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Abstract 

This work presents a state-of-the-art hybrid kernel for molecular property 

predictions. The hybrid kernel consists of a marginalized graph kernel that 

operates on molecular graphs and radial basis function kernels that operate on 

global molecular features. Direct message passing neural network (D-MPNN) 

with global molecular features is used as strong baselines. After using Bayesian 

optimization to find the optimal hyperparameters, we benchmark the models on 

11 publicly available data sets. Our results show that the prediction of the graph 

kernel is correlated to the prediction of D-MPNN, which indicates that the 

molecular representation learned from D-MPNN is very close to the reproducing 

kernel Hilbert space generated by the hybrid kernel. These results may provide 

clues for research on the interpretability of graph neural networks. In addition, 

ensembling the graph kernel models with D-MPNN is the best. The advantage 

of D-MPNN lies in computational efficiency, and the advantage of the graph 

kernel model lies in the inherent uncertainty qualification of Gaussian process 

regression. 

 

  



I. INTRODUCTION 

Molecular property prediction is one of the central and classical research 

topics of cheminformatics, which has attracted widespread attention for 

decades. Recently, this field is rejuvenated due to the advances in deep 

learning. Graph neural networks (GNNs) result in state-of-the-art predictions on 

quantum mechanical properties, physicochemical properties, biological activity 

and toxicity.1–11 

To fairly evaluate the quality of different methods, Wu et al. introduced 

MoleculeNet as a large-scale benchmark for molecular property prediction.12 It 

provides multiple public data sets, data splitting, as well as high-quality 

implementation of popular algorithms of molecular featurization and learning 

algorithms. They compared six featurization methods, eight conventional 

models, and six graph-based models in eight regression and nine classification 

tasks, demonstrating that GNNs outperform molecular fingerprints methods in 

most cases. Yang et al. proved that a mixed molecular representation that 

combines GNNs and expert-crafted descriptors is state-of-the-art.13 They 

performed an extensive comparison on 19 public and 16 proprietary data sets. 

Graph kernel is another research branch of graph-based machine learning 

methods.14–23 Compared with GNN, it has received less attention due to the 

expensive computational cost and programming difficulty. Recently, Tang et al. 

developed the GraphDot software package,24 which uses GPUs to efficiently 



compute marginalized graph kernels (MGK).25 Using GraphDot, Tang and de 

Jong introduced an MGK for molecular atomization energy prediction using the 

QM7 data sets.26 Xiang et al. developed normalized marginalized graph kernels 

(nMGK) for molecules and constructed accurate prediction models for various 

thermodynamic and transport properties of pure substances.27 

In this paper, we aim to benchmark the marginalized graph kernels using 

the direct message passing neural network (D-MPNN)13 as a strong baseline. 

For a fair comparison, we optimized the hyperparameters of the two methods . 

For D-MPNN, we follow the setting in the article by Yang et al.13 For graph 

kernel methods, we (1) introduce a new kernel architecture that allows features 

and atoms with different weights. (2) hybrid the graph kernel and the radial basis 

function (RBF) kernels, where the RBF kernels operate on the global molecular 

features. (3) optimize the hyperparameters using Bayesian optimization. We 

compared our graph kernel model and D-MPNN on 11 publicly available data 

sets.  

 

II. METHODS 

Normalized Marginalized Graph Kernel Methods 

The overview of graph kernel models is sketched on the top of Figure 1. In 

MGK, molecules are represented by undirected labeled graphs, where atoms 

represent vertices, and chemical bonds represent edges. We use MGK to 



compute molecular similarity, which consists of five parts: atom microkernels, 

bond microkernels, starting probability, stop probability, and transition 

probability. 

The atom and bond features are listed in Tables 1 and 2. For single-valued 

feature, the elementary kernel is Kronecker delta 

𝛿(𝜙1 , 𝜙2) = {
1                , 𝜙1 = 𝜙2

     ℎ ∈ (0,1),  otherwise.
⑴ 

For features with variable size, the elementary kernel is the sequence 

convolution of Kronecker delta 

𝐶(𝑙1, 𝑙2) =
𝑓(𝑙1,𝑙2)

√𝑓(𝑙1,𝑙1)𝑓(𝑙2, 𝑙2)
, ⑵ 

where

𝑓(𝑙1, 𝑙2) = ∑ ∑ 𝛿(𝜙1, 𝜙2)𝜙2∈𝑙2𝜙1∈𝑙1 . ⑶ 

Here, 𝑙1, 𝑙2 are two features vector, and h is the hyperparameter. 

 The microkernel for atom or bond is a linear combination of elementary 

kernels between individual features 

𝜅v(𝑣,𝑣′) =
∑ 𝑐𝑗𝜇𝑗 (𝜙𝑗(𝑣),𝜙𝑗(𝑣

′))𝑗

∑ 𝑐𝑗𝑗
, ⑷ 

𝜅e(𝑒, 𝑒
′) =

∑ 𝑐𝑗𝜇𝑗 (𝜙𝑗(𝑒),𝜙𝑗(𝑒
′))𝑗

∑ 𝑐𝑗𝑗
, ⑸ 

where 𝜇𝑗  is the elementary kernel for the j-th feature 𝜙𝑗 , 𝑐𝑗  is the 

hyperparameter that determines the importance of the feature. 

 The starting probability of an atom is a linear combination of elementary 

probability 



𝑝s(𝑣) = 1.0 + ∑ 𝑝k(𝑣)

𝑘

, ⑹ 

𝑝k(𝑣) = {
𝑝,𝑣 in group k
0,    otherwise.

⑺ 

where 𝑝k  is the elementary probability for the group k and p is the 

hyperparameter that determines the importance of this group. Groups can be 

defined arbitrarily, and we use atom types B, C, N, O, F, Si, P, S, Cl, Br, and I 

in practice. 

 The stoping probability is set to be a constant hyperparameter 𝑝𝑞 . The 

transition probability is set to 1/𝑛  where n is the number of neighbors to the 

current atom. 

The MGK compute the expectation of path similarities from a simultaneous 

random walk process on a pair of graphs G and G’: 

𝐾(𝐺, 𝐺′) = ∑∑∑

[
 
 
 
 
 
 
 
 𝑝s(ℎ1)𝑝s′

′ (ℎ1
′ )𝜅v (𝑣ℎ1

, 𝑣
ℎ1

′
′ ) 𝑝q(ℎℓ)𝑝q

′ (ℎℓ
′ ) ×

(∏𝑝t(ℎ𝑖|ℎ𝑖−1)

ℓ

𝑖=2

) (∏𝑝t
′(ℎ𝑖

′|ℎ𝑖−1
′ )

ℓ

𝑗=2

) ×

(∏ 𝜅v (𝑣ℎ𝑘
, 𝑣

ℎ𝑘
′

′ )𝜅e (𝑒ℎ𝑘ℎ𝑘−1
, 𝑒

ℎ𝑘
′ ℎ𝑘−1

′
′ )

ℓ

𝑘=2

)

]
 
 
 
 
 
 
 
 

𝐡′𝐡

∞

ℓ=1

, ⑻ 

Where h and h’ are the random walk paths of length 𝑙. 

 The MGK can be normalized with weight: 

𝐾(𝐺,𝐺′) = 𝐹
𝐾(𝐺, 𝐺′)

√𝐾(𝐺,𝐺)𝐾(𝐺′ , 𝐺′)
exp [−

(𝐾(𝐺,𝐺) − 𝐾(𝐺′ , 𝐺′))
2

𝜆2 ] , ⑼ 

where F and 𝜆 are the hyperparameters. 

 Gaussian processes are used for regression and classification tasks.28 

More details can be found in references.15,25–27 



 

Ensemble Direct Message Passing Neural Network 

 The overview of D-MPNN is sketched on the bottom of Figure 1. The D-

MPNN is used as baseline model in this work. Herein, we briefly introduce the 

model. 

The initial atom features 𝑥𝑣 and bond features 𝑒𝑣𝑤 are listed in Tables 3 

and 4. The initial edge hidden states are: 

ℎ𝑣𝑤
0 = 𝜏(𝑊𝑖  cat(𝑥𝑣, 𝑒𝑣𝑤)), ⑽ 

where cat(𝑥𝑣, 𝑒𝑣𝑤) is the concatenated vector of the atom features 𝑥𝑣 and the 

bond features 𝑒𝑣𝑤 , 𝑊𝑖  is a learned matrix, and 𝜏  is the ReLU activation 

function. 

 The message passing update equations are 

𝑚𝑣𝑤
𝑡+1 = ∑ ℎ𝑘𝑣

𝑡

𝑘∈{𝑁(𝑣)\𝑤}

, ⑾ 

ℎ𝑣𝑤
𝑡+1 = 𝜏(ℎ𝑣𝑤

0 + 𝑊𝑚𝑚𝑣𝑤
𝑡+1), ⑿ 

where 𝑁(𝑣) are the neighbors of v. The learned atom hidden states are 

𝑚𝑣 = ∑ ℎ𝑣𝑤
𝑇

𝑤∈𝑁(𝑣)

, ⒀ 

ℎ𝑣 = 𝜏(𝑊𝑎  cat(𝑥𝑣,𝑚𝑣)). ⒁ 

The molecular representation is the sum of atom hidden states 

ℎ = ∑ℎ𝑣

𝑣∈𝐺

. ⒂ 

The final property is obtained through a feed-forward neural network 𝑓(∙), 

𝑦̂ = 𝑓(ℎ). ⒃ 



 By training several copies of D-MPNN with different initial weights, the 

ensemble (averaged) prediction of these models is used as the final prediction.  

More details can be found in reference.13 

 

RDKit Features 

 Yang et al concatenated 200 global features that can be rapidly computed 

using RDKit with the learned molecular representation through message 

passing, which significantly improves the prediction performance. 

 To make a fair comparison between the graph kernel and D-MPNN, we also 

add the 200 RDKit features in graph kernel models using a hybrid kernel 

𝐾((𝐺, 𝐹RDKit), (𝐺
′ , 𝐹RDKit

′ )) = 𝐾𝐺(𝐺, 𝐺′)𝐾𝐹(𝐹RDKit, 𝐹RDKit
′ ), ⒄ 

where 𝐺, 𝐺′ are the molecular graphs and 𝐹RDKit, 𝐹RDKit
′  are RDKit features. 

𝐾𝐺 is the normalized marginalized graph kernel described above and 𝐾𝐹 is the 

radial basis function kernel 𝐾𝐹(𝐹RDKit,𝐹RDKit
′ ) = exp (−

‖𝐹RDKit−𝐹RDKit
′ ‖

2

2𝜎2
). 

 

Hyperparameter Optimization 

 There are tens of hyperparameters for graph kernel models and four 

hyperparameters for D-MPNN. In order to maximize the performance of both 

models, we use Tree of Parzen Estimators (TPE) to optimize 

hyperparameters.29,30 

 

Implementation 



 All code for the graph kernel models is available in our GitHub repository.31  

We use the GraphDot python package to compute the marginalized graph 

kernels and perform Gaussian process regression.24 We use the scikit-learn 

package to carry out Gaussian process classification.32 We use the 

Descriptatorus package33 to calculate the RDKit features and HyperOpt 

package34 to hyperparameters optimization. 

 

III. EXPERIMENTS 

Data sets 

 The publicly available data sets used in this study are listed in Table 5. 

These data sets are popularly used for benchmark researches in molecular 

property prediction.12,13 Mean absolute error (MAE), root mean square error 

(RMSE), and area under the receiver operating characteristic curve (ROC-AUC) 

are used as metrics. 

 

Hyperparameters Optimization 

 For D-MPNN, we follow the setting of Yang et al, “For each data set, we 

use 20 iterations of Bayesian optimization on 10 randomly seeded 80:10:10 

data splits to determine the best hyperparameters, selecting hyperparameters 

based on validation set performance”.13 The optimal hyperparameters are listed 

in Tables S1 and S2. 

 For Gaussian process regression, we use different random seeds to 



perform Bayesian optimization repeatedly 20 times, with 100 iterations for each 

optimization. The best hyperparameters with the smallest leave-one-out loss 

are selected. For Gaussian process classification, we use 100 iterations of 

Bayesian optimization on 10 randomly seeded 80:20 data splits to determine 

the best hyperparameters with the best performance on test sets. The optimal 

hyperparameters are listed in Tables S3 and S4. 

 

Data Splits and Performance Evaluation 

 With the optimized hyperparameters, we evaluate both models on the same 

data splits. For each data set, we performed both random and scaffold-

balanced data splits. The data were divided into the training, validation, and test 

set according to the ratio of 80:10:10. For D-MPNN, it was trained for 50 epochs, 

and the model with the highest performance on the validation set was used as 

the final model to make predictions on the test set. For the graph kernel models, 

we use the training set to build the model and make predictions on the test set. 

The data of the validation set is not used. The evaluation process was repeated 

100 times. 

 

IV. RESULTS AND DISCUSSION 

We only compare the graph kernel models and D-MPNN with optimal 

performances. In this section, “GPR-MGK”, “GPC-MGK” refers to graph kernel 

models with RDKit features and optimized hyperparameters. The term 



"normalization" is no longer used because whether it is used or not is  also an 

adjustable hyperparameter. D-MPNN-OPT refers to D-MPNN with RDKit 

features and optimized hyperparameters. D-MPNN-OPT-E5 refers to a model 

that ensembling five D-MPNN-OPT models. Ensemble refers to a model that 

ensembling GPR-MGK (GPC-MGK for classification) and D-MPNN-OPT-E5. 

 

Benchmark on Same Data Splits 

 We emphasize that it is very important to compare different models on the 

same training and test sets, otherwise, you may get contradictory results due 

to random noise. We performed the GPR-MGK model on the ESOL data set to 

illustrate this point. In Figure 2, the RMSE of the test set is plotted as a function 

of the number of data splits. Each string is the statistical result of 100 repeated 

runs with different random seeds. The difference between the best and worst 

results could be 0.06, 0.02, and 0.01 for repeating times of 5, 25, and 50. 

Therefore, we use the same data split in this work to compare the graph kernel 

model and D-MPNN to get reliable results. All data splits are repeated 100 times. 

Dwivedi et al. also held this viewpoint when benchmarking graph neural 

networks.35 

 

GPR-MGK VS D-MPNN 

 We first compare our GPR-MGK model with D-MPNN-OPT-E5 on the 



ESOL data set. In Figure 3A, B, comparisons of predictions using GPR-MGK 

and D-MPNN-OPT-E5 against the reference data are given, and the 

corresponding RMSE values are provided. The prediction performance of GPR-

MGK and D-MPNN-OPT-E5 are the same, and ensembling them prediction that 

averaging them is better. In Figure 3C, D, the prediction error of GPR-MGK and 

D-MPNN-OPT-E5 are compared, and a strong correlation between them. In 

more detail, we draw the difference between the predictions of GPR-MGK and 

D-MPNN-OPT-E5 for different molecules in Figure 3E, F. The gray area 

represents the standard deviation of the same molecule under different data 

splits. The predictions of GPR-MGK and D-MPNN-OPT-E5 for most molecules 

are similar, except for a few molecules with larger differences. The results for 

other data sets are shown in Figures S1-4. The correlation of GPR-MGK and 

D-MPNN comes from the fact that both models treat molecules as graphs, and 

information flows through bonds. 

All results are summarized in Tables 6, 7, and at the left of Figure 4. 

Compared with D-MPNN-OPT, GPR-MGK achieves better results in 5 

comparisons, the same results in 5 comparisons, and poor results in 4 

comparisons. Compared with D-MPNN-OPT-E5, GPR-MGK achieves better 

results in 3 comparisons, the same results in 4 comparisons, and poor results 

in 7 comparisons. We emphasize that although the predictive abilities of GPR-

MGK and D-MPNN are similar, their ensemble predictions are the best in 13 

comparisons, except for the GPR-MGK on the QM7 dataset with scaffold 



splitting. In addition, the difference between D-MPNN-OPT-E5 and D-MPNN-

OPT is smaller than the difference between Ensemble and D-MPNN-OPT-E5, 

indicating that ensembling the D-MPNN with GPR-MGK is more effective than 

ensembling multiple D-MPNN. 

 

GPC-MGK VS D-MPNN 

 The results of classification data sets are summarized in Tables 8, 9, and 

at the right of Figure 4. For the BACE, BBBP, and SIDER data sets, the 

conclusion is the same as the above, that is, the performance of GPC-MGK is 

similar to D-MPNN, and the ensemble prediction of GPC-MGK and D-MPNN is 

the best. For the ClinTox dataset, D-MPNN outperforms GPC-MGK. 

 

Uncertainty Analysis of GPR-MGK 

 GPR-MGK is a Bayesian inference method, and its prediction is a Gaussian 

distribution. Therefore, its advantage is that the predicted variance can be used 

to evaluate the reliability of the prediction. This is very important for the 

prediction of molecular properties because the existing data occupies only a 

very small part of the huge chemical compound space (CCS). At this stage, it 

is impossible to have enough data to train an ML model that can cover the entire 

CCS. Therefore, we need to know the range of capabilities of the ML model, 

and GPR-MGK is a way to achieve this. 



 Figure 5 shows the relationship between predicted error and posterior 

uncertainty on the ESOL data set. The prediction data are divided into 10 

intervals according to posterior uncertainty. For each interval, the error is plotted 

in the form of a violin, where the horizontal bars represent the maximum, 

median, and minimum values, and the width represents the probability  

distribution. The data percentage, RMSE and R2 are displayed below. 

Predictions with small posterior uncertainty are more accurate than predictions 

with large posterior uncertainty. The results of the other data sets are plotted in 

Figures S5-S10. The PDBbind-C data set contains only 168 data points, so the 

results are messy. The QM7 data set only contains molecules with no more 

than 7 heavy atoms, so the similarity between molecules is too high, resulting 

in too low predicted posterior uncertainty. In other data sets, there is a clear 

correlation between prediction error and posterior uncertainty. 

  

V. CONCLUSIONS 

In this article, we proposed a state-of-the-art hybrid kernel for molecular 

property prediction. It consists of (1) MGK with additive node, edge features 

and starting probabilities operating on molecular graph and (2) radial basis 

function kernel operating on RDKit features. Using D-MPNN as a strong 

baseline, we have demonstrated the power of the hybrid kernel through 

extensive comparisons of its performance on various data sets. A strong 



correlation between the predictions of GPR-MGK and D-MPNN is observed, 

indicating that the molecular representation learned through message passing 

is closed to the reproducing kernel Hilbert space generated by the MGK. 

Furthermore, a better model can be obtained by ensembling GP-MGK with D-

MPNN. 

Although the performances of GP-MGK and D-MPNN are close under the 

condition of optimal hyperparameters, the computational cost of finding the 

optimal hyperparameters of GP-MGK is still very expensive. Therefore, an 

efficient algorithm to find the optimal hyperparameters of the graph kernel is 

needed. In the current situation, the advantage of GNNs is that the calculation 

is more efficient, while the advantage of the graph core model is uncertainty 

qualification27 and active learning.26  
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Table 1. Atom Features for Marginalized Graph Kernel. 

 

 

  

feature description size 

AN atomic number 1 

AN_1_list atomic number for 1st layer heavy neighbors variable 

AN_2_list atomic number for 2nd layer heavy neighbors variable 

AN_3_list atomic number for 3th layer heavy neighbors variable 

AN_4_list atomic number for 4th layer heavy neighbors variable 

AN_1_count number of heavy atoms in 1st layer neighbors 1 

AN_2_count number of heavy atoms in 2nd layer neighbors 1 

Hcount number of bonded hydrogens 1 

MorganHash Morgan substructure at radius=3 1 

ringSize_list the ring size of all distinct rings variable 

ring_count the number of distinct rings 1 

chirality unspecified, tetrahedral CW/CCW, or achiral 1 



Table 2. Bond Features for Marginalized Graph Kernel. 

 

 

  

feature description size 

bond type bond order, single, double, triple, or aromatic 1 

stereo none/E/Z for double bond 1 

ring-stereo none/E/Z for single bond in a ring 1 

conjugated whether the bond is conjugated 1 



Table 3. Atom Features for D-MPNNab 

 

aAll features are one-hot encodings except for atomic mass, which is a real 

number scaled to be on the same order of magnitude. 

bThis table is the same as Table 1 in Yang et al.’s paper.2 

  

feature description size 

atom type type of atom (ex. C, N, O), by atomic number 100 

# bonds number of bonds the atom is involved in 6 

formal charge integer electronic charge assigned to atom 5 

chirality unspecified, tetrahedral CW/CCW, or other 4 

# Hs number of bonded hydrogen atoms 5 

hybridization sp, sp2, sp3, sp3d, or sp3d2 5 

aromaticity whether this atom is part of an aromatic system 1 

atomic mass mass of the atom, divided by 100 1 



Table 4. Bond Features for D-MPNNab 

 

aAll features are one-hot encodings. 

bThis table is the same as Table 2 in Yang et al.’s paper.2 

 

  

feature description size 

bond type single, double, triple, or aromatic 4 

conjugated whether the bond is conjugated 1 

in ring whether the bond is part of a ring 1 

stereo none, any, E/Z or cis/trans 6 



Table 5. Data sets Used in This Paper 

 

 

  

data set task compounds metric 

QM7 regression 1 6830 MAE 

ESOL regression 1 1128 RMSE 

FreeSolv regression 1 642 RMSE 

Lipophilicity regression 1 4200 RMSE 

PDBbind-C regression 1 168 RMSE 

PDBbind-R regression 1 3040 RMSE 

PDBbind-F regression 1 9880 RMSE 

BACE classification 1 1513 ROC-AUC 

BBBP classification 1 2039 ROC-AUC 

SIDER classification 27 1427 ROC-AUC 

CLINTOX classification 2 1478 ROC-AUC 



Table 6. Prediction Results of GPR-MGK, D-MPNN, and their Ensembling Model Based on 

Random Split 

 

Data ESOL FreeSolv Lipophilicity PDBbind-C PDBbind-R PDBbind-F QM7 

GPR-MGK 0.547±0.050 0.822±0.173 0.595±0.037 1.940±0.289 1.302±0.049 1.284±0.026 53.22±3.12 

D-MPNN-OPT 0.570±0.054 0.904±0.184 0.551±0.044 1.849±0.236 1.324±0.052 1.279±0.030 59.71±3.40 

D-MPNN-OPT-E5 0.557±0.051 0.882±0.175 0.539±0.046 1.853±0.232 1.297±0.048 1.261±0.029 57.06±3.34 

Ensemblea 0.537±0.049 0.817±0.167 0.534±0.041 1.812±0.239 1.273±0.046 1.244±0.026 50.29±3.13 

aEnsemble prediction of GPR-MGK and D-MPNN-OPT-E5. 

 

Table 7. Prediction Results of GPR-MGK, D-MPNN, and their Ensembling Model Based on 

Scaffold Split 

 

Data ESOL FreeSolv Lipophilicity PDBbind-C PDBbind-R PDBbind-F QM7 

GPR-MGK 0.789±0.090 1.789±0.605 0.641±0.041 2.005±0.282 1.408±0.067 1.352±0.042 66.90±9.62 

D-MPNN-OPT 0.822±0.090 1.782±0.591 0.603±0.056 1.901±0.271 1.417±0.074 1.334±0.050 83.98±10.32 

D-MPNN-OPT-E5 0.793±0.079 1.729±0.580 0.589±0.051 1.892±0.281 1.390±0.069 1.315±0.039 79.46±10.11 

Ensemble 0.772±0.081 1.703±0.599 0.580±0.044 1.851±0.252 1.371±0.066 1.302±0.040 69.31±9.45 

 

 

  



Table 8. Prediction Results of GPC-MGK, D-MPNN, and their Ensembling Model Based on 

Random Split 

 

 

Table 9. Prediction Results of GPC-MGK, D-MPNN, and their Ensembling Model Based on 

Scaffold Split 

 

 

  

Data BACE BBBP SIDER ClinTox 

GPC-MGK 0.883±0.028 0.921±0.023 0.658±0.023 0.774±0.081 

D-MPNN-OPT 0.893±0.026 0.924±0.021 0.655±0.026 0.900±0.049 

D-MPNN-OPT-E5 0.899±0.024 0.927±0.021 0.664±0.026 0.907±0.044 

Ensemble 0.901±0.024 0.931±0.021 0.671±0.025 0.872±0.053 

Data BACE BBBP SIDER ClinTox 

GPC-MGK 0.858±0.044 0.907±0.030 0.623±0.023 0.814±0.062 

D-MPNN Optimized 0.858±0.042 0.911±0.030 0.634±0.030 0.888±0.042 

D-MPNN Ensemble 0.864±0.043 0.915±0.026 0.638±0.023 0.897±0.039 

Ensemble 0.870±0.042 0.920±0.027 0.650±0.031 0.870±0.058 



 

Figure 1. Overviews of machine learning models. Top: In GP-MGK, the 

marginalized graph kernel with the molecular graph as the input and the RBF 

kernel with the RDKit features as the input are hybridized, followed by 

Gaussian process regression or classification. Bottom: In D-MPNN, the 

learned molecular representations using message passing are concatenated 

with RDKit features, followed by a feed-forward neural networks. 

 



 

Figure 2. Performance evaluation of GPR-MGK on the ESOL data sets with 

different repetition times. For each column, the distribution of 100 calculations 

is counted. For each performance evaluation, the data is randomly divided 

into the training set and test set at a ratio of 80:20. 

  



 

Figure 3. Comparison between GPR-MGK and D-MPNN. Top: Random split. 

Bottom: Scaffold split. (A, B) The prediction on the test set using GPR-MGK 

(red) and D-MPNN (blue) are compared. (C, D) The relationship between GPR-

MGK error and D-MPNN error. (E, F) The prediction differences between GPR-

MGK and D-MPNN are sorted by molecule. The gray region is the standard 

deviation obtained by making predictions based on different training sets. 

  



 

Figure 4. Comparisons of graph kernel models against direct message passing 

neural networks. Top: Random data split. Bottom: Scaffold data split. Left: 

Regression data sets. Right: classification data sets. 

  



 

Figure 5. Relationship between predicted error and posterior uncertainty on the 

ESOL data set. 


