Moderately
soluble

m2 -4.61 1.17e-02 mg/ml Moderately
soluble

m3 -3.26 2.48e-01 mg/ml Soluble

M3 -4.92 5.27e-03 mg/ml Moderately
soluble

.

Table4:Docking results of HIV protease inhibitors with 3CL main
protease.

Molecules Affinity Total
Energy

VdW
Energy

Elec.
Energy

Ritonavir -8.887 32.378 -25.152 -13.400

Darunavir -8.130 11.724 -20.395 -13.779

Lopinavir -7.707 73.229 -18.948 -15.515

Table 5: Generated Molecules with high Tanimoto Similarity with the already
existing 3CL Main Protease Inhibitors of SARS-CoV2.

ID MOLECULES 3CLMAIN PROTEASE Tanimoto



GENERATED INHIBITORS OF
SARS-CoV2

Similarity

M_1 0.957

M_2 0.929

M_3 0.850

M_4 0.810

M_5 0.759



M_6 0.747

M_7 0.692

M_8 0.689

M_9 0.627

Table 6: Drug Likeness Properties of the Generated Molecule and satisfying Drug
likeness properties

ID. MW Log P HBA HBD

m1 421.19 4.67 5 0



m2 438.2 3.63 4 2

M_1 417.37 3.733 8 4

M_2 412.61 5.73 3 0

M _3 476.53 4.00 6 2

M_4 272.61 3.43 3 1

M_5 278.27 2.18 4 1

M 6 298.29 2.9 7 5 2

M_7 426.51 3.35 3 2

M_8 466.92 4.29 5 2

M_9 281.27 1.89 5 0

PM_1 495.63 3.956 8 1

MW – Molecular Weight; Log P – Partition coefficient; HBA – Hydrogen Bond
Acceptor; HBD – Hydrogen Bond Donor

4. Discussion

If the activation energy �� , which is the difference in energy between reactants and
activated complex is less, which is also called the Gibbs energy of activation
represented by the equation,

then the rate of the reaction is more, assuming temperature is constant. So, if the rate
of reaction in forward direction is more in both the steps of inhibitor reaction then
inhibition will take place. So, we can reward the agent if the molecule formed after
adding fragments has less activation energy and penalize if it has higher activation
energy. Further, Variational Autoencoder can be improved. The conventional VAE
uses KL divergence as a regularization term, instead of this, Wasserstein Distance can
be used which is better than KL divergence. We can also use a generalized version of



log likelihood and KL divergence similar to Coupled-VAE. Conditional GANs where
QED score, fragment containment scores and pharmacophores are used as conditional
input can also be used.

5. Methods

Figure2: Flow diagram for the method

5.1 Variational Autoencoder With KL Divergence And Circular
Annealing

Given a datapoint x, the goal of VAE is to find at least one latent vector which is able
to describe it; one vector that contains the instructions to generate �. If we formulate it
using the law of total probability, we get �(�) t ∫�(���)�(�)��. The VAE training
objective is to maximize �(�) . �(���) is modeled using a multivariate
Gaussian N(f(z),�2*I) where �2 is the hyperparameter that will be multiplied by I
which represents the identity matrix. �(�) is modeled using a neural network.

The formula for �(�) is intractable, so it is approximated using Monte Carlo method
which is described below:



1. Sample {��}�t1
� from the prior �(�).

2. Approximate using �(�) ≈ 1
� �t1

� �(����).�

Since most sampled z’s won’t contribute anything to P(x), therefore, a new
distribution �(���) is introduced. �(���) is trained to give high probability values
to z’s that are likely to have generated x. Now the Monte Carlo estimation can be
calculated using much fewer samples from �(���).

Since

This means
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Applying Bayes’ theorem we get



We took ���(�(�)) out of integral because if x is given then ����(�) will be constant,
so maximizing log likelihood which is intractable is the same as minimizing its lower
bound. Since it is not possible to differentiate with respect to random variable
reparameterization trick is used if we sample � from standard normal distribution and
substitute � t � + � ∗ �.

Figure 3. Vanilla VAE



The loss function consists of negative likelihood along with a regularizer term and a
hyperparameter � which is increased slowly in case KL annealing and periodically in
case of circular annealing. This solves KL diminishing problem which makes VAE to
act as simple RNN.

����(�,�) t� ��~�� � [ ��������� ��� ( ��(���)] + ���(��(���)���(�))

5.2 Markov Reward Process

This is an extension of Markov decision process for Reinforcement learning. This
consists of states, actions, transition probability, rewards and discounting factors. In
our case state will be the molecule structure at time step t will be state and adding and
removing fragments will be action. Here instead of decreasing discounting factor for
higher time step, it is increased by using �h�� where T is the time step at the end of
the episode.

5.3 Agent Design

Agent fits the ��(��,��) function which is the cumulative reward starting from state at
time step t choosing action based on policy � such that it has maximum cumulative
reward using advanced deep Q learning. The state-action and the value of the state are
defined as

In order to make RL more stable and to handle the problem of overestimation of
Q-values a duel DQN network as target network is used. We keep its parameters
��, ��, �� fixed and copy from dueling DQN �� every m steps.

Q function depends on parameters which come from dueling Q networks. Temporal
difference is used in which reward is given at time step instead of end of episode. The
parameters of Dueling Q network are updated as

����(�,�,�) t �[�(ht)]

RL agent is trained to minimize this loss function where f is the hubber function.



5.4 Reward Design

t(�) t �����(�)��� + �����(�)��� + ��t��(�)�t�

Pro represents QED which is drug likeness property, csf represents whether a
particular fragment is present and pha stands for pharmacophores score which
depends on ligand-protein interaction mode from the crystal structure.
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