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Abstract

We present a general framework for the development of data-driven many-body (MB) poten-

tial energy functions (MB-QM PEFs) that represent the interactions between small molecules

at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of

MB-QM PEFs for water are rigorously derived from density functionals belonging to differ-

ent rungs across Jacob’s ladder of approximations within density functional theory (MB-DFT)

as well as from Møller-Plesset perturbation theory (MB-MP2). Through a systematic anal-

ysis of individual many-body contributions to the interaction energies of water clusters, we
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demonstrate that all MB-QM PEFs preserve the same accuracy as the corresponding ab initio

calculations, with the exception of those derived from density functionals within the general-

ized gradient approximation (GGA). The differences between the DFT and MB-DFT results

are traced back to density-driven errors that prevent GGA functionals from accurately repre-

senting the underlying molecular interactions for different cluster sizes and hydrogen-bonding

arrangements. We show that this shortcoming may be overcome, within the many-body for-

malism, by using density-corrected functionals that provide a more consistent representation

of each individual many-body contribution. This is demonstrated through the development of a

MB-DFT PEF derived from density-corrected PBE-D3 data, which more accurately reproduce

the corresponding ab initio results.

1 Introduction

Molecular mechanics (MM) models, with tunable parameters, are the workhorse of computer sim-

ulations. While the earliest MM models were parameterized using simple point-charge and pair-

wise potentials to reproduce experimental observables, recent MM models are constructed with

first-principles approaches using parameters derived from high level ab initio reference data. Po-

larizable force fields (FFs)1–3 and machine learning (ML) models4–14 have now taken the center

stage as the models of choice for molecular dynamics (MD) and Monte Carlo (MC) simulations.

Among ML models, neural networks (NNs) have become increasingly popular in computa-

tional molecular sciences. Atomistic NNs describe the target multidimensional potential energy

surface (PES) using a set of descriptors that represent the immediate local environment around

each atom.4,5,8,9 NN models rely on using regression algorithms to train flexible potential en-

ergy functions (PEFs) on large sets of reference data that are calculated at the highest level of

theory compatible with the system’s size and complexity.4,5,8,9,15–17 While the restrictions on the

functional forms used to represent the target PES are somewhat loose, ML models must satisfy

rotational, translational, and permutational invariance, and must be able to uniquely describe a

molecular configuration.4,5,9,18–24 Some ML models are trained on gas-phase reference data and,
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while useful for studying individual molecules and small clusters, are not adequate to accurately

describe systems in the condensed phase where long-range many-body effects may play important

roles.25 On the other hand, since gas-phase reference data are generated for small systems, they

are not only relatively cheap and fast to calculate, but can also be computed using higher levels

of theory compared to models trained on large condensed-phase systems.12 For small molecules

the reference data are usually calculated using coupled cluster (CC) theory, including single, dou-

ble, and perturbative triple excitations, i.e., CCSD(T), often in the complete basis set (CBS) limit,

currently the “gold standard” for molecular interactions. Towards this end, some ML approaches,

which include ∆-machine learning procedures applied to permutationally invariant polynomials

(PIPs),24 allow for a ML model to be trained to an effective higher level of theory by training a

correction to a core potential generated at a lower level of theory, using a sparser number of higher-

level data points.26,27 ML approaches based on NNs and PIPs have also been developed to model

chemical reactions in the gas-phase and at solid surfaces.19–22,28–32 In order to implicitly include

many-body effects, some ML models are trained on entire sets of condensed-phase configurations,

which are expensive to generate and must consequently use a lower level of theory, commonly

density functional theory (DFT), for the reference data.33–35

An alternative way to represent condensed-phase systems using ML approaches is to adopt a

hybrid data-driven/physics-based scheme where a data-driven model, which captures (short-range)

quantum-mechanical interactions, is integrated with a physics-based model of many-body interac-

tions, which are represented by classical expressions.36–38 Examples of hybrid data-driven/physics-

based models are the MB-pol and related MB-nrg PEFs that are able to accurately predict the prop-

erties of water39–42 and various aqueous systems,43–50 as well as molecular fluids,51,52 from the gas

to condensed phases. Both MB-pol and MB-nrg PEFs are rigorously derived from the many-body

expansion (MBE) of the energy and use PIPs24 to capture short-range quantum-mechanical effects

arising from the overlap of the electron densities of individual monomers (e.g., Pauli repulsion,

and charge transfer and penetration), which are missing in conventional force fields. The MB-DFT

PEFs generalize the MBE formalism adopted to develop the MB-pol PEF of water by replacing the
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2-body (2B) and 3-body (3B) terms, which were originally calculated at the CCSD(T)/CBS level

of theory, with corresponding terms calculated using an arbitrary density functional.53 It has been

shown that the MB-DFT PEFs closely reproduce the structural properties of liquid water calculated

from fully ab initio MD simulations carried out with the same density functional.53

The MB-DFT family of hybrid data-driven/physics-based PEFs is particularly appealing for

quantum mechanics/molecular mechanics (QM/MM) simulations of systems that are either too

computationally expensive to be treated at a fully quantum-mechanical (QM) level or cannot be

described using molecular mechanics (MM) models since they involve rearrangements of chemical

bonds. Likewise, while ML approaches can, by construction, model bond rearrangements, their

behavior is highly dependent on the composition the datasets and level of theory used in the training

process. In principle, these problems do not affect QM/MM simulations where the total system is

divided into a smaller QM subsystem, which includes all molecular species that are involved in the

chemical transformation, and a MM region, which describes environmental effects.54,55 However,

conventional QM/MM approaches suffer from energy discontinuities at the boundary between the

QM and the MM region which appear due to the different accuracy of the QM and MM models in

representing the underlying molecular interactions. Another shortcoming of conventional QM/MM

calculations arises when they are applied to studying chemical reactions in solutions where, due

to diffusion, molecules initially assigned to the MM region may enter the QM region and, vice

versa, molecules initially assigned to the QM region may enter the MM region during the MD

simulation. To overcome this problem, several adaptive QM/MM schemes have been proposed

where the QM region is dynamically repartitioned at every MD step in order to prevent diffusive

breakup. This is generally accomplished by introducing transition layers that smooth over the

QM/MM boundary discontinuity.56,57,57,58,58–76 This suggests that “elevating” the accuracy of the

MM model to the same level as the QM model would effectively remove these discontinuities and

significantly improve the realism and predictive power of QM/MM calculations.77

In this context, pure ML models of the MM region do not lend themselves well to QM/MM

simulations since point charges must, at least, be assigned to the MM atoms to capture Coulom-
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bic interactions between the MM region and the QM electronic density through a minimal elec-

trostatic embedding scheme.78 In contrast, MB-DFT PEFs53 and other polarizable models like

AMOEBA79,80 can directly couple to the QM region using a polarizable embedding scheme which

allows the environment to dynamically respond to the QM density via the polarization of inducible

multipole moments on the MM atoms.77,81–89 In principle, when used in QM/MM calculations, the

MB-DFT PEFs can not only elevate the accuracy of the MM region to be consistent with that of the

QM region but, by construction, their 2B and 3B PIPs help recover quantum-mechanical effects

in the QM/MM interaction which are missing in QM/MM calculations with conventional (either

polarizable or nonpolarizable) force fields, thus allowing the entire QM/MM system to be consis-

tently treated at the same level of theory.77 However, in the case of water, the original MB-DFT

PEFs44 were built upon the same Thole-type scheme adopted by MB-pol to represent permanent

electrostatics and polarization derived from high-level QM calculations,39–41 which implies that

they are not able to strictly reproduce many-body energies calculated ab initio using the corre-

sponding DFT models. This is a problem in QM/MM calculations in water where the MM region

is described by a MB-DFT PEF and the QM region by the corresponding DFT model because the

associated QM/MM electrostatic interactions may be substantially different from those predicted

by the original MB-pol electrostatic model underlying the MB-DFT PEFs, which results in an

unbalanced representation of short-range many-body effects between the QM and MM regions.77

This problem is particularly evident in configurations with strong polarization. For example, we

observed that when the hydrogen-bond donor in the water dimer is assigned to the QM region

described by a DFT model and the hydrogen-bond acceptor is described by the corresponding

MB-DFT PEF, the underlying QM/MM electrostatic interactions are very similar to the pure MM

electrostatic interactions provided by the MB-DFT PEF. This allows the 2B and 3B PIPs of the

MB-DFT PEFs to correctly recover the reference QM energy of the water dimer. In contrast, when

the QM/MM partition is flipped such that the hydrogen-bond donor is assigned to the MM region

represented by the MB-DFT PEF, the QM/MM electrostatic interactions become appreciably dif-

ferent from the pure MM electrostatic interactions provided by the MB-DFT PEF, which prevents
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the PIPs of the MB-DFT PEFs from correctly recovering the ab initio DFT energy.77 Furthermore,

the higher-body nB terms (n≥ 4) of the MB-DFT PEFs are fully described by the polarization term

of MB-pol, which implies that they are identical in all MB-DFT PEFs, regardless to which density

functional a particular MB-DFT PEF is derived from.53 As a consequence, if a given density func-

tional displays sufficiently different polarization effects from those represented by MB-pol, the

original MB-DFT PEFs53 are not able to correctly reproduce higher-body nB interactions (n≥ 4)

provided by that density functional. Finally, the 1B term of the original MB-DFT PEFs for wa-

ter, which describes the intramolecular distortions in an isolated water molecule, is represented

by the same Partridge-Schwenke PEF90 used in MB-pol,39–41 which was derived from high-level

QM calculations and further refined to reproduce the rovibrational transitions of an isolated water

molecule in the gas phase. This implies that the intramolecular distortion energies in the original

MB-DFT PEFs do not properly reproduce the corresponding DFT 1B energies.53

In this study, we introduce an efficient theoretical/computational framework for the develop-

ment of MB-QM PEFs that consistently reproduce each individual many-body energy contribution

calculated ab initio using the corresponding QM model. While MB-QM PEFs can be developed

for generic (small) molecular fluids at an arbitrary QM level of theory, the present study focuses

on MB-QM PEFs for water derived from ab initio data calculated using various density function-

als belonging to different rungs across the Jacob’s ladder of DFT approximations as well as from

second-order Møller-Plesset (MP2) perturbation theory. While these MB-QM PEFs are intended

for use in future QM/MM simulations, this first study focuses on the theoretical details and as-

sessment of the accuracy of the MB-QM PEFs through a systematic analysis of the energetics of

small water clusters. By analyzing each many-body contribution to the interaction energies, we

find that density functionals derived within the generalized gradient approximation (GGA) and

hybrid density functionals suffer from relatively large density-driven errors. This leads to the

over-delocalization of the electron density which, in turn, results in (unphysically) larger higher-

body energies whose magnitude cannot correctly be captured by the purely classical, many-body

polarization term adopted by the MB-DFT PEFs. We show that, within the theoretical frame-
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work based on the many-body formalism that is introduced here, it is possible to develop density-

corrected MB-DFT PEFs that remove, at least partially, these density-driven errors and provide a

more accurate description of individual many-body contributions to the interactions between water

molecules.

2 Theory

2.1 MB-QM

The MBE expresses the total energy, Etot , of an N-body system as the sum of individual n-body

energy contributions, εnB, where n≤ N,91

Etot(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i< j

ε2B(ri,r j)+
N

∑
i< j<k

ε3B(ri,r j,rk)+ ...+ εNB(r1, ..,rN) (1)

Here, ε1B represents the energy of an isolated monomer, and the n-body energies are defined re-

cursively as

εnB = εn(1, ...,n)−
N

∑
i=1

ε1B(ri)−
N

∑
i< j

ε2B(ri,r j)−
N

∑
i< j<k<...<n−1

ε(n-1)B(ri,r j, ..rn−1). (2)

It has been shown that the MBE converges quickly for systems with localized electron densities and

large band gaps. For example, the sum of 2B and 3B energies contributes to ∼96-99% of the total

interaction energy in water.91–98 Exploiting the fast convergence of the MBE, several many-body

PEFs for water39–41,99,100 and other molecular fluids51,52,101,102 have been derived from high-level

QM data. In this study, we generalize the many-body formalism originally adopted by the MB-pol

PEF39–41 to the development of many-body PEFs for generic (small) molecules at an arbitrary QM

level of theory. As examples, we introduce several MB-DFT PEFs for water derived from various

density functionals belonging to different rungs across the Jacob’s ladder of DFT approximations

(MB-DFT) as well as from MP2 perturbation theory (MB-MP2).
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Briefly, the MB-QM PEFs approximate eq 1 to the sum of explicit 1B, 2B, and 3B terms along

with a polarization term implicitly representing classical many-body interactions:

Etot(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i> j

ε2B(ri,r j)+
N

∑
i> j>k

ε3B(ri,r j,rk)+Epol (3)

Each term of eq 3 is fitted to reproduce the corresponding ab initio data calculated at the same

QM level of theory. Specifically, the 1B term is represented by a PIP24 that accurately describes

intramolecular distortions. The 2B term incorporates three different energy contributions:

ε2B = Esr
2B +Eelec +Edisp (4)

where Esr
2B describes short-range 2B interactions and is represented by a 4th-degree PIP.39,53 Eelec

represents permanent electrostatics between point charges that reproduce the ab initio dipole mo-

ment of an isolated molecule. Following ref 77, in the MB-QM PEFs for water introduced here,

the point charges are kept fixed to the values that reproduce the dipole moment of a water molecule

in its equilibrium geometry. However, the present MB-QM scheme is general and allows for using

geometry-dependent charges if deemed necessary for achieving higher accuracy. The last term in

eq 4, Edisp, describes the 2B dispersion energy that is expressed as

Edisp =−∑
i, j

f (δi j)
C6,i j

R6
i j

(5)

where f (δi j) is the Tang-Toennies damping function,103 i and j are atom indices on two separate

water monomers, and C6,i j are the dispersion coefficients. The 3B term of the MB-QM PEFs

describes short-range 3-body interactions and, as in the case of ε2B, is represented by a 4th-degree

PIP,

ε3B = Esr
3B. (6)
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2.2 Density-corrected DFT

The Kohn-Sham theory allows for minimizing the exchange-correlation (XC) functional given

by104

F [n] = TS[n]+EH[n]+EXC[n]. (7)

where n(r) is the ground-state density of the system, TS is the non-interacting kinetic energy, and

EH and EXC define Hartree and exchange-correlation energies, respectively. The exact F [n] gives

rise to derivative discontinuities for total energies at integer values of the number of electrons

(N),105 a feature that is missing in GGA and hybrid GGA density functionals which, by construc-

tion, provide smooth functions of N. As a consequence, the derivatives of these density functionals

are inaccurate,105 which results in an incorrect Kohn-Sham potential and, in turn, poor orbital en-

ergies. As the potential generated by these density functionals show a constant shift with respect

to the exact potential, these errors do not affect the density. Unsurprisingly, for this reason, most

density functionals engender accurate electron densities, which suggests that DFT errors are pri-

marily functional-driven rather than density-driven. In this regard, it should, however, be noted

that density functionals constructed in unconstrained forms may give rise to unphysical electron

densities despite providing a good representation of the energies.106

Probably the most significant contributor to density-driven errors is the self-interaction error

(SIE). In wavefunction theory, Coulomb interactions are incorporated as pairwise two-electron

potentials, where an electron does not interact with itself. However, in Kohn-Sham theory, since the

energy is a functional of the one-electron density, it is impossible to remove the interaction of the

electrons with themselves as each electron interacts with the entire density. As a consequence, most

density functionals are unable to satisfy the following conditions for the one-electron system,107

Ts =
∫

d3r
|∇n|2

8n
, EX =−EH, EC = 0. (8)

where EX and EC are the exchange and correlation energies. The inability to satisfy eq 8 gives

rise to the SIE. Although for many-electron systems the self-interaction energy can be formally
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defined as the sum of the energies of each orbital interacting with itself,108 correcting for the SIE

has been found not to be straightforward.109 For hybrid density functionals, mixing a fraction of

Hartree-Fock exchange with the XC functional leads to incomplete cancellation of the SIE, thus

giving rise to smaller density-driven errors compared to pure functionals.110–112

Besides the SIE, another contributor to density-driven errors is the delocalization error, which

is a many-electron effect resulting in unphysical delocalization of the electrons and low energies

for the delocalized electrons.109,113–115

One possible workaround to minimize DFT density-driven errors is the use of an accurate elec-

tron density. However, this effectively makes the minimization of density-driven errors impractical

because finding a highly accurate electron density is more expensive than the DFT calculation it-

self. In this context, with the absence of derivative discontinuities in the energy provided by the

GGA functionals, the use of the Hartree-Fock density, nHF, in the orbital-dependent functionals

is free from density-driven errors107 and makes the overall computational cost of the density-

corrected energy, EDC−DFT, similar to that of the original DFT energy,

EDC−DFT ≈ EHF +
(
ẼXC

[
nHF]−EHF

X
)

(9)

Although approximate, using the Hartree-Fock density, nHF, to calculate EDC−DFT in a non-self-

consistent way has been shown to minimize density-driven errors in DFT calculations of various

properties (e.g., electron affinities,116 noncovalent interactions,117–120 spin gaps for coordination

compounds120) with minimal additional computational cost. It should be noted that other ap-

proaches have also been proposed in the literature to correct the SIE in DFT calculations.121,122

3 Computational details

All MB-DFT PEFs were fitted to ab initio data calculated with GGA density functionals (BLYP123,124

and PBE125 belonging to rung 2 functionals), meta-GGA density functionals (B97M-rV126 belong-

ing to rung 3 functionals), hybrid density functionals (B3LYP,124,127 PBE0,128 and M06-2X,129
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belonging to rung 4 functionals) and range-separated density functionals (ωB97M-V130 belonging

to rung 4 functionals). The empirical D3 correction was added to all density functionals that do not

account for dispersion energy.131 Similarly, the MB-MP2 PEF was derived from the corresponding

data calculated at the MP2 level of theory. Both DFT and MP2 calculations were carried out with

the aug-cc-pVQZ basis set132,133 using Q-Chem134 and ORCA135 quantum chemistry packages.

The Euler-Maclaurin-Lebedev (99,590) grid136,137 was used in all DFT calculations to minimize

possible grid errors since it has been shown that the accuracy of more recent density functionals

are particularly sensitive to the choice of the integration grid.138

The 1B, 2B, and 3B training sets used in the development of each MB-DFT and MB-MP2 PEF

comprise 5000 monomers, 42508 dimers, and 12347 trimers, respectively. The 1B training set was

generated using in-house software following the same procedure described in previous studies,51,52

while we used the same 2B and 3B training sets used in the development of the MB-pol PEF.39,40

The dipole polarizabilities for the free O and H atoms were computed at the corresponding

DFT and MP2 levels of theory. The effective polarizabilities used in the MB-DFT and MB-MP2

PEFs were calculated as:

αe f f = α f ree

(
Ve f f

Vf ree

)4/3

(10)

where Ve f f and Vf ree are the effective and free volumes of the O and H atoms in H2O calculated

via the XDM model139–141 as implemented in Q-Chem.142 The atomic charges were calculated

using the CM5 method143 and then distributed on the actual sites representing the MB-QM H2O

molecule (i.e., the fictitious site along the bisector of the HOH angle and the two H atoms)39

according to the procedure described in ref 144.

All the density-corrected DFT calculations were performed in two steps, where a fully self-

consistent Hartree-Fock calculation was performed prior to a single non-self-consistent DFT cal-

culation where the orbitals of the HF calculation were used to generate the DFT density.

In the analysis of the energetics of the water clusters presented in section 4, the binding energies

are defined as

Ebind = Ecluster −nEH2O
opt (11)
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where Ecluster is the total energy of n-molecule cluster and EH2O
opt is the energy of an isolated water

molecule in the optimized geometry. The corresponding interaction energies are defined as

Eint = Ecluster −∑
i

EH2O
i (12)

where Ecluster is the same total energy as in eq 11 and EH2O
i is the energy of the i-th water molecule

in the same geometry as in the cluster. All MP2 optimized geometries used in the analyses of the

energetics of the water clusters are taken from ref 42.

4 Results and discussions

4.1 Many-body analysis of the MB-QM PEFs

In this section we analyze the ability of the MB-DFT and MB-MP2 PEFs to reproduce results

obtained from ab initio calculations carried out at the corresponding QM level of theory. Corre-

lation plots between the 2B and 3B energies calculated with the different QM methods and the

corresponding values obtained with the MB-QM PEFs are shown in Figures 1 and 2, respectively.

Analogous correlation plots for the 1B energies are included in the Supporting Information.

Independently of the QM level of theory, the MB-QM PEFs are able to quantitatively repro-

duce the 1B, 2B, and 3B reference energies, with RMSDs of ∼0.08, ∼0.12, and ∼0.03 kcal/mol

respectively. In the case of the 2B and 3B energies, the high correlation between the QM data

and the corresponding MB-QM values indicates that the 4th-degree PIPs used to supplement the

representation of short-range 2B and 3B interactions in the MB-QM PEFs are sufficiently flexible

to “capture” quantum-mechanical contributions (e.g., Pauli repulsion, charge transfer and penetra-

tion) which, arising from the overlap of the monomers’ electron densities, cannot be quantitatively

represented by classical expressions commonly used in conventional force fields.
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Figure 1: Correlation plots between the 2B QM reference energies and the values obtained with
the corresponding MB-QM PEFs calculated for the 42508 configurations of the 2B training set.

Figure 2: Correlation plots between the 3B QM reference energies and the values obtained with
the corresponding MB-QM PEFs calculated for the 12347 configurations of the 3B training set.
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As discussed in previous studies,1,42 the analysis of individual many-body contributions to the

interaction energies of small water clusters allows for an overall assessment of the accuracy of

a given water model. In this context, it should be emphasized that, since the MB-QM PEFs are

trained on data that contain information only up to 3B term of the MBE, they do not have any prior

knowledge of systems containing more than three water molecules. Figure 3 displays the MB-

QM errors relative to the corresponding QM values for each individual many-body contribution

(i.e., from 2B to 6B energies) to the interaction energy of the prism isomer that corresponds to the

minimum-energy isomer of the water hexamer.145–148 While the corresponding analyses for the

first eight low-energy hexamer isomers are reported in the Supporting Information, Table 1 lists

the MB-DFT and MB-MP2 errors for each individual nB energy averaged over all eight isomers.

As discussed in section 3, since the interaction energies, by definition, remove all contributions

due to monomer distortions, the present many-body analysis allows for a direct and quantitative

comparison of the MB-DFT and MB-MP2 PEFs in their ability to reproduce the corresponding

QM nB contributions to the interaction energy.

Figure 3 shows that the absolute magnitude of the 2B and 3B errors associated with the MB-

QM PEFs range between 0.1 and 0.3 kcal/mol, with the MB-DFT PEFs fitted to M06-2X-D3 and

Figure 3: Errors in individual many-body energies, nB, associated with the MB-QM PEFs relative
to the corresponding QM reference values for the prism isomer of the water hexamer. The MP2
optimized geometry of the prism isomer is from ref 42.

14



BLYP-D3 data displaying the largest 2B errors. The overall low errors for the 2B and 3B energies

are consistent with the low RMSDs reported in Figures 1 and 2. In the case of M06-2X-D3,

relatively larger errors are not only associated with the 3B term but are also found at the 4B and 5B

levels, as discussed in more detail in ref 1. The large average 3B error (0.7 kcal/mol) associated

with M06-2X-D3 can be explained by considering that the water hexamer contains 20 distinct

trimers and M06-2X-D3 displays the largest 3B RMSD of 0.035 kcal/mol (Figure 2). It should be

noted that, although similar trends are also found for the other isomers as shown in Figures S3 -

S10 of the Supporting Information, the more planar hexamer isomers (i.e., the book, boat, and chair

isomers) display significantly larger 2B and 3B errors compared to the three-dimensional isomers

(i.e., the prism and cage isomers). This difference is primarily due to error accumulation in the

highly symmetric planar isomers, where repeated dimer and trimer subunits contribute many-body

energies with same signed errors, resulting in the total error to add up.

As shown in Table 1, the average 4B error is disproportionately large relative to the mag-

nitude of the total error for all MB-QM PEFs, except those derived from B3LYP-D3 and MP2

data. The largest 4B error (1.07 kcal/mol) is associated with the MB-DFT PEF fitted to PBE-

D3 data. Importantly, despite 4B effects generally contributing less than 5% to the total inter-

action energy in water clusters,1,93,94,149–151 the error in the 4B term accounts for most of the

total error associated with the MB-DFT PEFs. By construction (see section 2), 4B energies in

Table 1: Average errors associated with the QM methods considered in this study relative to the
reference QM values calculated for the first low-energy isomers of the water hexamers. The MP2
optimized geometries of the water hexamer isomers are from ref 42.

∆ENB
avg (kcal/mol)

Method 2B 3B 4B 5B 6B Total
BLYP-D3 0.19 0.08 0.45 0.06 0.00 0.79
B3LYP-D3 0.36 0.08 0.24 0.03 0.01 0.72
PBE-D3 0.46 0.07 1.07 -0.06 0.02 1.57
PBE0-D3 0.38 0.07 0.72 -0.03 0.01 1.16
M06-2X-D3 -0.10 0.70 0.67 -0.08 0.01 1.20
B97M-rV 0.27 0.07 0.56 -0.03 0.00 0.89
ωB97M-V 0.31 0.07 0.42 -0.00 0.00 0.81
MP2 0.35 -0.06 0.33 0.01 -0.01 0.62
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the MB-QM PEFs are represented completely by a classical many-body polarization term that is

expressed according to a modified Thole-type model.152 Table I shows that MB-QM PEFs fitted

to ωB97M-V and MP2 data are associated with relatively small 4B errors, similar to those found

for MB-pol relative to CCSD(T)/CBS,42 while large 4B errors are associated with MB-DFT PEFs

fitted to PBE-D3, PBE0-D3, and M06-2X-D3 data. Given the trend observed in the 4B errors

associated with MB-DFT PEFs fitted to density functionals belonging to different rungs across

the Jacob’s ladder of DFT approximations, we posit that the magnitude of the 4B errors stems

from density-driven errors (i.e., self-interaction and delocalization errors) which plague, to various

extent, all density functionals. As discussed in section 4, the electron self-repulsion is explicitly

non-local and should, in principle, be removed via the exchange-correlation energy. In practice,

most exchange-correlation functionals contain substantial local components and are thus unable to

correctly compensate for the interactions of the electrons with themselves. This results in (unphys-

ical) over-delocalization of the electron density in order to minimize the electron self-repulsion. In

turn, this over-delocalization of the electron density causes the higher-order terms of the MBE to

be (artificially) more quantum-mechanical in nature and, consequently, not amenable to the purely

classical representation based on many-body polarization which is adopted by the MB-QM PEFs.

4.2 Density-driven errors in the DFT description of molecular interactions

in water

In this section we analyze density-driven errors in DFT models of water with a particular focus on

the dependence of these erorrs on both the rung of the density functional and the cluster size.

Interaction energies of water clusters

Our analysis indicates that common GGA functionals tend to overbind the water clusters, likely

due to the presence of relatively large density-driven errors (Figure S11 and S12). To test this hy-

pothesis, we use HF orbitals in non-self-consistent DFT calculations of the interaction and many-

body energies of water clusters, which was shown to reduce the impact of density-driven errors.153
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Figure 4: Density-driven errors in the interaction energies of (H2O)n clusters, with n = 2− 6,
associated with BLYP-D3, B3LYP-D3, PBE-D3, PBE0-D3 relative to the corresponding density-
corrected functionals. The errors are defined as ∆EDC

int = EDC
int −ESC

int , where EDC
int and ESC

int are the
interaction energies calculated with the density-corrected and self-consistent functionals, respec-
tively.

Figure 4 shows the errors in the interaction energies (∆EDC
int ) calculated for various water clusters,

from the dimer to the hexamer, using both the self-consistent (SC) and density-corrected (DC) ver-

sions of the GGA BLYP-D3 and PBE-D3 functionals, and corresponding hybrid GGA B3LYP-D3

and PBE0-D3 functionals. For all clusters, PBE-D3 is found to be the most susceptible to the

density-driven errors. Independently of the density functional, the density-driven error defined as

∆EDC
int = EDC

int −ESC
int increases from the dimer to the hexamer. In particular, ∆EDC

int per molecule

lies within 0.73 and 0.82 kcal/mol for BLYP-D3 and decreases to 0.39-0.44 kcal/mol for B3LYP-

D3,124,127 which contains 20% Hartree-Fock exchange (Figure S13). A similar trend is found for

the PBE-D3 and PBE0-D3 functionals, with the former displaying ∆EDC
int per molecule between

0.93 and 1.06 kcal/mol, and the latter between 0.44 and 0.56 kcal/mol. It should be noted that

PBE0-D3 contains 25% Hartree-Fock exchange.128

To assess the overall accuracy of the density-corrected functionals, Table 2 lists the errors

associated with each density-corrected functional relative to the CCSD(T)/CBS reference values42

for the interaction energies of the first eight low-energy isomers of the water hexamer. For this
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Table 2: Errors (in kcal/mol) in interaction energies for the first eight low-energy isomers
of the water hexamer associated with the density-corrected functionals PBE-D3(DC), PBE0-
D3(DC), BLYP-D3(DC), B3LYP-D3(DC), M06-2X-D3(DC) and ωB97M-V(DC) relative to the
CCSD(T)/CBS reference values. The errors are defined as ∆ECCSD(T )

int = EDC
int −ECCSD(T )

int , where
the reference ECCSD(T )

int values are taken from ref 42.

Isomer
PBE-D3 PBE0-D3 BLYP-D3 B3LYP-D3 M06-2X-D3 ωB97M-V

(DC) (DC) (DC) (DC) (DC) (DC)
Prism 3.76 1.05 5.44 2.82 -1.16 0.50
Cage 3.32 0.67 5.26 2.54 -0.66 0.73

Book1 2.55 -0.01 4.92 2.06 -0.21 0.65
Book2 2.51 -0.03 4.91 2.06 -0.12 0.68

Bag 2.48 -0.05 4.91 2.05 -0.20 0.58
Cyclic chair 1.97 -0.56 4.65 1.62 -0.40 0.42
Cyclic boat 1 1.92 -0.54 4.57 1.61 -0.32 0.45
Cyclic boat 2 1.98 -0.50 4.61 1.63 -0.33 0.43

MUE 2.56 0.43 4.91 2.05 0.42 0.56

analysis, the errors are defined as ∆ECCSD(T )
int = EDC

int −ECCSD(T )
int , where EDC

int and ECCSD(T )
int are

the interaction energies calculated with the density-corrected functionals and at CCSD(T)/CBS

level of theory, respectively. A large mean unsigned error (MUEs) of 4.91 kcal/mol is found for

BLYP-D3(DC), whereas PBE-D3(DC) and B3LYP-D3(DC) provide comparable MUEs of 2.56

kcal/mol and 2.05 kcal/mol, respectively. Despite being a hybrid functional as B3LYP-D3(DC),

PBE0-D3(DC) provides a much smaller MUE of 0.43 kcal/mol, which is comparable to that found

for M06-2X-D3(DC) (MUE = 0.42 kcal/mol) and ωB97M-V(DC) (MUE = 0.56 kcal/mol).

It should be noted that the hexamer isomers can be broadly classified in two distinct groups,

one containing three-dimensional structures, where each water molecule is involved in three hy-

drogen bonds (i.e., the prism and cage isomers), and one containing two-dimensional structures,

where each water molecule is involved in two hydrogen bonds (i.e., the cyclic isomers), with the

book-type isomers being in between and sharing features that are common to both groups. In this

context, it is worth mentioning that, with the exception of BLYP-D3(DC) and ωB97M-V(DC),

all density-corrected functionals analyzed in this study exhibit significantly lower accuracy for the

three-dimensional isomers.

18



Many body decomposition analysis

It has been shown that 2B and 3B effects contribute to 96-99% of the total interaction energy in

water,1,93,154 which implies that the ability of a given water model to correctly reproduce 2B and

3B energies mainly determines the accuracy with which the model is able to describe the total

interaction energy and relative stability of different water clusters.

Figure 5 shows the density-driven errors, ∆EDC
nB =EDC

nB −ESC
nB (n= 2−6), calculated for each in-

dividual nB contribution to the interaction energies of the first eight low-energy isomers of the wa-

ter hexamer. Here, EDC
int and ESC

int are the interaction energies calculated with the density-corrected

and self-consistent functionals, respectively. Due to relatively large density-driven errors, the MUE

for ∆EDC
2B is 6.22 kcal/mol for PBE-D3 and 4.69 kcal/mol for BLYP-D3. Adding a fraction of

Hartree-Fock exchange systematically reduces these errors, with the corresponding MUEs being

3.45 kcal/mol and 3.25 kcal/mol for PBE0-D3 and B3LYP-D3, respectively. More recent func-

tionals show significantly smaller errors, resulting in MUEs of 1.08 kcal/mol and 0.93 kcal/mol for

M06-2X-D3 and ωB97M-V, respectively, which confirms that density-driven errors are less severe
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Figure 5: Errors in nB energies (n= 2−6) associated with PBE-D3, PBE0-D3, BLYP-D3, B3LYP-
D3, M06-2X-D3 and ωB97M-V relative to the corresponding density-corrected values calculated
for the first eight low-energy isomers of the water hexamer. Errors are defined as ∆EDC

nB = EDC
nB −

ESC
nB , where EDC

int and ESC
int are the interaction energies calculated with the density-corrected and

self-consistent functionals, respectively.
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for hybrid, meta-GGA and range-separated functionals.

The analysis of ∆EDC
2B shown in Figure 5 also indicates that, at the 2B level, density-driven

errors tend to overbind the water clusters, as the 2B errors are positive for all density functionals

examined in this study. This is in agreement with similar results recently obtained with the SCAN

functional.155 The trend in 3B density-driven errors is not as consistent as for the 2B errors. The

largest MUE (0.47 kcal/mol) is found for M06-2X-D3, with the MUE for all other density func-

tionals ranging from 0.14 kcal/mol to 0.34 kcal/mol. Interestingly, with the exception of the cyclic

isomers, PBE-D3 and PBE0-D3 display negative ∆EDC
3B for all hexamer isomers, which implies

that 3B density-driven errors tend to underbind these clusters. Independently of the cluster struc-

ture, all other density functionals display positive 3B density-driven errors, except B3LYP-D3 that

provide negative ∆EDC
3B for the prism and cage isomers.

The comparisons with the reference CCSD(T)/CBS n-body energies shown in Figure 6 indi-

cate that the PBE0-D3(DC) and M06-2X-D3(DC) functionals provide the smallest MUE at both

2B (0.27 kcal/mol and 0.65 kcal/mol, respectively) and 3B (0.27 kcal/mol and 0.53 kcal/mol, re-
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Figure 6: Errors in nB energies (n = 2− 6) associated with the density corrected PBE-D3(DC),
PBE0-D3(DC), BLYP-D3(DC), B3LYP-D3(DC), M06-2X-D3(DC) and ωB97M-V(DC) relative
to the corresponding CCSD(T)/CBS reference values42 calculated for the first eight low-energy
isomers of the water hexamer. Errors are defined as ∆ECCSD(T )

nB = EDC
nB −ECCSD(T )

nB , where EDC
nB

and ECCSD(T )
nB are the nB energies calculated with the density-corrected functionals and at the

CCSD(T)/CBS level of theory,42 respectively.
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spectively) levels. Relatively large 2B errors are still found for the GGA functionals (although

significantly smaller than those associated with the corresponding self-consistent density function-

als), with MUEs of 2.77 kcal/mol and 6.47 kcal/mol for the PBE-D3(DC) and BLYP-D3(DC)

functionals, respectively. The 2B MUE for the ωB97M-V(DC) functional is 0.94 kcal/mol for

the 2B. Interestingly, independently of the isomer structure, all density-corrected functionals are

associated with 2B and 3B errors of opposite signs relative to the CCSD(T)/CBS reference values.

This results in fortuitous error compensation between 2B and 3B energies which, in turn, leads

to apparently better agreement with the CCSD(T)/CBS total interactions energies for all hexamer

isomers. Considering that the density-corrected functionals provide an approximate, yet reliable,

representation of the interactions which is, at least, partially “free” of density-driven errors, the

remaining deviations from the CCSD(T)/CBS values are likely due to inaccuracies in the density

functionals, along with the localization errors associated with using Hartree-Fock densities in DFT

calculations.156

Binding energies of the water hexamer isomers

Since the binding energies of all hexamer isomers lie within ∼1 kcal/mol, following ref 155,

we focus our attention to the prism, cage, book-2, and cyclic chair-2 isomers. Based on the

CCSD(T)/CBS reference values, the binding energies for these four hexamer isomers follow this

order: prism < cage < book-2 < cyclic chair-2, with the prism isomer being the most strongly

bound isomer. The energy difference between the prism and cyclic chair-2 isomers is 0.88 kcal/mol

at the CCSD(T)/CBS level. As shown in Figure 7a, the GGA functionals largely overbind all hex-

amer isomers, with MUE from the reference CCSD(T)/CBS data being 5.19 kcal/mol and 2.15

kcal/mol for PBE-D3 and BLYP-D3, respectively. The hybrid GGA functionals provides smaller

MUE of 3.24 kcal/mol and 1.69 kcal/mol for PBE0-D3 and B3LYP-D3, respectively. Importantly,

all these functionals provide the incorrect energy ordering of the isomers, predicting the cage iso-

mer to be the most stable isomer. On the other hand, the more recent functionals (i.e., M06-2X

and ωB97M-V) predict the correct energy ordering, with the ωB97M-V binding energies being
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Figure 7: Binding energies of the prism, cage, book-2 and cyclic chair-2 isomers of the water
hexamer calculated with PBE-D3, PBE0-D3, BLYP-D3, B3LYP-D3, M06-2X-D3 and ωB97M-V,
along with the corresponding CCSD(T)/CBS reference values. Panels a) and b) report binding
energies calculated with the self-consistent and density-corrected functionals, respectively.

very close to the reference CCSD(T)/CBS values, which results in a MUE of 0.58 kcal/mol. The

relatively large MUE of 2.71 kcal/mol associated with the M06-2X-D3 functional is mainly due to

this functional largely overbinding the prism and cage isomers.

Figure 7b shows that the overbinding tendency associated with all self-consistent density func-

tionals is removed upon applying the density correction. Overall, the density-corrected functionals

provide binding energies that are in significantly closer agreement with the reference CCSD(T)/CBS

values, although they tend to slightly underbind all hexamer isomers, which may be related to local-

ization errors associated with using Hartree-Fock densities.156 Specifically, the density correction

decreases the MUE associated with the PBE-D3 and PBE0-D3 functionals to 1.72 kcal/mol and

0.81 kcal/mol, respectively. Relatively large MUE are still obtained with the density-corrected

BLYP-D3 (3.70 kcal/mol) and B3LYP-D3 (2.23 kcal/mol) functionals. As for the corresponding

self-consistent density functionals, none of the density-corrected PBE-D3, PBE0-D3, BLYP-D3,

and B3LYP-D3 functionals is able to reproduce the correct energy ordering of the hexamer iso-

mers, with all four density functionals predicting the cage isomer to be the lowest-energy isomer.

Since hybrid, meta-GGA and range-separated functionals are less prone to density-driven er-

rors, the differences in binding energies calculated with the self-consistent and density-corrected

22



versions of M06-2X-D3 and ωB97M-V are significantly smaller than those obtained with the GGA

and hybrid GGA functionals. Specifically, the MUE associated with the density corrected M06-

2X-D3 and ωB97M-V functionals are 0.39 kcal/mol and 2.41 kcal/mol, respectively. Interestingly,

this analysis indicates that applying the density correction somewhat deteriorates the ability of

ωB97M-V to reproduce the CCSD(T)/CBS binding energies of the water hexamer isomers.

Density-corrected MB-DFT PEFs

To further investigate the effects of density-driven errors on the ability of density functionals to re-

produce many-body interactions in water, we developed a density-corrected MB-DFT PEF, dubbed

MB-PBE(DC), which was trained on 1B, 2B, and 3B energies calculated with the corresponding

density-corrected PBE-D3(DC) functional. Due to the lack of a suitable machinery for calculating

atomic charges, polarizabilities and C6 coefficients using density-corrected functionals, the corre-

sponding PBE0-D3 values were used for these quantities, which seems to be a good compromise

as the presence of a fraction of Hartree-Fock exchange partially reduces density-driven errors.
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Figure 8: Errors in nB energies (n = 2− 6) associated with MB-PBE and MB-PBE(DC) relative
to the corresponding PBE-D3 and PBE-D3(DC) values calculated for the first eight low-energy
isomers of the water hexamer. Errors are defined as ∆EMB−DFT

nB = EMB−DFT
nB − EDFT

nB , where
EMB−DFT

nB and EDFT
nB are the nB energies calculated with the MB-DFT PEFs and corresponding

(self-consistent and density-corrected) functionals, respectively.
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Figure 8 shows the errors associated with the MB-PBE and MB-PBE(DC) PEFs for each indi-

vidual many-body contribution to the interaction energies of the first eight low-energy hexamer iso-

mers relative to the corresponding values calculated with the self-consistent PBE-D3 and density-

corrected PBE-D3(DC) functionals, respectively. As the density-driven errors are minimized in the

MB-PBE(DC) PEF, the corresponding 4B energies, which, as discussed in section 2, are entirely

represented by classical polarization in the MB-DFT PEFs, are significantly closer to the reference

CCSD(T)/CBS values. Specifically, the 4B MUE associated with the MB-PBE(DC) PEF is 0.64

kcal/mol which must be compared to a value of 1.07 kcal/mol reported in Table 1 for the analogous

MB-PBE PEF trained on PBE-D3 data. Importantly, Figure 8 shows that not only the 4B error but

also the errors for all other nB terms are significantly smaller when the density correction is taken

into account as demonstrated by the higher accuracy provided by the MB-PBE(DC) PEF compared

to the analogous MB-PBE PEF.

Figure 9 shows the interaction energies calculated with PBE-D3, PBE-D3(DC) and their cor-
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Figure 9: Interaction energies of the first eight low-energy isomers of the water hexamer calcu-
lated with the PBE-D3 and PBE-D3(DC) functionals, and the corresponding MB-PBE and MB-
PBE(DC) PEFs along with the reference CCSD(T)/CBS values.
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responding MB-PBE and MB-PBE(DC) PEFs, respectively, along with the CCSD(T)/CBS refer-

ence values. As density-driven errors tend to overbind the isomers of the water hexamer, PBE-D3

predicts lower interaction energies than CCSD(T)/CBS. On the other hand, PBE-D3(DC) system-

atically underbinds all isomers. The density correction significantly improves the description of

the interaction energies of the MB-PBE(DC) PEF, by effectively reducing the errors associated

with all nB contributions to the interaction energy (Figure 8). The MB-PBE PEF displays a MUE

of -1.51 kcal/mol relative to PBE-D3 whereas the density-corrected MB-PBE(DC) PEF displays a

MUE of -0.96 kcal/mol relative to PBE-D3(DC). A direct comparison of the errors are shown in

Figure S14.

It should be noted that, while PBE-D3(DC) displays a significantly lower MUE (2.56 kcal/mol)

relative to CCSD(T)/CBS than PBE-D3 (4.67 kcal/mol), the MB-PBE(DC) PEF is associated with

a slightly higher MUE (3.52 kcal/mol) relative to CCSD(T)/CBS than the MB-PBE PEF (3.16

kcal/mol). This is due to the signs of ∆ECCSD(T ) (Figure 6) and ∆EMB−DFT (Figure 8), which

make these errors add up for the MB-PBE(DC) PEF while partially cancelling out for the MB-

PBE PEF.

5 Conclusions

In this study, we have presented a general theoretical framework for the development of data-

driven many-body PEFs (MB-QM) in which the individual terms of the many-body expansion of

the energy are rigorously derived from electronic structure data calculated at an arbitrary QM level

of theory. As a demonstration, we have introduced a family of MB-QM PEFs for water which are

rigorously derived from density functionals belonging to different rungs across Jacob’s ladder of

DFT approximations (MB-DFT) as well as from Møller-Plesset perturbation theory (MB-MP2).

All MB-QM PEFs, except those derived from the GGA functionals, are shown to retain the

same accuracy of the corresponding QM methods for the energetics of small water clusters and

associated many-body energy contributions. Due to the presence of relatively large density-driven
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errors, ab initio DFT calculations carried out with the GGA functionals analyzed in this study

(PBE-D3 and BLYP-D3) yield appreciable smaller 4B energies compared to analogous calcula-

tions carried out with the corresponding MB-DFT PEFs. Since in the MB-DFT PEFs all higher-

than-3B contributions are described by classical many-body polarization, the difference between

the MB-DFT and DFT results can be traced back to density-driven errors that prevent density

functionals, in particular those derived within the GGA, from accurately representing individual

many-body contributions. In this regard, the analysis of the energetics of the isomers of the water

hexamer shows that density-driven errors in the DFT representations of the interactions in water

primarily affect 2B and 3B energies.

To further investigate the effects of density-driven errors in the DFT descriptions of the in-

teractions in water, for each density functional considered in this study, we have analyzed a

corresponding density-corrected functional obtained by using Hartree-Fock densities in non-self-

consistent DFT calculations. Except for ωB97M-V, all density-corrected functionals provide bet-

ter agreement with the reference CCSD(T)/CBS data. Motivated by the improved performance

of the density-corrected functionals, we have developed a density-corrected MB-DFT PEF, MB-

PBE(DC) from density-corrected PBE-D3 data, and shown that it more closely reproduces the cor-

responding ab initio many-body energies than the analogous MB-DFT derived from self-consistent

PBE-D3 data. The different performance of self-consistent and density-corrected functionals in

reproducing the energetics of water clusters indicates that, while not essential for hybrid and

range-separated functionals, accounting for density-driven errors is a necessary requirement in

the development of MB-DFT PEFs derived from GGA functionals. These findings suggest that

density-driven errors affect the convergence of the many-body expansion in water and indicate that

the accuracy of a given density functional may vary significantly depending on both the size and

hydrogen-bonding arrangements of the system under examination.
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