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Abstract 

Reaction barriers are key to our understanding of chemical reactivity and catalysis. Certain 

reactions are so seminal in chemistry, that countless variants, with or without catalysts, have been 

studied and their barriers have been computed or measured experimentally. This wealth of data 

represents a perfect opportunity to leverage machine learning models, which could quickly predict 

barriers without explicit calculations or measurement. Here, we show that the topological 

descriptors of the quantum mechanical charge density in the reactant state constitute a set that is 

both rigorous and continuous, and can be used effectively for prediction of reaction barrier energies 

to a high degree of accuracy. We demonstrate this on the Diels-Alder reaction, highly important 

in biology and medicinal chemistry, and as such, studied extensively. This reaction exhibits a range 

of barriers as large as 270 kJ/mol. While we trained our single-objective supervised (labeled) 

regression algorithms on simpler Diels-Alder reactions in solution, they predict reaction barriers 

also in significantly more complicated contexts, such a Diels-Alder reaction catalyzed by an 

artificial enzyme and its evolved variants, in agreement with experimental changes in 𝑘!"#. We 

expect this tool to apply broadly to a variety of reactions in solution or in the presence of a catalyst, 

for screening and circumventing heavily involved computations or experiments.  
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Introduction 

For any reaction, we are typically interested in the transition state (TS), activation energy, 

and potential energy surface.1 We often want to know how various alterations from the base 

reaction, or modifications of a catalyst, or reaction conditions might alter TS structures and the 

forward rate of reaction. In catalysis, for example, 𝑘!"# is usually determined through transition 

state theory, which relates it to the height of the reaction barrier, Δ𝐺‡, via an Arrhenius 

relationship.2–5 Another example is electron transfer reactions, where Marcus Theory can be 

utilized to calculate the rate.6–8 To determine Δ𝐺‡ computationally, both the reactant state and the 

TS structure need to be known. While the reactant state is generally easier to compute via 

optimization of nuclear coordinates to a local minimum, finding a TS, i.e. a first-order saddle point 

on the potential energy hypersurface, is exponentially more difficult, particularly for complicated 

systems, such as enzymes or heterogeneous interfaces. For the various TS search algorithms 

present9,10,19–28,11,29–38,12,39–48,13,49–52,14–18 the quality of the output is largely determined by the initial 

guess at the TS,53 which can be semi-automated. Unfortunately, automation does not always 

guarantee a success, in which case the process of TS search turns into a tedious trial-and-error 

procedure. Regardless of the approach, the scaling of this process with the system size is poor. At 

the same time, it is often of interest to quickly predict many barriers for many variations of the 

same reaction, for example in catalyst design. To summarize, being able to quickly screen 

reactants, reactions, and potential catalysts, and accurately predict barriers without expensive TS 

calculations, would greatly accelerate the chemical discovery process. 

The problem lands itself well into the realm of machine learning, particularly for 

extensively studied reactions. A few pioneering studies have applied machine leaning to reactivity 

predictions, albeit with limitations in the diversity of the data sets, quality of the fits, and/or 

eventual performance.54–58 Here, we propose a direct prediction of the reaction barriers through 

quantum electronic descriptors of the reactant state: the electron density, 𝜌(𝐫), and its derived 

mathematical properties. We are building on the following previous findings: our previous work 

on the Ketosteroid Isomerase enzyme and its mutants,59 and the Diels-Alder reaction,60 with and 

without external electric field applied, have shown robust linear correlations between topological 

features of 𝜌(𝐫) and Δ𝐺‡. Furthermore, there exist methods that utilize	𝜌(𝐫) to predict changes in 

chemical parameters such as pKa,61 as well as reactivity.62–64 Finally, and centrally, according to 

the Hohenberg-Kohn theorem,65 the total energy of the system is given as a functional of 𝜌(𝐫). We 
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extend these ideas toward proposing that reaction barriers correlate with a set of features of the 

reactant state 𝜌(𝐫), which, conveniently for machine learning, are continuous and physically 

meaningful.  

Results and Discussion 

A vast array of scientific literature details reaction mechanisms and barriers for important 

reactions, such as the Diels-Alder family of reactions. We utilize computational data on the Diels-

Alder reactions collected from over a dozen articles,66,67,76–79,68–75 as our case study. We first 

recompute the reaction barriers with a standardized basis set and functional to reduce artifacts 

generated from using a different level of theory; then, we use the Quantum Theory of Atoms in 

Molecules (QTAIM)80–82 to generate topological parameters of 𝜌(𝐫) from our computed reactant 

state structures. Jointly with more traditional descriptors, such as system mass and charge, they 

constitute input variables. These two sets were used to train both feature selection and regression 

algorithms. Feature selection was used primarily to determine a subset of factors that are essential 

for computing barrier energies, while also reducing dimensionality of regression algorithms and 

mitigating noise. This reduced space was then used to train regression algorithms that approach 

DFT accuracy while requiring a fraction of the compute time to find a reaction barrier. We then 

verify the utility of this method, including for a related but substantially more complicated system: 

two artificial Diels-Alderase enzymes separated by 8 mutations (introduced through laboratory 

directed evolution).83  

𝜌(𝐫) in the reactant state was investigated using QTAIM, a mathematically rigorous 

partition of the electron density into disjoint regions called atomic basins (AB), Ω. Ωs are defined 

by zero-flux surfaces, 𝑆(Ω), where the normal vector at any point on the surface is orthogonal to 

the gradient of the electron density (Eq. 1). 

∇𝜌(𝐫) ⋅ 𝐧(𝐫) = 0	for	all	𝐫 ∈ 𝑆(Ω) (Eq. 1) 

There are 4 types of critical points (CPs) of 𝜌(𝐫): nuclear (NCP), bond (BCP), ring (RCP), and 

cage (CCP). Each CP is defined by the curvatures of 𝜌(𝐫) at that point. A NCP is a maximum in 

all three spatial directions, a BCP is a maximum in two spatial directions and a minimum in one 

spatial directions, a RCP is a maximum in one spatial direction and a minimum in two spatial 

directions, and CCP is a minimum in all three spatial directions.  
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The input space for the feature selection/regression algorithms consists of mathematical 

features at a fixed set of ABs and CPs. This initial pick of features requires some knowledge of 

the reaction mechanism. For the Diels-Alder reaction, we included 10 features shown in Figure 1: 

6 ABs corresponding to atoms participating in bond breaking and forming, and 4 BCPs from the 

dienophile and diene. From each of the 6 ABs, 9 descriptors were selected including 

localization/delocalization indices, electrostatic potentials, charge, and electronic energy 

contributions. We also include the electrostatic potential (Φ) and the electronic (Φ%) and nuclear 

contributions (Φ&'!) which is evaluated only at the nuclei of the AB. Note that these values are 

well-defined as they exclude the contribution of the nuclei that at which we are evaluating.  For 

each of the 4 BCPs, 19 descriptors were extracted including values such as ellipticity, density, 

stress tensor eigenvalues, density hessian eigenvalues, divergence of density, potential energy, 

delocalization index, and kinetic energy. Since our calculations are performed within DFT, the 

correlation energy component is missing in our algorithms.  In addition to the space of QTAIM 

features, there is a vector of 73 variables for each input system consisting of other important system 

statistics, such as spin, and charge. Overall, this amounted to an input vector of 203 variables for 

feature selection (see supporting information for a full list of variables), and it is independent of 

the total number of ABs and CPs in the system. This fixed length input is a necessity for most 

machine learning algorithms.  
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Figure 1. Simplest Diels-Alder reaction between 1,3-butadiene and ethylene to form cyclohexene. Location 
of ABs and CPs used as the input vector to the ML algorithms. AB 1-6 are the atomic basins defined for 
those atoms and BCPs are circled in red. 

The compiled dataset consisted of 296 Diels-Alder reactions from over a dozen different 

sources, including reactions with a diverse set of functional groups, sizes, and geometries (Table 

S1). While the canonical Diels-Alder reaction features the formation of two new C-C bonds with 

four new stereocenters, our data set also includes hetero Diels-Alder cycloadditions, with nitrogen 

and oxygen as possible heteroatoms. The reactions also encompass a large diversity of electronic 

barriers, with a minimum barrier of 5.6 kJ/mol (1.3 kcal/mol) and maximum of 274.5 kJ/mol (65.5 
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kcal/mol) (

 

Figure 2). The majority of the reactions have a barrier within the range of 50 to 150 kJ/mol 

(12 to 35.9 kcal/mol), while higher/lower reaction barriers are underrepresented within the data 

set. Our dataset only includes Diels-Alder reactions that proceed via a concerted mechanism, and 

do not include reactions that proceed stepwise. 
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Figure 2. The distribution of computed barrier energies from the dataset. Here we can determine that there 
is a great degree of variability in the distribution with sparser values for low (0-50 kJ/mol) and high (>150 
kJ/mol) barriers. Projection of the first three principal components in the PCA space of the input data 
illustrate the dataset is not easily linearly separable. The first and second principal components are 
decomposed into their constituent variables as well.  

First, to visualize the input space of this model and understand how variables correlate 

within the dataset, principal component analysis (PCA) analysis was performed. Along the first 

three principal component axis, we see that there are no apparent gradients for 
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increasing/decreasing barrier energies (

 

Figure 2). Both high and low Δ𝐸‡ appear to be spread out throughout the component space 

implying this data is non-linear and that linear models might not be suitable for regression. 

However, the first three components only explain 50% of the variance in the data, and to account 

for 95% of the input space variance, 38 orthogonal components are needed. The first two 

eigenvectors are shown, there is a heavy concentration of diene variables in the primary principal 

component and a strong contingent of dienophile components in PC1, showing the independence 

between these two variable sets. We also note the almost complete set of Φ between these two 

components, supports the notion that electrostatic potential is an important value in this 

Quantitative Structure Activity Relationship (QSAR) analysis.   

To construct regression models, we pooled the variables (this set is labeled as ‘Raw Pooled 

Features’ in this text) selected by the three feature selection algorithms: LASSO, Boruta, Recursive 
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Feature Elimination (see the Supporting Information for detailed description of each of these 

methods). Datapoints were divided in an 80-20 split with 5-fold cross validation used to select 

specific model parameter. In addition, permutation importance was used to remove multicollinear 

features and to gain a robust measure of feature importance relative to each other. Coupling the 

results from the raw pooled feature selection algorithms (Table 1) to the ranked list of features from 

the permutation ranking (Figure 3), Φ (including both Φ&'! and Φ%) and Bader charge (q)  appear 

to be the most physically important set of descriptors from a statistical standpoint. The permutation 

ranking of features from the physical dataset is shown in Figure 3, and the permutation ranking for 

features in the full pooled dataset are in Figure S8.  

Table 1. Variables collected by each feature selection algorithm. Features included in several algorithms 
that completed a set of variables were pooled to construct regression algorithms. Beyond that, features 
selected were used to gain physical insight and build a more general physical model. 	
𝜖: bond ellipticity, 𝑇: electronic energy of molecule, 𝐸!: Contribution of atom to electronic energy, 𝑞: 
electronic charge, 𝜎: stress, 𝛷: electrostatic potential, 𝛿: delocalization index, 𝛿"#$%: bond delocalization 
index, 𝜆: localication index, 𝑑: average number of electronic pairs formed in atom a, 𝑑&: half of average 
number of electron pairs formed between atom A and other atoms of molecule, 𝑑'() sum of 𝑑 and 𝑑′. 

Feature Type Raw Pooled Features Pooled, Uncorrelated 
Features Physical Feature Set 

1 AB 𝑞, 𝐸% , Φ, λ, 𝑇, δ, δ()&* 	 𝑞,Φ, 𝐸% , δ 𝑞,Φ, 𝐸% , δ 

2 AB 𝑞,Φ, δ()&* 𝑞,Φ 𝑞,Φ, 𝐸% , δ 

3 AB 	𝐸% , Φ, λ, 𝑇, δ 	𝐸% , Φ, δ 𝑞,Φ, 𝐸% , δ 

4 AB 𝑞, 𝐸% , Φ, 𝑇, δ()&* 𝑞, 𝐸% , Φ	 𝑞,Φ, 𝐸% , δ 

5 AB 𝑞,Φ,Φ&'! , λ, δ  𝑞,Φ,Φ&'! , δ 𝑞,Φ,Φ&'! , δ 

6 AB Φ, λ, δ, δ()&* Φ, δ 𝑞,Φ, δ 

7 BCP 𝜖, 𝑑+, d, d,-. 𝜖, 𝑑/'0 𝜖 

8 BCP 𝜖 𝜖 𝜖 

9 BCP 𝜖 𝜖 𝜖 

10 BCP Φ% , Φ Φ% , Φ 𝜖,	Φ 

Total Features 38 24 28 
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The fact that electrostatic potentials and electron density curvatures affect the Diels-Alder 

reaction barriers is physically meaningful. Within DFT a localized potential is used to express the 

potential energy in solving the one-electron Schrödinger equation, which is the sum of the external 

potential (𝑣%1(𝐫)), Hartree electron-electron interaction potential, and exchange-correlation 

potential (Eq. 2). 

𝑣[𝜌] = 𝑣%1(𝐫) + I𝑑𝜏+
𝜌(𝐫+)
|𝐫 − 𝐫+|

+
𝛿𝐸%1[𝜌]
𝛿𝜌

(Eq. 2) 

𝑣%1(𝐫) is the potential created by the nuclei and is exactly equivalent to Φ&'!. Similarly, the middle 

term is exactly equivalent to Φ%. Thus, our selection algorithms have picked out that the potential, 

which specifies the system’s Hamiltonian in the reactant state, is also deterministic of the energy 

of the system at the TS. Furthermore, it seems that it is enough to know only the potential energy, 

and contribution from the nuclei and electrons separately at these nuclei and CPs, rather than the 

full function, to approximate the change in electronic energy at the TS. 

In conjunction with the electrostatic potential, the ellipticity (𝜖) at the majority of the BCP’s 

was also selected as an important feature (Eq. 3). 

𝜖 =
𝜆𝐇3
(5)

𝜆𝐇3
(7) − 1 (Eq. 3) 

𝜖 is a measure of the elliptical nature of the density within the plane orthogonal to the bond 

direction. Generally, ellipticity can be a measure of the 𝜋-character in the bond, as double bonds 

lack symmetry of the electron density around the bond axis, whereas axial symmetry is present for 

𝜎-bonds. Since the Diels-Alder reaction is often rationalized through the interaction between the 

frontier orbitals (𝜋-orbitals), it makes physical sense that	𝜖 should be a strong determinant of the 

barrier. 
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Figure 3. Permutation importance quantifies the importance of each feature relative to each other. Models 
trained on the compiled dataset show that electrostatic potentials are an important descriptor at almost every 
CP.  

Models were trained using the features selected from the selection algorithms, with an 

addition of “missing features” that completed the physically meaningful set. For example, if 

feature selection algorithms determined that a given feature was important in all but one CP or 

AB, we “completed” the set by including this missed feature. The compiled dataset of 38 variables 

still presented a large input space relative to the size of the dataset; therefore, we wanted to further 

reduce the number of input variables. Heavily correlated features, as computed through a Pearson 

correlation coefficient with a magnitude above 0.8, were removed and yielded a reduced subspace 

of 24 variables, features with the highest permutation score were kept, while lesser important, 

correlated features were removed (Figure 4). This reduced dataset (labeled ‘Pooled, Uncorrelated 

Features’) was used to train benchmark regression algorithms. The removal of heavily correlated 

features can be important, not just in reducing model training times (and thereby allowing the 

testing of more hyperparameter sets for a given computational cost) but in creating more stable, 
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generalizable models; multicollinearity can yield models that overfit one set of highly correlated 

features.84 Here we see that physically related descriptors are often correlated with each other. For 

example, 𝑑8, 𝑑8+ , 𝑑8/'0	are all definitionally related as the latter is the sum of the former two values. 

In addition, some identical variables at different features also correlate heavily, as was the case 

with Φ at the two of the dienophile nuclei (which makes chemical sense). 

 

Figure 4. The correlation matrix of the compiled set of descriptors. Features that were heavily correlated 
with other features were removed. 

The input space of uncorrelated variables was used to train a diverse array of algorithms 

optimized for their mean squared error to barrier energies. Performance metrics on withheld data 

is reported in Table S3. We see that all linear models (LASSO, Ridge) perform quite poorly, 

confirming the complex nature of the input space to these models. Tree-based regressors 

(XGBoost, Gradient Boost, and Extra Tree) performed quite well, all of which achieved 
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correlations above 0.8 on the validation set. This is not surprising as these models are quite flexible 

and consist of tunable parameters to prevent overfitting. Extra Trees and Gradient Boost both 

performed well versus other regression algorithms, withheld data, and a baseline metric of 

guessing the mean barrier energy of the dataset for every instance ( 

 

Figure 5). 
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Figure 5. Parity plots of predicted and true dataset values of the reaction barrier for the top performing 
physical models. Circled in red are the two highest residuals for our testing dataset for the extra tree 
regressor (structures are shown in the bottom right) The descriptor set utilized here was the physical 
descriptor set. 

Beyond training the best performing model, we wished to create a more general and 

physically intuitive regression algorithm, for predicting instances outside of our dataset. To do 

this, we completed sets of physical features labeled as ‘Physical Feature Set’ in Table 1, by adding 

back some of the physically meaningful though possibly correlated variables. For example, bond 

ellipticity, 𝜖, was originally selected in 3 of the 4 BCPs as an important feature; in the 

completed/physical set of variables we included 𝜖 of all 4 BCPs. In principle, reintroducing 

correlated variables and statistically unimportant variables would increase training loss and reduce 

performance metrics, but we benchmarked models trained on this dataset and determined that there 

was almost no loss in performance (Table S3). In general, these best performing algorithms were 

quick, accurate, and could effectively be used to circumvent more expensive barrier calculations 

for this family of reactions. 
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Beyond predicting the overall barrier energy of any given Diels-Alder reaction, this model 

would be more practical if it were able to predict the relative energies of endo/exo reaction pairs 

and thereby predict the preferred reaction product of a Diels-Alder reaction. Our dataset contained 

a mixture of such reaction pairs but about half of the reactions available did not have the 

corresponding alternative reaction. In total, our dataset contained 61 endo/exo pairs or 122 

compounds. This represents less than half of the total available dataset and therefore the process 

of training is more difficult. To fully extend this aim, likely more data would be required, but we 

nonetheless retrained the best model above, Extra Trees, with physical feature set, and an 80-20 

train-validation split. Our splitting scheme kept endo/exo reaction pairs in the same dataset to allow 

for comparison after regression. We opted to avoid further hyperparameter tuning and simply reuse 

the model parameters from the previous models for simplicity and therefore a test set was not used. 

On the validation set, the Extra Tree regression algorithm was able to correctly predict endo/exo 

ordering 70% of the time though this figure could likely be improved with more data.  

Next, we wish to understand the limitations of our regression models, including regimes 

where its predictive ability falls short. From the top four regression algorithms, we noted two 

datapoints with barrier energies of 251.8 kJ/mol (60.23 kcal/mol) and 177.9 kJ/mol (42.56 

kcal/mol) (circled outliers in  



 16 

 

Figure 5) that contributed heavily to training loss in all instances. The consistently large 

error for predicting these values across different families of algorithms required further probing 

into the physical reasons yielding such poor performance. Firstly, these data points fall in the 

underrepresented high-barrier region, where the model might have had insufficient training 

instances.  
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Figure 5 shows the two systems responsible for these two largest testing residuals. Notably, 

these systems involve dienes with more delocalized p-systems, and thus, the electronic density 

shifts during the Diels-Alder reaction within these systems extends over the entire conjugated p-

system of the diene. Hence, more bonds change order than in our descriptor set, and the set of 

mathematical features at just 10 features may prove limited. There are other conjugated systems, 

both in the training and test set data, but the two outliers feature the greatest extents of 𝜋-

delocalization. It must be noted that QTAIM properties are computed on optimized reactant 

geometries, and therefore, our method is not agnostic to the shortcomings of the DFT methodology 

and basis sets, and poorly performing methods may reduce the performance of machine learning 

models. Our dataset also includes other regioisomers for the reaction occurring in  
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Figure 5A, with the preferred regioisomer being the [5,10] addition and the least preferred 

being the [12,14] addition (which is the reaction shown in  
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Figure 5A).66 Upon testing with our best performing algorithm, Extra Trees, we can 

correctly predict that the [12,14] addition is still least preferred, and the [5,10] addition is most 

preferred. Hence, our algorithm, while it may not accurately predict the barrier for the [12,14] 

addition, still predicts the correct regioisomer. 

Finally, we put the model to a stringent test, and probe its expandability to considerably 

more complicated regime of enzymatic catalysis, where calculating the barriers is indeed very 

challenging. Since the model was trained on reactions in solution, there is no guarantee that it 

would successfully predict the barriers for the Diels-Alder reaction catalyzed by enzymes. 

Artificial Diels-Alderases have been designed and undergone laboratory directed evolution to 

enhance the performance by several orders of magnitude.83 These enzymes catalyze the reaction 

between 4-carboxylbenzyl-trans-1,3-butadiene-1-carbamate and N,N-dimethylacrylamide 

(Scheme 1). Using our top performing regression algorithm, we compare the barrier energies of 

two Diels-Alderase enzymes at the beginning and end of a directed evolution optimization (CE11 

and CE20). There is a total of 8 mutations between CE11 and CE20 with the majority being within 
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the appended lid-element, and none within the active site (Figure 6). Therefore, these mutations 

represent realistic, subtle changes to the active site electron density topology brought about by 

distant point mutations through long-range interactions.  

 

Scheme 1. Diels-Alder reaction between 4-carboxylbenzyl-trans-1,3-butadiene-1-carbamate and N,N-
dimethylacrylamide catalyzed by the Diels-Alderase enzymes CE11 and CE20. 

 

 

Figure 6. Left: CE20 crystal structure (PDB Code: 4O5T83) with the residues included in the QM active site 
colored green and the substrates in orange. The appended lid element is colored pink with the location of 
the mutations separating CE11 and CE20 shown as red spheres. The mutations are T43I, K44N, P48L, 
K53E, S55R, R56S, G57D, E113D. Right: the QM active site; the blue spheres represent C atoms replaced 
by capping hydrogens and frozen; note that only a part of the diene substrate was treated at the QM level.  
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We utilized our in-house quantum mechanical/discrete molecular dynamics85 (QM/DMD) 

engine to perform sampling of the two protein variants with the bound substrates. The QM active 

site shown in Figure 6 included Tyr132 and Gln206 which directly hydrogen bond the dieneophile 

and diene respectively Additionally, in the crystal structure, a single water molecule was located 

near the carbonyl on the dieneophile which seemed to be a hydrogen bond donor and was included 

as well. Using the lowest energy QM active sites from each mutant, we performed the QTAIM 

analysis to generate the input vector for our machine learning algorithm. 

The top-performing extra tree algorithm with the physical feature set was used, and 

correctly predicted the ordering of the reaction barriers of these two Diels-Alderases: CE11 should 

have a higher barrier than CE20, thus being less active. We note that ranking of the artificial 

enzyme variants in terms of activity is often all that’s needed in the protein design and optimization 

process. Despite the correct ordering of enzyme energies relative to each other, the barrier energy 

and the gap between them was considerably higher than the values estimated from experiment, ~ 

20 kJ/mol (5 kcal /mol) for the difference in electronic barriers, with a difference of 2.2 kJ/mol 

(0.52 kcal/mol) free energy difference at 25°C.83 The difference could arise from several factors 

including the lesser representation of low-barrier reactions in the training set, and the missing 

entropic contributions to the free energy barrier. In this particular experiment, the choice of feature 

set did not change the ultimate result as we predicted the same ordering with every feature set. 

Note also that further investigation upon these structures is warranted to understand how the 

mutations alter the reaction barrier, though it is outside the scope of this present paper. 

Conclusions 

Here we showed that QTAIM descriptors based on the ground state electron density can 

be coupled to a supervised machine learning algorithm to effectively regress on predicting reaction 

barrier energies. Fundamentally, QTAIM appears to be an ideal tool for feature generation for 

machine learning, because it produces sets of physical and continuous descriptors. As a proof-of-

concept, we showed it on the Diels-Alder reactions. We computed reaction barriers of a diverse 

array of Diels-Alder reactions from literature and extracted a wealth of electron density and derived 

mathematical descriptors for their reactant states. This initially massive feature set was refined via 

feature selection methods to yield an interpretable set of important variables consistent with 

physical intuition. From there we trained and tuned several regression algorithms with excellent 
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predictive ability based on physical descriptors. Additionally, we were able to qualitatively predict 

the ordering of activity for two Diels-Alderase enzymes. Thus, we were able to sidestep the 

necessity of finding the TS geometry to determine the TS energy with this model example.  

Further, since the electron density is an observable, it is possible to map the electron density 

experimentally and deduce the barrier directly, without computations or kinetics experiments. 

Thus, this study alone could serve as a screening filter for experimental and computational studies 

on the Diels-Alder reaction. We believe that this concept could be extended to other important 

reactions in chemistry. Beyond building a library of barrier prediction algorithms, the proposed 

descriptor sets could be generalized to a fixed-length descriptor compatible with any molecule, 

adding to the set of descriptors that might be useful in the cheminformatics toolkit. 

Future studies may include building classifier algorithms to bin reactions into 

high/low/middle barrier energies (or any arbitrary number of bins) or test the ability to predict the 

reactivity for stepwise Diels-Alder reactions using QTAIM features. Preliminary tests with 

classification algorithms showed promising results with high accuracy and ROC (Receiver 

Operating Characteristic) scores, though the problem of data balance remains. We choose to avoid 

making classifier algorithms as regression algorithms, with a high degree of accuracy, could 

themselves serve as screening methods for computational chemical applications. In addition, 

benchmarking versus traditional fingerprinting algorithms would be a useful metric that was not 

computable as our diverse set of systems included a diverse length of molecular sizes and even 

number of molecules. Another area of interest is generalizing these descriptors to an arbitrary-size 

system through perhaps graph representations and corresponding graph neural networks. We do 

note that BCP, RCP, and CCP can disappear catastrophically (described by catastrophe theory86) 

and hence a given set of CPs may not be uniformly present across all of the systems. If this is the 

case, then simply supplying the null vector for the features at that particular CP should allow fixed-

length input ML algorithms to work, as well as provide incredibly important information about the 

system (that is, whether a CP is present or not provides a chemically significant, bonding 

information). Hence, machine learning on QTAIM CPs can be generalized to include CPs that can 

disappear catastrophically.   

To summarize, we show that there appears to be, at minimum, a statistical relationship 

between reactant state electronic density and the reaction barrier. Within DFT, the reactant state 
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energy is a functional of the electron density; therefore, we extend this and conjecture that the TS 

energy is a functional of the reactant state electron density. This is of fundamental curiosity, 

because the ground state density in principle is mostly agnostic to unoccupied states that can be 

important for reactivity; this could arise as a limitation in similar algorithms for some reactions. 

Statistical learning algorithms demonstrate a high degree of accuracy in predicting barrier energy 

from a small set of density descriptor, suggesting an underlying analytic relationship between these 

variables. This motivates further studies with different reaction families and the development of 

more generalizable QTAIM descriptors and algorithms.  

Computational Methods 

All QM calculations for the machine learning algorithm were performed in Gaussian 09.87 
Geometries were optimized with the B3LYP functional88–91 and 6-31G* basis set.92–94 The 
B3LYP functional is known to perform well for the Diels-Alder reaction; however, it has also 
been shown to overestimate the barrier for polar cycloadditions.95 TS geometries were taken 
from the literature, and an IRC calculation with the local quadratic approximation algorithm was 
performed, in the gas-phase. We then computed the corresponding activation energy and 
constructed our dataset from these values.  QTAIM analysis of the electron density generated 
from Gaussian was performed using the AIMALL software.96 Machine Learning analysis was 
performed using Sci-Learn and parameters were tuned using Skopt Bayesian Parameter 
optimization.97,98 Here we opted for 20 different algorithms for each tunable algorithm parameter 
as well as a 5-fold cross validation for model selection.  

A total of 5 replicate QM/DMD trajectories were run for each Diels-Alderase mutant, with 

each trajectory corresponding approximately to 15 ns. For a detailed description of the QM/DMD 

method, we refer the reader to following reference.85 CE20 QM/DMD trajectories started from the 

4O5T crystal structure.83 Mutations were performed on this structure to generate the CE11 starting 

structure. Residues included in the QM active site were chosen based on if they provided hydrogen 

bonds to the substrates or steric interactions for proper substrate alignment. All QM calculations 

during QM/DMD were performed with Turbomole (version 6.6)99,100,109,101–108 with the pure meta-

GGA TPSS functional110 with D3 dispersion correction.111 All atoms were treated with the double-

zeta def2-SVP basis set.112 The Conductor-like Screening Model (COSMO)113 with a constant 

dielectric of 4 was used to approximate the screening and solvation effects from the protein 

scaffold in this buried active site.114 𝜋DMD115,116 was used for DMD within QM/DMD. 𝜋DMD 

uses an implicit solvent along with discretized potentials.  
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