
Neural Language Modeling for Molecule Generation
Sanjar Adilov

Bioinformatics Laboratory
Romanovsky Institute of Mathematics

Tashkent, Uzbekistan
s.adilov@mathinst.uz

Abstract—Generative neural networks have shown promising
results in de novo drug design. Recent studies suggest that one
of the efficient ways to produce novel molecules matching target
properties is to model SMILES sequences using deep learning in a
way similar to language modeling in natural language processing.
In this paper, we present a survey of various machine learning
methods for SMILES-based language modeling and propose our
benchmarking results on a standardized subset of ChEMBL
database.

Index Terms—drug design, language modeling, deep learning,
recurrent neural networks

I. INTRODUCTION

In de novo molecular design, we seek to produce novel
molecule libraries that meet required property profiles. Our
aim is to create generative statistical models for molecular
data that can capture the distributions of molecular compounds
and generate a new set of valid compounds with the desired
property requirements. Some notable advances in complete
de novo drug design are established by Segler et al. [1] and
Gupta et al. [2]; they introduce generative recurrent networks,
which are trained on a large and diverse data set to recognize
general features of molecules and fine-tuned on a smaller
focused set active towards the desired target. Brown et al.
[3] and Polykovsky et al. [4] attempt to compose standardized
benchmarking frameworks with various generative models as
well as distribution and property-based evaluation metrics.

The choice of a particular generative model depends on
several aspects of the given task and materials. Considering
data, the most common representation of a molecule is sim-
plified molecular-input line-entry system (SMILES) notation
[5], which comprises ASCII characters structured by a special
language rule. This specification immediately suggests the
possibility of building SMILES-based language models, in
which a SMILES character can be treated as a single token,
a sequence of one or more tokens as a (meaningful) text or
phrase, and the whole text data set as a language corpus.
Inspired by such natural language models as n-grams and
recurrent neural networks [6], we are free to simulate our own
language framework capable of capturing SMILES fragments
and generating novel sequences.

In this work, we attempt to provide a comprehensive outline
of SMILES-based neural molecule generation problem: formu-
lation of a language model, preprocessing of sequence data,
generation strategies, and evaluation of models and generated
data. We first formulate a general framework of estimating

the joint probability of a sequence, and given a SMILES
data corpus, discuss data preparation methods suited for this
framework. Next, we present a neural network architecture for
language modeling, focusing particularly on recurrent neural
networks. Using trained neural networks, we describe how
to generate novel data and assess their validity, diversity,
and other molecular properties. Finally, we test the presented
SMILES language framework on a large corpus and discuss
the obtained results as well as future perspectives regarding
new language models. In our repository MOLECULEGEN-
ML a, we introduce a Python package for experimenting
with the presented methods and reproducing the benchmarking
results. Neural networks in the package are implemented
using MXNET backend [7] and follow its GLUON API [8];
evaluation methods use RDKIT package [9].

II. GENERAL FRAMEWORK

Given a corpus of texts written in some natural or formal
language, we seek to learn the grammar and semantics of this
language by analyzing the texts via probabilistic modeling.
Texts are composed of basic units called tokens, each of which
is derived from some vocabulary, a set of available tokens.
Suppose that we have a text s. To begin our analysis, we
first need to tokenize the text, i.e. establish the set of rules to
divide s into tokens s1, s2, . . . , sT (e.g. partition an English
text to obtain words and punctuation marks). Depending on
tokenization method, our vocabulary V will comprise unique
tokens from processed s.

Now, we have the text sequence s = (s1, s2, . . . , sT)
composed of T ordered tokens st at time steps t. The goal
of a language model is to estimate the joint probability of the
entire sequence s:

P (s) = P (s1) · P (s2|s1) · · ·P (sT |s1, s2, . . . , sT−1)

=

T∏
t=1

P (st|s1, . . . , st−1) =

T∏
t=1

P (st|sj<t).

So, having observed previous t − 1 tokens, we would like
to predict the next token st, 1 ≤ t ≤ T , via conditional
probability, from left to right. How should we calculate the
probabilities? First, note that lengths of different sequences
may vary, and we can rationally assume that it is sufficient to
observe only tokens st−τ , . . . , st−1 in some time span τ < t

ahttp://www.github.com/sanjaradylov/moleculegen-ml

http://www.github.com/sanjaradylov/moleculegen-ml
http://www.github.com/sanjaradylov/moleculegen-ml
http://www.github.com/sanjaradylov/moleculegen-ml

to predict st. This way, probabilities can be estimated by
counting all occurrences of tokens divided by the vocabulary
dimension and additionally using some smoothing techniques.
This is how classic n-gram language modeling works:

P (st|s1, . . . , st−1) = P (st|st−τ , . . . , st−1),

P̂ (st|s1, . . . , st−1) =
#(s1, . . . , st−1, st) + ε

#(s1, . . . , st−1) + ε|V|
.

On the other hand, we could model a time-dependent sum-
mary ht ∈ R of the past observations so that st ∼ P (st|ht−1)
and for some mapping f : V × R → R, ht = f(st, ht−1).
This strategy is called latent autoregressive modeling. Con-
trary to n-grams, it does not require tuning the time span
hyperparameter and storing sparse parameters (probabilities),
which will likely capture only short contexts and overfit the
training dataset. Recurrent neural networks (RNNs) can be
viewed as latent autoregressive models. In Section IV-B, we
describe SMILESRNN architecture, which was chosen to be
the baseline generative language model.

III. WORKING WITH DATA

A. Dataset Collection

To create a comprehensive generative language model, we
need a large and diverse set of SMILES data. ChEMBL
database [10] comprises millions of molecular compounds
with their measured biological activity. One can freely down-
load the database and collect a desirable set of SMILES strings
of synthesized molecules. Note that for more convenient mod-
eling, canonicalization (determining one special SMILES rep-
resentation among all valid ones) and subsequent removal of
duplicates may be required. Also, lengths of SMILES strings
can be much longer than average suggesting that large outlier
molecules can reasonably be filtered out. These and other
preprocessing techniques, including charge neutralization and
removal of salts and molecules with prohibited subcompounds,
were performed by Brown et al. [1], which led to a dataset
of almost 1.3 million SMILES strings from ChEMBL 24. We
will train and evaluate our language framework on this dataset.

B. Tokenization

Recall that SMILES is a line notation composed of an en-
coded series of characters representing molecule constituents:
atoms (B, Cl, etc.), bonds (-, =, #, :), branches

(
(,

)
)
, together with substructure and property specifications.

For example, the SMILES string for Acetate (C2H3O
−
2) is

CC(=O)[O-]. So how should we tokenize such texts? One
obvious way is a character-level tokenization, i.e. treating
every character as a token. However, it might be counterintu-
itive to break up multiple-character entities having inseparable
encodings (e.g. Br, Sr). To develop a more coherent strategy,
we will try following at least basic SMILES language rules.
First, our algorithm will match both single- and multi-character
symbols by comparison with the set of available atomic and
non-atomic symbols. Note that numbers greater than 9 follow
% character, so %10 will become a separate token. Second, as

atoms in aromatic rings are specified by lower case symbols,
they will be treated as separate tokens (e.g. n, [se]). Finally,
we will provide an option to capture special aggregate symbols
such as hydrogen specifications (e.g. [N+]).

With all these conventions, our Acetate string can be to-
kenized as

(
C, C, (, =, O,), [O-]

)
and the vocabulary

will consist of {C, (, =, O,), [O-]}. For our setup, the
proposed tokenization method is applicable, however, for some
other tasks and different data collection, one may have to set
up additional refinements to match more complex SMILES
specifications and conventions (e.g. chirality, isotopism, etc.).

C. Minibatch Sampling

SMILES entries can be arbitrarily long. As we train a gen-
erative neural network, where we invoke minibatch stochastic
gradient descend for parameter optimization and process se-
quences of fixed length, we need to decide on how to arrange
and slice SMILES strings into subsequences of the chosen
length to sample minibatches.

But before we begin, there are three special tokens that
we should take into consideration during both training and
generation processes. First, we need a special beginning-of-
SMILES token {, from which a model learns how to sample
the very first token. Of course the model will be able to
capture any subsequence as the starting fragment of a sequence
being generated, but we might want to commence generation
arbitrarily. Therefore, every SMILES string will be prepended
by { prior to training. Next, our model should somehow
decide when to terminate sequence generation. One option
is to define the maximum number of tokens hyperparameter.
However, this will force us to guess a ”good number” for
every novel sequence. Instead, we will append a special end-
of-SMILES token } to every SMILES string prior to training
so that the model will also learn and sample } indicating the
termination of the process. The maximum number of tokens
will be a supplementary option if we wish to force the creation
of medium-length sequences. Finally, some SMILES strings
may be shorter than the chosen time span, so we will have
to lengthen them with a special padding token _ that will
be ignored during training and not likely be sampled during
generation.

Now, let us introduce minibatch sampling strategies. Let `
be a minibatch size and τ time span. Let S =

(
s1, . . . , sL

)
be

a training corpus with SMILES strings si, 1 ≤ i ≤ L. Suppose
we have already tokenized the data and obtained a vocabulary
V , which also includes tokens {, }, and _. Our goal is to
produce an input subsequence X ∈ V`×τ and target/output
subsequence Y ∈ V`×τ (the input shifted by one token).

1) Column Sampling: Collect ` SMILES sequences, ap-
pend padding tokens up to the maximum length in the col-
lection, divide them into minibatches of shape (`, τ) column-
wise, and generate them successively (Figure 1).

2) Consecutive Sampling: Select a SMILES sequence from
S, slice it into subsequences of length τ , and append padding
tokens to the last one if necessary. Repeat this strategy until
` subsequences are sampled.

3) Random Sampling: Let M be the maximum length in
S. Let m , 0 ≤ m ≤ M − τ , be the largest index from which
a subsequence will be picked. This is another hyperparameter
and we call it the maximum offset. Sample an integer k , where
m ≤ k ≤ M −τ−m , select a sequence s from S, and sample
a subsequence s[k ..k + τ] padding the necessary number of
tokens. Repeat until ` subsequences are sampled.

Incidentally, the maximum offset can be introduced for
the first two strategies as well. To prevent sampling of an
empty subsequence, we could choose it to be the minimum
length in S minus 2. Random sampling may also create empty
subsequences, and one way to guarantee nonempty entries is to
sample the required number of minibatches using consecutive
sampling, integrate them into one batch, and randomly pick `
subsequences with replacement.

{ N C C = O } _ _ _ _ _ _ _ _

{ N c 1 c c (O) n c c 1 F }

{ C C C (C) (C) Br } _ _ _

{ C n 1 [nH] n n c 1 = S } _ _ _

Fig. 1. Three input minibatches of size 4×5 derived from column sampling.

IV. METHODS

A. SMILESLM

An abstract neural network architecture for training
SMILES language models comprising three stacked blocks
(Figure 2):
• embedding E : V`×τ → R`×τ×d ;
• encoder Φ : R`×τ×d → R`×τ×h ;
• output Ψ : R`×τ×h → R`×τ×|V|.
1) Embedding: Transformation of token sequences into

expressive feature representation of the predefined dimen-
sion d. Can be one-hot encoding (creating token feature
mask of length d = |V|), parameterized hidden layer, or
fixed/parameterized positional encoding [11]. Optionally fol-
lowed by a dropout layer [12] that during training stage,
randomly zeros out entire feature column (i.e. ”removes”
chosen feature), entire token representation, or both.

2) Encoder: Neural network with an optional hidden
state/memory mechanism that captures sequential information
from obtained embedding features. Parameterized latent au-
toregressive models are an obvious example.

3) Output: Decoding encoder’s sequence representations
into probability distributions for the subsequent tokens. Can
be a linear projection followed by softmax, gumbel-softmax
[13], sparsemax [14], or analogous probability transforma-
tions. Note that using learnable embedding allows parameter
sharing (or tying weights) [15] with the output block as it
can similarly be viewed as the output token embedding. It
reduces the model size and creates an effect of optimizing
the regularized objective taking into account the similarity
between the target token and other tokens from the vocabulary.

SMILESLM predicts the probabilities of the next token
given the previous context. To train the model, we need an
objective that maximizes predicted probabilities to the target
tokens. It is equivalent to minimizing the cross-entropy loss
between one-hot encoded target distributions and predicted
probabilities of tokens: for a target minibatch Y ∈ V`×τ and
output probabilities P ∈ [0, 1]`×τ×|V|,

Q(Y ,P) =
1

`τ

∑̀
i=1

τ∑
t=1

H
(

one-hot(yi,t),pi,t
)

=− 1

`τ

∑̀
i=1

τ∑
t=1

|V|∑
k=1

one-hot(yi,t)k · log pi,t,k

Note that one-hot encoding a target token means creating the
weight vector of length |V| assigning 1 for the target label
and 0 for the rest. Yet we might choose the label weight of
the token to be inversely proportional to its occurrences in the
batch. Also, recall that padding token _ should be ignored, so
its label weight will be assigned to 0.

We train SMILESLM with minibatch stochastic gradient
descend for parameter updates and backpropagation [6] for
gradient calculations. Since we process long sequences, we try
to prevent gradient explosion by applying gradient clipping. To
reduce overfitting, we employ dropout between hidden layers
in the encoder, set up a learning rate scheduler, and monitor
the progress on the generated data with early stopping.

{CNNC}_
{N#CCN}
{CCOCC(

CNNC}__
N#CCN}_
CCOCC(=

Embedding

Encoder State

Output

Loss

Fig. 2. SMILESLM neural network architecture.

B. SMILESRNN

Recurrent neural networks are neural networks with latent
variables called hidden states. As mentioned in Section II,
latent variable models are more preferable compared to n-gram
models at least because the number of parameters of the latter
is O(|V|n) and it grows exponentially with n . Using RNNs as
an encoder block in SMILESLM gives SMILESRNN model.
Assume that Xt ∈ R`×d is a minibatch of embedding features
at time step t ≤ τ , Ht ∈ R`×h a hidden state at t, and
Ot ∈ R`×|V| an output at t. The hidden state at t depends on

the current inputs and the previous state, while the output at
t on the current hidden state:

Ht = φ(XtW xh + Ht−1W hh + bh),

Ot = ψ(HtW ho + bo).

W xh ∈ Rd×h, W hh ∈ Rh×h, W ho ∈ Rh×|V|, bh ∈ Rh,
and bo ∈ R|V| are learnable parameters; φ is an element-wise
activation function (typically tanh); ψ is another activation
function to get output distributions (e.g. softmax).

This is how vanilla RNNs are constructed. At each time
step during forward propagation, they summarize the previous
context in the state variable and perform recurrent computation
of the next state to determine the next output distribution.
Backward propagation requires unfolding the computational
graph of depth τ (backpropagation through time or BPTT
[16]). The longer the input sequences are, the more chances to
experience gradient vanishing or exploding, which results in
numerical instability. Typically, it means that earlier sequence
fragments in the context are more or less relevant for future
observations. To address such peculiarities, various gating
mechanisms such as in long short-term memory (LSTM) [17]
and gated recurrent units (GRU) [18] were proposed. For
example, GRUs attempt to capture information importance,
irrelevance, and logical break by incorporating reset gates
Rt ∈ (0, 1)`×h for short-term dependencies and update gates
U t ∈ (0, 1)`×h for long-term dependencies:

Rt = σ(XtW xr + Ht−1W hr + br),

Ct = φ
(
XtW xh + (Rt �Ht−1)W hh + bh

)
,

U t = σ(XtW xu + Ht−1W hu + bu),

Ht = U t �Ht−1 + (1−U t)�Ct.

Ct is called a candidate hidden state. Reasonably, hidden
states at t = 0 are initialized with zeros so that gates and states
at t = 1 process sequences with no past information. However,
noisy initialization may be practical as well since the network
processing subsequences of arbitrary length will not adapt to
the zero state. Apart from initialization, we should also decide
on how to reset states every training iteration. Intuitively for
column sampling, we will keep the previous state for a new
minibatch until we encounter the minibatch with the final
column, i.e. the subsequences ending with end-of-SMILES or
padding tokens. For consecutive sampling, we might want to
retain or even train the state throughout an epoch. Random
sampling will likely fit with noisy state reinitialization. Lastly,
depending on the preferred sampling technique, we will detach
hidden states from the computational graph (truncated BPTT
[16]).

Big and complex datasets might require more flexibility
than what single-layer RNNs offer. For a better sequence
representation, we might as well stack multiple recurrent layers
hypothesizing that higher layers capture longer-term dynamics
and lower layers shorter-term. For a K -layer RNN, the kth

layer at time step t is H(k)
t and it depends on the input H(k−1)

t

and the hidden state H(k)
t−1; 1 ≤ k ≤ K , H(0)

t = Xt. To tackle

overfitting, we can incorporate dropout between layers, either
regular [12] or variational [19], which creates input, hidden,
and output masks and repetitively applies them at each time
step.

C. Generation Strategies

To generate a diverse set of coherent SMILES strings,
SMILESLM will successively sample tokens from the pre-
dicted probability distributions based on the output block Ψ.
If we wish to produce strings from the very beginning, with-
out any context constraint, we specify beginning-of-SMILES
token { as the first token. The process will be terminated
upon predicting end-of-SMILES token } or reaching the length
constraint.

If a model supports memory mechanisms, subsequent pre-
dictions will also be based on the previous ones. Thus,
SMILESRNN will pass the currently predicted token back to
the model to predict the next one (teacher forcing, Figure 3).
Another important remark is that having received a SMILES
fragment instead of {, the model successively updates its
memory without making predictions (warm-up period), then
proceeds generating the remaining fragment.

1) Sampling with Temperature: Toggling the intensity of
probabilities by perturbing logits with temperature (sensitivity)
hyperparameter δ > 0. For the penultimate layer output of ith

sequence at time step t z = [z1, . . . , z|V|]
T , softmax with

temperature is defined as:

softmax(z)k =
exp(zk/δ)∑|V|
j=1 exp(zj/δ)

for k = 1, . . . , |V|.

As δ → 0, it approximates argmax (greedy search). Overall,
there is a diversity-coherence tradeoff.

2) Top-k Sampling: Picking from the k ≥ 1 most probable
tokens V(k) ⊂ V , rescaling their probabilities, and sampling
based on the derived distribution. It is more optimal than tun-
ing δ if top-k tokens cover the large portion of the probability
mass or all have high probabilities.

3) Top-p (Nucleus) Sampling: [20] Sampling from the
smallest vocabulary subset V(p) ⊂ V such that it takes up
the most probable tokens whose cumulative probability mass
exceeds p, 0 < p < 1. Fixed k can be suboptimal across
different distributions, while a top-p% subset is dynamic and
for high values of p covers the majority of the probability
mass.

D. Evaluation Metrics

The following metrics assess the ability of generative mod-
els to produce a diverse and acceptable set of molecules similar
to a reference/training set.

1) Perplexity: Harmonic mean of the number of token
choices during training:

PPL(Y ,P) =
1

`

∑̀
i=1

exp

(
1

τ

τ∑
t=1

H
(

one-hot(yi,t),pi,t
))
.

2) Validity: The rate of the SMILES strings corresponding
to realistic molecules.

N Br
N # C Br }

{ N # C Br

Fig. 3. SMILES sequence generation with teacher forcing using
SMILESRNN.

3) Uniqueness: The rate of unique SMILES strings (regard-
less of their validity).

4) Novelty: The rate of the SMILES strings not presented
in a reference set.

5) Rate of Acceptable Compounds: The rate of valid,
unique, and novel SMILES strings.

6) Internal Diversity: [21] Average pairwise dissimilarity
measure based on Tanimoto distance between Morgan finger-
prints [22] (ECFP) of two molecules in a molecule set M :

IntDiv(M) = 1− 1

|M |2
∑

m,m′∈M

T (m,m′),

T (m,m′) =
|m ∩m′|
|m ∪m′|

.

7) Nearest Neighbor Similarity: [4] Average Tanimoto
similarity between Morgan fingerprints of a molecule from
M and its nearest neighbor in R:

SNN(M ,R) =
1

|M |
∑

m∈M

max
r∈R

T (m, r).

8) KL Divergence: [3] Average descriptor similarity be-
tween M and R based on the Kullback-Leibler divergence:

DKL(p ‖ q) =
∑
i

pi log
pi
qi
,

KL(M ,R) =
1

|D|
∑
d∈D

exp
(
−DKL

(
d(M) ‖ d(R)

))
,

where D is the set of target descriptors (e.g. physicochemical
[3]) and d is mapping from a molecule set into a descrip-
tor distribution. For continuous descriptors, distributions are
calculated via kernel density estimation, and for discrete
descriptors via histograms.

V. EXPERIMENTS AND DISCUSSION

Now let us present our language modeling pipeline, from
which we obtain benchmarking results. As we experiment on
the standardized dataset from Brown et al. (see Section III-A),
we do not perform any additional preprocessing except for
removal of relatively short compounds (SMILES strings of
length less than 5). Next we tokenize our data as discussed in
Section III-B without capturing aggregate subcompounds. We
noticed that simpler tokenization gives higher overall scores

for every model. With the restriction on the minimum number
of occurrences equalling 20, our vocabulary (including special
tokens) has dimension 42. Having the tokenized corpus, we
choose a minibatch sampling method. Our experiments sug-
gest that random sampling generalizes better with recurrent
networks trained on bigger datasets. We apply randomized
consecutive sampling: set the maximum offset to 2, derive
a collection of subsequences from consecutive sampling, and
sample 80% of them with replacement.

The minibatch size and time span are set to 128 and
64, respectively. The choice of a time span has more effect
on final results and we suggest experimenting on values
between 64 and 80. The batch sizes between 64 and 128 with
the corresponding adjustments on learning rates give almost
identical results. The initial and final learning rates are set to
0.001 and 0.0001, respectively, with intermediate updates on
every iteration of minibatch SGD (we use the Adam optimizer
[23]) according to the cosine learning scheduler. The gradient
clipping radius is set to 10, although with shorter time spans,
gradient exploding occurs rarely.

We employ a parameterized embedding layer with output
dimension 32 and a subsequent dropout on features of rate
0.4; a two-layer LSTM with 256 hidden units each and a
dropout of rate 0.6 between recurrent layers; a linear layer
with no parameter sharing. Having an additional, penultimate
layer with the number of units equalling to the embedding
dimension allows parameter sharing, and from our experience,
it works better for larger vocabularies. All feed-forward layers
are initialized with the Xavier algorithm [24] and recurrent
layers with orthogonal initialization. On every iteration, the
hidden states are detached from the computational graph and
reinitialized to zeros.

On every epoch, we generate 1, 000 sequences with top-
80% gumbel-softmax activation, with the maximum length
restriction of 100 corresponding to the training dataset statis-
tics. Experimentally, fixed p in top-p sampling is almost always
optimal on every iteration and epoch, while temperature or
top-k sampling require constant adjustment of their respective
hyperparameters. Generated sets are evaluated using metrics
from Section IV-D. The radius and length of Morgan fin-
gerprints are set to 2 and 1024, respectively. Validity and
Uniqueness are assessed on the first 1, 000 strings; to get
Novelty scores, invalid and repetitive strings are removed and
newly generated until a supplemented set is unique and valid;
IntDiv, SNN, and KL are correspondingly evaluated on a
generated set of 1, 000 novel strings. Optionally, RAC or loss
values are monitored for early stopping. We present the results
on the 12th epoch (see Table I), although epochs 5-7 already
demonstrate reasonable Validity, Novelty, and IntDiv scores.

Figure 4 shows the distributions of quantitative estimation
of drug-likeness [25] and Figure 5 the nonmetric multidimen-
sional scaling of physicochemical descriptors of the training
and generated sets. Along with the metric scores, they give
evidence of property and fragment closeness of both sets.
Figure 6 visualizes six randomly chosen molecules from the
generated set.

TABLE I
SMILESRNN evaluation results averaged over 3 tests with different model

initialization.

PPL Valid. Uniq. IntDiva Novel. SNN KL
1.919 0.973 1.000 0.846 0.969 0.619 0.965

(±0.008) (±0.004) (±0.000) (±0.002) (±0.002) (±0.004) (±0.009)
a IntDiv of the training set is 0.877.

Fig. 4. Distributions of QED.

VI. NOTES ON OTHER ENCODERS

Although multi-layer LSTM and GRUs demonstrate ap-
propriate and promising performance, one can also build an
encoder block of SMILESLM using convolutional layers and
attention mechanisms. Depending on data, task, and network
architecture, one might benefit from parallelization and inter-
pretability of such encoders. The following two subsections
describe CNN and Transformer encoders, which have found
significant success in NLP tasks. However, based on our
experience, they are inferior in terms of validity and capturing
of long-term SMILES fragments. As both models need only
constant minimum number of sequential operations and have
shorter maximum path lengths, this seems counterintuitive;
still, we hypothesize that the main reason is the absence of an
explicit state/memory mechanism. We suggest experimenting
with more refined models like in [26] or [27] and comparing
their performances with our baseline or the results from [3].

A. SMILESCNN

A CNN encoder block mainly consists of a stack of identical
causal or dilated convolutional layers. Each convolution has
stride 1 and prior to processing prepends k − 1 padding
tokens to inputs, where k is a kernel size, so that outputs of
convolutions have dimensions equal to the inputs’. This way
we save positional information (and therefore, pooling is also
redundant). Kernels can be interpreted as fragment detectors.
The maximum path length is O(τ/k) or O(logk τ), depending
on the type of convolutions. The computational complexity of
convolutions is O(kτd2), as opposed to O(τd2) of RNNs,
but the sequential operations can be parallelized. Optionally,
for deeper models, we employ residual [28] or highway [29]
connection between the outputs of an embedding block and
the last convolutional layer.

Fig. 5. MDS of Physicochemical Descriptors.

Fig. 6. Examples of generated molecules.

B. SMILESTransformer

Transformer encoder block is identical to the decoder part
of the original model [11]. It consists of a stack of identical
layers incorporating masked multi-head self-attention pooling
[11] with residual connection, layer normalization [30], and
position-wise feed-forward network with residual connection.
Self-attention sublayer preserves autoregressive property by
masking out future tokens and independently tries to attend
different fragments with multiple heads. It is then followed by
a normalization across the embedding features. The obtained
representations at all the time steps are processed using the
same feed-forward network and then also followed by layer
normalization. The computational complexity is O(τ2d) with
constant minimum number of sequential operations. Option-
ally, dropouts are applied to the attention weights and/or the
output of the multi-head attention.

VII. CONCLUSION

In this paper, we provided a suite of methods for SMILES-
based language modeling. The presented data processing and
neural network modeling techniques are similar to those in
natural language processing, and during evaluation, demon-
strate the ability to generate a diverse set of novel molecules
matching the properties of the reference dataset. In fact, these
methods can also be adapted to other tasks such as target
classification and transfer learning. We hope that this survey
will be a useful guide in developing further SMILES-based
molecule generation frameworks.

REFERENCES

[1] M. Segler et al. (2018). Generating Focused Molecule Libraries for Drug
Discovery with Recurrent Neural Networks. ACS Cent. Sci., 4, 120-131.

[2] A. Gupta et al. (2018). Generative Recurrent Networks for de Novo
Drug Design. Mol. Inf. 37, 1700111.

[3] N. Brown et al. (2019). Guacamol: benchmarking models for de novo
molecular design. J. Chem. Inf. Model. 59, 1096–1108.

[4] D. Polykovskiy et al. (2020) Molecular sets (moses): a benchmarking
platform for molecular generation models. Front Pharmacol 11:58.

[5] D. Weininger. (1988). SMILES, a Chemical Language and Information
System. Introduction to Methodology and Encoding Rules. J.Chem. Inf.
Comput. Sci. 28, 31.

[6] D. Rumelhart et al. (1988). Learning representations by back-
propagating errors. Cognitive modeling, 5(3), 1.

[7] T. Chen et al. (2015). MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274.

[8] A. Zhang et al. (2020). Dive into deep learning. URL http://d2l.ai.
[9] G. Landrum. RDKit: Open-source cheminformatics. URL http://www.

rdkit.org.
[10] D. Mendez et al. (2019). ChEMBL: towards direct deposition of bioassay

data. Nucleic Acids Res. 47, D930.
[11] A. Vaswani et al. (2017). Attention is all you need. Advances in neural

information processing systems (pp. 5998–6008).
[12] N. Srivastava et al. (2014). Dropout: a simple way to prevent neural

networks from overfitting. The Journal of Machine Learning Research,
15(1), 1929–1958.

[13] E. Jang, S. Gu, and B. Poole. (2016). Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144.

[14] A.F.T. Martins and R.F. Astudillo (2016). From softmax to sparsemax: A
sparse model of attention and multi-label classification. arXiv preprint
arXiv:1602.02068.

[15] H. Inan, K. Khosravi, and R. Socher. (2016). Tying word vectors and
word classifiers: A loss framework for language modeling. arXiv preprint
arXiv:1611.01462.

[16] H. Jaeger. (2002) Tutorial on training recurrent neural networks, cov-
ering BPPT, RTRL, EKF and the ”echo state network” approach. Vol.
5. GMD-Forschungszentrum Informationstechnik Bonn.

[17] S. Hochreiter and J. Schmidhuber. (1997). Long short-term memory.
Neural computation, 9(8), 1735–1780.

[18] K. Cho et al. (2014). On the properties of neural machine translation:
encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

[19] Y. Gal and Z. Ghahramani. (2016). A theoretically grounded application
of dropout in recurrent neural networks. In NIPS, pp. 1019–1027.

[20] A. Holtzman et al. (2019). The curious case of neural text degeneration.
arXiv preprint arXiv:1904.09751.

[21] M. Benhenda. (2017). Chemgan challenge for drug discovery: can AI
reproduce natural chemical diversity? arXiv preprint arXiv:1708.08227.

[22] D. Rogers and M. Hahn. (2010). Extended-connectivity fingerprints.
Journal of chemical information and modeling 50(5):742–754.

[23] D. Kingma and J. Ba. (2014). Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

[24] X. Glorot and Y. Bengio. (2010). Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages
249–256.

[25] G.R. Bickerton et al. (2012). Quantifying the chemical beauty of drugs.
Nature Chemistry, 4, 90-98.

[26] Z. Dai et al. (2019). Transformer-xl: Attentive language models beyond
a fixed-length context. arXiv preprint arXiv:1901.02860.

[27] N. Kitaev, Ł. Kaiser, and A. Levskaya. (2020). Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451.

[28] K. He et al. (2015). Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385.

[29] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks.
arXiv:1505.00387, 2015.

[30] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

http://d2l.ai
http://www.rdkit.org
http://www.rdkit.org

	Introduction
	General Framework
	Working with Data
	Dataset Collection
	Tokenization
	Minibatch Sampling
	Column Sampling
	Consecutive Sampling
	Random Sampling

	Methods
	SMILESLM
	Embedding
	Encoder
	Output

	SMILESRNN
	Generation Strategies
	Sampling with Temperature
	Top-k Sampling
	Top-p (Nucleus) Sampling

	Evaluation Metrics
	Perplexity
	Validity
	Uniqueness
	Novelty
	Rate of Acceptable Compounds
	Internal Diversity
	Nearest Neighbor Similarity
	KL Divergence

	Experiments and Discussion
	Notes on Other Encoders
	SMILESCNN
	SMILESTransformer

	Conclusion
	References

