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In this work, we propose a new method to calculate the molecular nonradiative electronic relaxation rates based on
the numerically exact time-dependent density matrix renormalization group theory (TD-DMRG). This method could
go beyond the existing frameworks under the harmonic approximation (HA) of the potential energy surface (PES) so
that the anharmonic effect could be considered, which is of vital importance when the electronic energy gap is much
larger than the vibrational frequency. We calculate the internal conversion (IC) rates in a two-mode model with Morse
potential to investigate the validity of HA. We find that HA is unsatisfactory unless only the lowest several vibrational
states of the lower electronic state are involved in the transition process when the adiabatic excitation energy is relatively
low. As the excitation energy increases, HA first underestimates and then overestimates the IC rates when the excited
state PES shifts towards the dissociative side of the ground state PES. On the contrary, HA slightly overestimates the
IC rates when the excited state PES shifts towards the repulsive side. In both cases, higher temperature enlarges the
error of HA. As a real example to demonstrate the effectiveness and scalability of the method, we calculate the IC rates
of azulene from S; to Sy on the ab initio anharmonic PES approximated by 1-mode representation. The calculated IC
rates of azulene under HA are consistent with the analytically exact results. The rates on anharmonic PES are 30%-40%

higher than the rates under HA.

I. INTRODUCTION

Nonradiative electronic relaxation (NRER) is an important
process in the photophysics of molecular optoelectronic mate-
rials. It includes internal conversion process (IC) between the
electronic states of the same spin manifold and intersystem
crossing process (ISC) between the electronic states of dif-
ferent spin manifolds!!' For organic photovoltaics and organic
light-emitting system, the NRER processes from the excited
state to the ground state is a harmful process which dissipates
electronic energy into vibrational reservoirs and leads to the
reduction of the energy conversion efficiency of the devices.
Considering the important role of NRER in the molecular pho-
tophysical processes, how to calculate the rate of NRER theo-
retically has always been a hot topic. ™

Currently, the real-time nonadiabatic dynamics simulation
and the rate theory relying on Fermi’s golden rule (FGR)
are the two main approaches to study the NRER process.
Nonadiabatic dynamics directly simulate the nuclear motions
over the coupled potential energy surfaces (PES) to obtain
the real-time population on each electronic state. Though
full-quantum dynamics methods have made great progress in
recent years, it is still limited by the system size of com-
plex molecules 112 Even if less accurate, nonadiabatic mixed
quantum-classical dynamics (NA-MQC) methods provide a
promising way to handle large systems!1> One of the in-
triguing features of NA-MQC is that it could combine with
the modern electronic structure calculation in an on-the-fly
fashion to simulate ab initio dynamics without requiring a
precomputed global PES which is necessary for most full-
quantum wave-packet methods 1% Recently, several semiclas-
sical methods have also been extended to simulate the nona-
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diabatic dynamics combined with the mapping strategy 122"

It should be noted that in these methods the anharmonicity of
the molecular PES is inherently considered. The main short-
coming of the real-time nonadiabatic dynamics methods to in-
vestigate the NRER process is that the accessible timescale is
often limited to several picoseconds. Hence, they are suitable
to describe the ultrafast transition process, such as transition
through the conical intersection where the coupling between
the electronic states is very strong?! However, the NRER
rates of a large portion of useful fluorescent molecules have
timescales of nanosecond or even longer# far beyond what
the current real-time nonadiabatic dynamics methods could
accurately reach.

Complementary to the real-time simulation, in the regime
where the coupling between the states is weak, the rate theory
based on FGR has been successfully developed to describe
the relatively slower processes. The study on this topic has
a long history. [Robinson and Froschl first outlined the har-
monic oscillator approximation model to describe the NRER
processes 50 years ago.2*? Afterwards, [Lin| established the
framework using the displacement harmonic oscillator model
to treat small polyatomic molecules with Duschinsky rotation
effect (DRE) (mode-mixing effect) under the promoting mode
approximation32>2% In recent years, Shuai ef al. have de-
veloped an analytical formalism called thermal vibration cor-
relation function (TVCF) to calculate the NRER rate in the
time domain>27"2% Under harmonic approximation (HA) of
the initial and final electronic PES, this formalism could fully
take DRE into consideration and gives the analytically exact
transition rates. This method has been successfully used to
calculate the NRER rate including IC and ISC processes of a
lot of molecules at ab initio level 225V However, it is known
that HA is only valid in the low energy regime around the
equilibrium geometry, and the higher the energy, the stronger
the anharmonic effect, especially for the floppy modes. Con-
sequently, HA may not be reliable to describe the PES of the
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lower electronic state in the NRER process, because the large
electronic excitation energy is dumped into the vibrations re-
sulting in a relatively high vibrational quanta. Some former
studies have attempted to investigate the anharmonic effect on
the NRER rates of molecules in the FGR framework. [an-
conescu and Pollak| applied the semiclassical initial value rep-
resentation method to study the IC rate in a two-mode model
with Morse potential *1' They found that HA is mostly unsatis-
factory in a wide parameter regime. Humeniuk et al.| assessed
the validity of HA for several coumarin dyes when predict-
ing the fluorescence quantum yields in solution.*? They found
that the accuracy of HA for the radiative decay rate is remark-
able, while HA will underestimate the IC rates. Hence, HA
will lead to an unreliable prediction of fluorescence quantum
yield compared to the experiments. However, their method
to deal with the Morse PES is based on the exact diago-
nalization and sum-of-states approach, which is not scalable
to large systems. Though the aforementioned semiclassical
method is scalable and seems promising in a model system,
further benchmarking is still required to verify the universal-
ity. Therefore, it is important to develop a scalable and nu-
merically exact method to calculate NRER rates beyond HA.

In this work, we propose to calculate the NRER rate with
the numerically exact time-dependent density matrix renor-
malization group method (TD-DMRG)?#% In recent years,
TD-DMRG has emerged as a powerful method to simulate
large-scale full-quantum dynamics37#* such as electronic
spectroscopy of molecular aggregates, real-time internal con-
version in pyrazine, carrier mobility in one-dimensional
molecular crystal, etc. There are several advantages of TD-
DMRG compared to the other numerical methods: (i) The ac-
curacy could be systematically improved by a single parame-
ter; (ii) The Hamiltonian that can be handled is flexible once
it could be represented in a sum-of-products (SOP) form*>40
and thus TD-DMRG could handle both model anharmonic
PES and PES of real molecules after fitting or re-fitting to an
SOP form;*/48 (iii) The scaling of computational cost is poly-
nomial with system size and thus it is scalable for polyatomic
molecules; (iv) The time evolution of wavefunction (at zero
temperature) and density matrix (at finite temperature) could
be simulated in the same framework #2>U These advantages
make TD-DMRG a suitable method to calculate the molecu-
lar NRER rates.

The remaining sections of this paper are arranged as fol-
lows: In section [l THEORY, the Hamiltonian and method
are described. In section RESULTS & DISCUSSIONS,
firstly the IC rates of a two-mode model system with Morse
potential are investigated to assess the validation of HA at dif-
ferent circumstances. Unlike the harmonic potential, the IC
rate with the Morse potential is not analytically solvable. Sec-
ondly, as a real example to demonstrate the effectiveness and
scalability of the method, the IC rates of azulene on the ab
initio anharmonic PES approximated by 1-mode representa-
tion are calculated. The rates calculated under HA are also
compared with the analytically exact results. Finally, the con-
clusion is presented in section[[V] CONCLUSION.

Il. THEORY
A. Hamiltonian and transition rate

The molecular Hamiltonian of two uncoupled electronic
states can be expressed as Eq. (I, where the mass-weighted
coordinates ¢g; are used. The potential energy operator is ex-
panded by the two adiabatic electronic states |y;), |yy).

o = ZP; Vi ( 611,6120,

N is the total number of vibrational coordinates in the system.
Vi/r 1s the (semi-)global PES of the initial/final electronic state
in the transition process. To set up the Hamiltonian for a spe-
cific molecule, the difficulty is how to obtain the PES V; ..
Even nowadays, it is still a hard task to obtain a (semi-)global
PES for polyatomic molecules with more than 20 atoms. For
large systems, the high-order Taylor expansion of the PES at
the equilibrium geometry is often used to calculate the anhar-
monic frequencies>!>2 However, it is known that high-order
Taylor expansion often has artificial “holes” on PES, which
is disastrous for the variational approaches such as DMRG.
The cut-high dimensional model representation (cut-HDMR)
or called n-mode representation (n-MR) method>>># can par-
tially solve this problem. Hence, we use n-MR to approximate
PES of real molecule below. n-MR approximates the exact po-
tential in a hierarchical manner. Eq. (Z) shows 2-MR of PES.
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VO () is the energy at the reference point ¢, which is
commonly chose at the equilibrium point. (q,,qfef) is the
1-dimensional (1-D) cut of the PES which only includes an-
harmonicity within single mode and (g;;q*') indicates that
only g; is allowed to be different from the reference point.
V(gi,qj:q;5") is the 2-D cut of the PES which also includes

mode-coupling. In V(1) and V() all the low order terms are
excluded to avoid the double-counting. When n = N, the hi-
erarchical expansion is exact. In practice, it is usually found
that low order n-MR has already been accurate enough. One
typical way to obtain n-MR is to compute the potential en-
ergy values on a set of grid points and then interpolate or fit
functions accordingly. With the low order mode representa-
tion terms, it is convenient to convert them into the operators
with an SOP format >>

Under HA, this difficulty to construct the (semi-)global PES
is bypassed and only two normal mode analysis at the equilib-
rium geometry are required. The PES can be simplified with
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®;/¢, is the harmonic frequency of the /th normal mode. The
normal coordinates g;,/; of the initial and final states are con-
nected by the Duschinsky rotation matrix S and the normal-
mode projected displacement Ag as Eq. (6). The method to
calculate these two parameters at ab initio level has been well

established 2826157
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The perturbation operator that couples the two electronic
states is denoted as H;. In the IC process, H| is the first order
nonadiabatic coupling operator as Eq. (7).
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In the ISC process, H| is the spin-orbit coupling operator.

Ay = (yilVsoc|wy) i) (wy| +hec. 8)

When the coupling is weak, it is appropriate to calculate the
transition rate between the two electronic states with FGR:
Wr =

h Z};P|H1 if?8(Ef — Ey) 9)

P; is the Boltzmann distribution of the initial state i at tem-
perature 7. We calculate Wr in the time domain by Fourier
transform of the Dirac function, the Eq. @I) Hence, the key
to calculate the rate is to calculate the time correlation func-

tion (TCF) shown in Eq. (T2), where 8 = (kg7)~! and Z is
the partition function.
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At T =0, TCF can be further simplified to Eq. (13),
(B, (A, = 0t /h (0| A e ot /h ] |0) (13)

where |0) is the lowest eigenstate of the initial PES. In this
work, we focus on the rate of IC process with nonadiabatic
coupling operator as Eq. (7). But the rate of ISC process can
be calculated in the same manner. For IC with the Condon
approximation,
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where ¢; /f is the vibrational wavefunction. From Eq. (T4)), we
can find that |[Hj ;¢|* is a summation over two parts: diagonal
terms with n = m and off-diagonal terms with n # m. If the
vibrational degrees of freedom (DoF) are uncoupled, I, can
be further simplified as

L = (Wil Bl W) (i ()| P 2 Cam)) T T i) 12 (),
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where ¥(q.) is the eigenstate of a single DoF g,,.
B. TD-DMRG method
In TD-DMRG, the wavefunction ansatz is
lP> = ZC0|02~-~0'N|G] GQ...GN> (17)
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where |0;) is the orthonormal primitive basis set for each DoF.
N is the total number of DoFs in the system. As the full-rank
coefficient Cg, g,...cy 1S approximated as the product of a chain
of rank-3 matrix A, _| 4, , this ansatz is called a matrix product
state (MPS) % The dimension of a; is called the (virtual) bond
dimension, denoted as Mg. It is worth noting that the accuracy
of an MPS can be systematically improved with Ms. The di-
mension of o; is called the physical bond dimension, denoted
as d. In this work, we use the simple harmonic oscillator basis
to expand each DoF. If necessary, the discrete variable repre-
sentation (DVR)*® is used to approximate the matrix elements
of potential energy operators such as the Morse-type operator.
The details are given in the supplementary material. Simi-
lar to the wavefunction, a common operator O can also be
represented in the matrix product form, called matrix product
operator (MPO), as shown in Eq. (T9).
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With MPO, it is convenient to represent O|¥) as another en-
larged MPS with bond dimension MpM5.
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In Eq. (T3), the initial state |0) at zero temperature can be
obtained through the typical DMRG ground state algorithms
by iteratively optimizing each local matrix AS4U At finite
temperature, to obtain the thermal equilibrium density ma-

trix pg = f B) for a canonical ensemble, the imaginary-time
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Schrédinger equation is integrated from T =0to 7 = /2.
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The initial state p(0) at infinitely high temperature (§ = 0) is a
locally maximally entangled state, which is easily represented
as an MPO with My = 1.

p(0)= HZ%I@MGA (23)

p(7) is normalized with condition {({p(7)|p(7))) =
Tr(p(t)Tp(t)) = 1 after each step of time-evolution.

Therefore, p(§/2) = e*ﬁﬁo/z/\/z(ﬁ) = pé/z. Hence, the
TCF in Eq. (I2) can be re-expressed as:

C(1) = Tr(pé/zeiﬁoz/hﬁlefiﬁot/hlfllpé/z) (24)

This method can equivalently be formulated according to the
thermal field dynamics method, also known as the purification
method by introducing an auxiliary space 4220

There are many time evolution schemes to propagate the
wavefunction and density matrix according to the Schrédinger
equation along the real-time or imaginary-time axes, and they
are thoroughly compared in Ref. |59 and Ref. |60l In this work,
we adopt the time-dependent variational principle-based evo-
lution schemes. The variable-mean-field (VMF) scheme is
used to propagate the wavefunction with matrix unfolding®!
and adaptive Dormand-Prince’s 5/4 Runge-Kutta algorithm.
The second-order projector-splitting scheme (PS) is used to
propagate the density matrix for higher efficiency. Readers
are referred to our former works for more details about the
derivation and implementation.®” The computational cost of a
single time-step is O (N (MZM}d* + MiMod +M3d?)) for the
former and O(N(M2M}d* + M3Mod?)) for the latter, which
are both polynomial with system size. All the calculations in
the next section are carried out with our in-house code Renor-
malizer.%%

IlIl. RESULTS & DISCUSSIONS
A. Two-mode model with Morse potential

In this section, we adopt a minimal two-mode model with
Morse potential as Ref. 31! to investigate the anharmonic ef-
fect on the internal conversion rate from the excited state to
the ground state, in which PES of the ground state is char-
acterized by two independent Morse potential along each vi-
brational DoF, while PES of the excited state is still harmonic
(Typically, the excited state is prepared at low energies where
a harmonic approximation is reasonable). In addition, there is
no mode-mixing between the two PESs. The potential opera-

tor is
Vi=Ve= ¥ 2@+ (25)
=12
Vi=Vg= z:ZuDl (1—e %de)? 1y (26)
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where E,q is the adiabatic excitation energy. The two param-
eters to define a Morse potential are the dissociation energy
D and the ‘width’ of the potential well 1/¢. A schematic di-
agram of the potential energy curve along one coordinate is
shown in Fig. [l A positive/negative Ag represents that the
excited state PES is shifted towards the dissociative/repulsive
side of the ground state PES. Even though this model seems
simple, unlike the harmonic potential, the internal conversion
rate with the Morse potential cannot be calculated analytically.
To construct the MPO for the system Hamiltonian, we use the
symbolic method developed in our former work 4 to first con-
struct the symbolic MPO and then expand every operator on
the primitive basis to obtain a numerical one. The site ordering
is another key aspect of a DMRG calculation. Although it was
discussed to some extent in some former studies for vibronic
models, 3 what is the optimal ordering is still unclear. In

this calculation, the site ordering is e, g1, g>.

FIG. 1. A schematic diagram of the potential energy curve of the
two-mode model along one coordinate. The black curve is the Morse
potential V = D(1—e~%*4)2 of the ground state. The red curve is the
harmonic approximation of the Morse potential at the equilibrium
position. The blue curve is the harmonic potential of the excited
state.

In order to compare with the results in Ref. 31| the same
parameters are adopted here, D| = D, = D = 5.52eV and
o = oy = o = 2.23amu""/2A"" (0.0277a.u.). Under HA,
the harmonic frequency at the equilibrium position is @, | =
Wep = Wy = V202D = 3868cm™!. The harmonic excited



state PES has @, | = @2 = ® = 774cm~!. In addition, the
displacements are the same for the two DoFs Ag; = Agy = Agq.
The derivative coupling along each coordinate is set to be the
same <l,l/e|a%|l,ug> = <‘I’e|a%2\‘l’g> = C. Hence, the general-
ized internal conversion rate is defined as ki = Wr/ C? using
the constant C2 as the unit. As in Ref.[31] TCF is multiplied
by a Gaussian type broadening factor to make it converge after
a finite period of time.

o(Ee)??
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o (E.) is chosen to represent the mean energy interval between
the successive vibrational states on the ground state.

. 1., E. E.
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where O is the Heaviside step function and N(E.) is the num-
ber of quantum states below E.. E, is the lowest energy of the
excited vibronic state. As Ref.[31] the actual 6 (E,) used in all
the calculations is 7 times the value defined in Eq. (30),(31).
Since in the current model the two modes are not coupled

or mixed, the formal propagator e’e/e™ can be exactly rep-
resented as an MPO with Mp = 1 (actually no matter what
the system size is in this model), and the initial state |0) at
zero temperature or p (0) at finite temperature is also a Hartree
product state with Mg = 1. In addition, H, could be repre-
sented as an MPO with My = 2. Therefore, during the time-
evolution, the time-dependent wavefunction in Eq. (I3) and
Eq. (24) could be exactly represented as an MPS with at least
Mg = 2 (The numerical results with different Mg are shown
in Fig. S1 in the supplementary material.). It should be men-
tioned that in Ref. 31| the Hamiltonian includes a momentum
coupling term p; p/M. Since this term is found to have only
a minor effect on kj, it is neglected in the current work. In
the subsequent numerical results, the time step is 8 a.u. (about
0.2 fs). The total simulation time is 240 a.u. to obtain the
TCF using TD-DMRG and then k; is calculated according to
Eq. (29). We note that in Ref. 31} only the diagonal terms
n = m of the summation in Eq. (T4) are included to calculate
kic and the off-diagonal terms n # m are all neglected. This ap-
proximation is similar to the widely known promoting mode
approximation,® which is valid in the case that only one mode
called promoting mode has an appreciable derivative coupling
and its displacement is approximately zero. However, consid-
ering that this approximation may not always be suitable for
all systems, we include the off-diagonal terms when calculat-
ing the internal conversion rates.

First, we consider the zero temperature case in which the
initial state is the lowest vibronic state of the excited state
with zero vibrational quanta in each normal coordinate. With
Ag = 0.7/ fixed, ki with different E,q is shown in Fig.
in which only the diagonal terms in Eq. (I4) are included.
The results of TD-DMRG have already converged with phys-
ical bond dimension d = 60 (the largest quanta of the har-
monic oscillator basis) and are consistent with the results of

Ref. 31/ by the semi-classical initial value representation ap-
proach. However, Fig. [2b] shows that the off-diagonal terms
are also very important in this model, which increase kj. in
some regimes and decrease it in the other regimes according
to the different E,q. This difference can be attributed to that
the off-diagonal terms have different signs when the final vi-
bronic state varies. Fig. 3] shows the relative size of the ma-
trix elements of the off-diagonal terms to that of the diagonal
terms 2115 /(|1 |> + |l|?), whose value is between -1 and 1.

Since the Morse potential is asymmetrical unlike the har-
monic potential, the direction of the relative displacement Ag
between the two PESs matters. Fig. 4] shows the 2D contour
of the ratio of KM°™¢ on the Morse potential to k& on the har-
monic potential with different displacement Ag and adiabatic
excitation energy E,q at temperature 7' = @, /5. At three rep-
resentative displacements Ag = 0.7/, 0/c and —0.52/ a, kic
with different temperatures are shown in Fig. and [id]
The convergence of the primitive basis set is shown in Fig. S2,
S3 and S4 of the supplementary material. It is obvious that
HA could give accurate results when E,q is relatively small
(Eqd/D ~ 0). In this regime, only the vibronic state at the bot-
tom of the ground state PES is involved in the transition pro-
cess. For this low-energy state, HA is valid as expected. This
situation would be encountered in the charge/energy transfer
process between molecules of the same kind and ISC pro-
cess in which the energies of the singlet and triplet state are
very close such as the thermally activated delayed fluores-
cence system*? However, higher energy and a larger positive
displacement make the HA-valid regime much narrower. In
the regimes that HA obviously fails, two trends can be found
within the current model:

1. When the excited state PES shifts towards the disso-
ciative side of the ground state PES (aAg > 0, the top
half of Fig. @), HA will first underestimate k;c and then
overestimate k;. as E,q increases. In addition, k;. with
the Morse potential drops much rapidly as E,q increases
compared to that with harmonic potential once the peak

is passed (Fig. 4b] [c).

2. When the excited state PES shifts towards the repulsive
side of the ground state PES (aAg < 0, the bottom half
of the Fig.[dh), HA slightly overestimates ;. (Fig. d).

To examine the generality of the trends described above, we
also calculate ki with D' =D, o/ =2/3a and D' = 4/9D,
o' = o. The similar 2D contours as Fig. [4al are shown in
Fig. S5 of the supplementary material. The trends are quali-
tatively the same. Besides these two trends, in both cases, the
higher the temperature, the greater the error of HA.

Two fundamental differences between the vibrational wave-
functions of Morse potential ¥M°™¢ and harmonic potential
™A with the same quantum number n may explain the two
trends. First, the amplitude of yM°™¢ is larger than y"* on
the dissociative side, while smaller on the repulsive side, as
shown in the middle panels of Fig. [5a] (n = 3) and Fig. [5b]
(n = 10). Second, by comparing these two panels, yMore
spreads very fast to the dissociative side as the quantum num-
ber increases, while Y4 with the same quantum number is
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FIG. 2. a) The dependence of k;. on the adiabatic excitation energy E,q/D at zero temperature calculated by TD-DMRG with different sizes
of primitive basis sets. Only the diagonal terms in Eq. (T4) are included. The results in Ref.[31]are also plotted for comparison (black line). b)
ki with or without the off-diagonal terms in Eq. (T4) calculated by TD-DMRG with d = 60. (The displacement is Aqg = 0.7/ct. The virtual
bond dimension used is Mg = 4. Morse: full treatment of the anharmonic Morse PES. HA: harmonic approximation of the Morse potential. )
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FIG. 3. The relative size of the matrix elements of the off—diagonal
terms to that of the diagonal terms 211 /(|1;|* + |I»|?) defined in
Eq. (]'E[) and Eq 4'1%5:1) at zero temperature The vibrational wavefunc-
tion @g(g1,42) x,,gl q1 an 5 (g2) of the final state is characterized
by two quantum number: ng 1 and ng >, which are both ranging
fromOto 11.

relatively localized. Consequently, when otAg > 0 and the
quantum number of the final vibrational state is small (E,q is
small), the larger amplitude of y™M°™¢ in the region of the ini-
tial vibrational wavefunction X.(n = 0) will result in a larger
overlap SMorse and thus a larger Franck-Condon (FC) factor
as shown in the upper panel of Fig.[5a] (n = 3) and so is the
transition rate kic. As the quantum number increases, y™M°rs

quickly spreads to the dissociative side and the amplitude of
MO in the region of y. decays much more rapidly once the
large head of yM™¢ crosses y. compared to the more local-
ized yMA, resulting in a smaller FC factor as shown in the
upper panel of Fig. [Sb| (n = 10). Quantitatively, SMOrse de-
creases from 0.4 to 0.025 while Sg only decreases from 0.3
to 0.2 when the quantum number increases from 3 to 10. In
addition, yM°™¢ has more nodes than yHA with similar ex-
citation energy, leading to a more serious phase cancellation
when calculating the overlap. On the repulsive side, though
MO s also localized, the amplitude of yM°™® is smaller
than that of ¥4, resulting in a smaller overlap as shown in
the lower panel of Fig.[5a|and Fig.[5b To understand the tem-
perature effect, Fig.[6]shows that the square of matrix element

(xe(q)] aiq |%¢(¢)) in Eq. (I6) (playing the role as a prefactor of
the FC factor) is relatively larger for initial state with higher
vibrational quanta n.. Therefore, when the thermally popu-
lated initial states with higher vibrational quanta get involved
with the temperature, the error of HA is significantly larger.

To show the computational complexity of the proposed
method with system size, we increase the system size from 2
to 20. Please see supplementary materials for details. Fig. S6
shows that the computational cost is linearly dependent on the
system size for the current uncoupled model without mode-
mixing. If the bi-mode coupling term Y, Fqlzq% is consid-
ered, both the size of MPO and the required My will increase.
Hence, the computational cost almost grows cubically with
system size.
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FIG. 4. a) The ratio of the internal conversion rate on the Morse potential with respect to that under HA with different displacements and
adiabatic excitation energies. The temperature is 7 = @y /5. b)-d) The dependence of k;c on the adiabatic excitation energy calculated by
TD-DMRG with different displacements b) Ag = 0.7/a, ¢) Ag = 0/ and d) Ag = —0.52/ax, at different temperatures (T = 0, @y /5, 2, /5),
with or without HA. The physical and virtual bond dimensions in all these calculations are d = 100 and Mg = 4. The comparison of the results

with different d is shown in the supplementary material.

B. IC rate of azulene

The proposed method can be applied to the real molecules
if the PES is available. As an example to demonstrate the ef-
fectiveness and scalability of the method in real molecules, in
this section we calculate the internal conversion rate of azu-
lene from the S; state to Sy state. Azulene has often been used
as a prototypical system to benchmark new methods 728 Here,
two types of PES are considered: (i) the harmonic PES ex-
panded around the respective equilibrium geometry of ground
state and excited state. (ii) the ground state PES is approx-
imated by 1-MR along each normal coordinate (the excited
state is still considered to be harmonic). As introduced above,
1-MR includes the anharmonicity of 1-D cut of the PES along
each coordinate. The single point energy, equilibrium geome-

try, and normal mode analysis of the ground state and excited
state of azulene are calculated by density functional theory
(DFT) and time-dependent DFT at B3LYP/6-31G(d) level in
Gaussian 16.%¥ The number of normal modes of azulene is 48.
The Duschinsky rotation matrix S and normal mode projected
displacement Agq as in Eq. (6) are calculated by MOMAPSS
The 1-MR PES is constructed by the adaptive density-guided
approach (ADGA) im&lemented in MidasCpp ™ developed
by Christiansen et al®" A total of 741 ab initio points are
calculated and the 1-D cut of PES is fitted with polynomial
functions up to 12th order. The 48 1-D PES cuts are shown
in Fig. S9-S12 of the supplementary material. It is clear to
see that azulene is a semi-rigid molecule with a well-defined
minimum corresponding to the equilibrium geometry. In the
TD-DMRG calculations, the coordinates used are the normal
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coordinates of the ground state. They are arranged in ascend-
ing order of harmonic frequency. The site of the electronic
DoF is put to the middle of the chain. The time step is 0.25fs
and the total time of simulation is 425fs. The primitive basis
for each DoF is the harmonic oscillator basis up to 20 quanta.
A Lorentzian broadening factor 100cm~! is applied to make

the time-integration of TCF converge.

For the harmonic PES, the TVCF method>%” (implemented
in MOMAP®) is analytically exact and thus serves as a ref-
erence here. For comparison, the same time step and total
evolution time are used in TVCF. The TCF C(¢) in Eq. (29)
calculated by TVCF and TD-DMRG with different bond di-



mension Mg are shown in Fig. The results with Mg =2
(blue dashed line) deviate from the exact value after 40fs and
thus is not accurate enough to calculate ki, (See Table. E])
The results with Mg = 20 (red dashed line) are consistent
with the exact values at the resolution scale shown in Fig.
The transition rates kj. are listed in Table. I} The analytically
exact value is 2.17 x 1019s~! at 0K and 2.44 x 10951 at
300K. The results of TD-DMRG converge very fast with
Mg and Mg = 20 could obtain a quantitatively accurate rate
——2.11x 10571 at 0K and 2.32 x 10'%s~! at 300K. The
computational wall-clock time for the whole simulation with
Mg =20 is 35 minutes at 0K and 6 hours 33 minutes at 300 K
with 4 Intel Xeon Gold 5115 CPU cores and 1 NVIDIA V100
GPU.

-7
Lox10 0K 300 K
) —— TVCF
——— M=2
——= M=20
—1.0¢ 4 80 120 40 80 120

Time (fs)

FIG. 7. The real and imaginary part of the time correlation function
C(t) at T = 0K and T = 300K calculated by the analytically exact
TVCF method implemented in MOMAEP® (black solid line) and TD-
DMRG with bond dimension Mg = 2 (blue dashed line) and Mg = 20
(red dashed line).

Though on the harmonic potential TD-DMRG method is
definitely much more expensive than the TVCF method, TD-
DMRG could go beyond HA and the cost is not expected to
increase too much depending on the specific form of the an-
harmonic PES. For the anharmonic PES of azulene approxi-
mated by 1-MR, the results with different My are also listed
in Table. [I} The results of TD-DMRG still converge very fast
with Ms and at Mg = 60, kic is 2.89 x 101%s~! at OK and
3.37 x 10'%s~! at 300K, which is roughly 30%-40% higher
than the results of harmonic PES. The results are consistent
with the findings in the two-mode model above. For the multi-
mode molecule in the weak coupling limit with all the Huang-
Rhys factor S; < 1 (Fig. S13 shows S; of azulene), it has been
known that the most probable final states prefer to simultane-
ously excite several vibrational modes to accept the electronic
energy together rather than excite only one mode to very high
energy level ©® Therefore, for each mode, the energy received
is in the small to medium regime in which the rate on the
Morse potential is mainly larger than that on the harmonic
potential (Fig.[d). The computational wall-clock time for the

whole simulation with Mg = 20 is 26 minutes at 0K and 7
hours 1 minute at 300 K, which is similar to the harmonic case.
This is because the modes are still independent in 1-MR PES
and thus the bond dimension My of MPO does not change
and the required My for the same accuracy is also roughly the
same from Table. [IIl. When 2-MR PES is considered, we ex-
pect that the cost spent in TD-DMRG will increase because
both Mg and My will increase but still affordable. However,
to construct the 2-MR PES for azulene needs at least 100,000
single point ab initio calculations (assuming 10 grids on each
coordinate), which will in turn become the bottleneck of the
whole calculation.

IV. CONCLUSION

In this work, we propose to use TD-DMRG to calculate
the rate of molecular nonradiative electronic relaxation pro-
cess based on Fermi’s golden rule. Firstly, we calculate the
internal conversion rate of a two-mode model system with
Morse potential and assess the validity of harmonic approx-
imation. We emphasize that the off-diagonal terms neglected
in the former studies are also important to the transition rate
and the harmonic approximation is unsatisfactory in a large
parameter regime unless only the lowest several vibrational
states of the lower electronic state are involved in the transi-
tion process when the adiabatic excitation energy is relatively
low. Since the Morse potential is asymmetrical, the error of
the harmonic approximation strongly depends on the direction
of the shift of the excited state potential energy surface with
respect to the ground state. When atAg > 0, the harmonic ap-
proximation will first underestimate the IC rate and then over-
estimate it as the excitation energy increases. This is due to
that the amplitude of the wavefunction on the Morse potential
is larger than that of the harmonic potential in the dissociative
side but the wavefunction spreads quickly with energy while
the harmonic wavefunction is much more localized. Hence,
the Franck-Condon factor between the initial and final states
on the Morse potential is first larger and then smaller than
that under harmonic approximation. When otAg < 0, the har-
monic approximation will slightly overestimate the IC rate
because the wavefunction on the Morse potential is also lo-
calized on this side but the amplitude is smaller. Moreover,
higher temperature will enlarge the error of harmonic approx-
imation. Secondly, we calculate the internal conversion rate
of azulene. Under harmonic approximation, the results are
consistent with the analytically exact results calculated by the
thermal vibration correlation function method. On the an-
harmonic PES approximated by one-mode representation, the
results are 30%-40% higher than that on harmonic PES, in-
dicating that in this semi-rigid system the anharmonic effect
on IC process is not very strong. The computational cost is
roughly the same compared to harmonic case, which demon-
strates the effectiveness and scalability of the current method
to be applied to large polyatomic molecules. It should be
mentioned that though we focus on the rate of internal con-
version process in the numerical examples in this work, the
same approach could also be used in the calculation of the in-



10

TABLE I. The internal conversion rate kj. of azulene from the S; state to the Sy state with harmonic PES and with anharmonic 1-MR PES
calculated by TD-DMRG with different bond dimension Ms. The analytically exact results with harmonic PES calculated by TVCF are also

listed.
Method kie(x1019s~1) at OK kic(x10'0s~1) at 300K
HA 1-MR HA 1-MR
TVCF 2.17 R 2.44 -
Mg=2 0.44 1.08 1.31 2.05
Mg=5 1.30 1.98 1.85 2.72
Mg =10 1.98 2.69 221 3.13
TD-DMRG Mg = 20 2.11 2.83 2.32 3.27
Mg = 40 2.15 2.88 2.40 3.35
Mg =60 2.16 2.89 2.41 3.37

tersystem crossing rates. Finally, floppy molecules, such as
the aggregation-induced emission systems,® may have a sig-
nificant anharmonic effect on the IC process, thus applying
the current TD-DMRG method to these systems with ab initio
anharmonic potential energy surface is worth further study.

SUPPLEMENTARY MATERIAL

See the supplementary material for the internal conversion
rates ki of the two-mode model calculated by TD-DMRG
with different virtual bond dimension Mg, physical bond di-
mension d, and different Morse potential parameters. The 1-D
cuts of azulene ground state PES can also be found.
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I. DISCRETE VARIABLE REPRESENTATION

Discrete variable representation (DVR) basis is a basis set composed of series of local distributed basis functions in the &
function form on the position coordinate. It can be obtained through diagonalization of the matrix representation of position
operator £ on another basis set as in Eq.[2] Here, we use the harmonic oscillator (HO) basis as an example, the relationship
between the primitive basis and DVR basis transformed can be expressed as Eq. [3]and Eq.[4].

XHO = aZﬂ<¢aHO\fI¢EO>I¢§O><¢EOI = %x&*ﬁm;‘ombg‘% (1)
XPVR — yTxHoy 2

op ") = ;,W;I;{/O)Uﬁ/ﬁ 3)

|65°) = §|¢D/VR>U;% )

Using the local distribution feature of the basis functions in the DVR basis on position coordinate, the matrix elements VPVR
of operators V (x) with an explicit relationship with the position operator £ on DVR basis can be easily written through Eq.

VIR — (9DVRID90VR) 2V (x4) 3y )

o

Then, a linear transformation as in Eq. E] and Eq. can be performed if we need the matrix representation VHO of the operator
V in the original HO basis.

Vap = (06°IVI95°) = Y Unor (90 X [VIORY*)Ujs g (6)
alﬁ/
yHO _ yyDVR 7

In this work, it is hard to analytically write the matrix elements of Morse potential operator VM°s¢ = D(1 — ¢~%%)2 on the HO
basis set. So we first write its matrix elements on HO-DVR basis as Eq.[5} Then we transform the obtained matrix representation
VDPVR {0 the matrix representation VHO in the original chosen HO basis through a transformation matrix U between the two basis
sets.

II. THE CONVERGENCE OF VIRTUAL BOND DIMENSION AND PHYSICAL BOND DIMENSION OF TD-DMRG
SIMULATION IN THE TWO-MODE MODEL SYSTEM
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FIG. 1. The convergence of the bond dimensions Mg for MPS in the two-mode model used in the main text. The displacement Ag = 0.7/a.
the temperature 7 = 2@, /5, the physical bond dimension d = 100 .The result indicates that Mg = 4 is large enough in this calculation.
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FIG. 2. The convergence of the primitive basis set (simple harmonic oscillator basis) in the two-mode model used in the main text. The
displacement Ag = 0.7 /. With all the temperatures considered, the results with physical bond dimension d = 100 and d = 140 are the same,
indicating that d = 100 is large enough in this calculation.
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displacement Ag = 0/«. With all the temperatures considered, the results with physical bond dimension d = 100 and d = 140 are the same,
indicating that d = 100 is large enough in this calculation.
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FIG. 4. (a). The convergence of the primitive basis set (simple harmonic oscillator basis) in the two-mode model used in the main text. The
displacement Ag = —0.52/cx. The results with d = 100 are consistent with that of d = 140 except the Morse potential with T = 2@, /5. (b).
For Morse potential with T = 2, /5, a larger basis set is tested. With d up to 220, k; is still not converged in the high energy region. However,
considering the error caused by the insufficient basis in this case does not change the relative relationship between the internal conversion rate
calculated from Morse potential and its harmonic approximation, we still use d = 100 in the main text for higher efficiency.



III. THE RESULTS OF THE TWO-MODE MODEL SYSTEM WITH DIFFERENT MORSE PARAMETERS
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FIG. 5. (a), (b) and (c) show the ratio of the internal conversion rate on the Morse potential with respect to that under HA with different
displacements and adiabatic excitation energies. (a). D = Dy, & = 0. The same as Fig. 5a in the main text. (b). D = Dy, @ = 2/3.
(). D=4/9Dy, o = ap. In all cases, Dy = 5.52eV, oy =2.23 amufl/zA_l, w, = 0g/5 and T = @, /5. The parameter for TD-DMRG
calculations are all d = 100, M; = 4.

IV. THE COMPUTATIONAL COMPLEXITY OF TD-DMRG IN THE MORSE MODEL SYSTEM WITH BI-MODE
COUPLING AND WITH DIFFERENT SYSTEM SIZE

Though we have focused on a two-independent-mode system in the main text, we expect the same method can be applied
to larger systems, even with mode coupling. Thus, in this section, we evaluate the time cost of our methods for different
systems sizes. Our benchmark platform is one CPU core on Intel Xeon® Gold 5115 CPU at 2.40 GHz with NVIDIA® Tesla®
V100-PCIE-32 GB for CPU-GPU heterogeneous calculations.

In the first test case, only the number of modes increases from 2 to 20. As we discussed in the main text, when the modes
are uncoupled and additionally there is no mode-mixing between the excited state and ground state PESs, MPS with Mg = 2 can
always exactly represent the time-dependent wavefunction no matter what system size is. Since the formal time scaling of the
time-evolution algorithm used in this work is O(N (M_%M(z)a'2 +M gMOd +M§’d2)), considering Mo and My are both unchanged,
the time cost is linear with the system size. The numerical results are shown in FIG. S6.

Since TD-DMRG can deal with correlated Hamiltonian, in the second test case, we apply the proposed method to a fully-
coupled anharmonic potential. For simplicity, we add a fourth-order bi-mode coupling term to the potential (see Eq. [8). As
shown in Fig.[7] the coupling strength y will influence the transition rate. In the following calculation, we set Y = 0.1. Unlike the
uncoupled case above, the bond dimension My should be increased to achieve a convergent result when the system size increases.



The numerical results with different M, for each system size are shown in Fig.[8] The time costs have been collected in FIG. [6p.
Though the time cost is no more linear with the system size, it is still polynomial (~ N3) as expected. The benchmark results
demonstrate that our method has the potential to deal with larger systems with mode-couplings.
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FIG. 6. The time cost of TD-DMRG with different system sizes using their corresponding minimum convergent virtual bond dimensions M;
(list above the bars). The physical bond dimension is d = 100 for all the calculations. (a) shows the results without mode-coupling (Eq. El

with y = 0). (b) shows the results with mode-coupling (Eq. [§] with ¥ = 0.1). The Morse potentials used along each mode all share the same
parameters ¢ , D and Ag = 0.7/ as in FIG. 5b in the main article, the temperature is 7 = g /5.
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FIG. 7.

The internal conversion rates calculated for different magnitude of mode-coupling strengths in the two-mode Morse model. The

magnitude is controlled by a constant ¥ introduced in Eq. (8). It can be seen ¥ = 0.1 is enough to cause an obvious influence on the internal

conversion rates.
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V. THE 1-D CUT OF AZULENE GROUND STATE PES ALONG EACH NORMAL MODE
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FIG. 9. (a)-(1) The 1-D ground state PES cut of azulene from mode 1 to mode 12. The unit of mass-weighted normal coordinates is the atomic
unit. The solid circles are the ab initio points. The red line is the polynomial fit of ab initio points up to order 12. The blue line is harmonic
potential. The vertical solid line is the boundary of the ab initio points acting as a guide to the eye. The dashed horizon lines are the lowest 10
energy levels of the harmonic potential. The ab initio calculations are carried out at B3LYP/6-31g(d) level.
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FIG. 12. Similar as Fig.[9]but for modes 37-48.
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FIG. 13. The Huang-Rhys factor of different modes on the ground state PES of azulene.
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