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We have recently demonstrated an effective protocol for the simulation of amorphous molecular 

configurations using the PixelCNN generative model (J. Phys. Chem. Lett. 2020, 11, 20, 8532). 

The morphological sampling of amorphous materials via such an autoregressive generation 

protocol sidesteps the high computational costs associated with simulating amorphous materials 

at scale, enabling practically unlimited structural sampling based on only small-scale experimental 

or computational training samples. An important question raised but not rigorously addressed in 

that report was whether this machine learning approach could be considered a physical simulation 

in the conventional sense. Here we answer this question by detailing the inner workings of the 

underlying algorithm that we refer to as the Morphological Autoregression Protocol or MAP. We 

identify the key object of physical interest for modeling of amorphous structures: an all-order 

correlation cluster expansion that fully captures structural information for amorphous substances, 

outline how it may be efficiently modelled by a neural network and study the convergence 

properties of a discrete, autoregressive sampling protocol guided by such a model. We find that 

such a MAP sequence constitutes a converging Markov process, guaranteed to realize a unique 

equilibrium distribution, and illustrate relevant concepts with abstract toy-model numerical 

experiments. This work lays the theoretical foundation for physically sound autoregressive 

sampling. 
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I. Introduction 

Currently, there is growing interest in machine learning approaches for large-scale sampling of 

morphologies of chemical systems, sidestepping traditional structural sampling methods such as 

molecular dynamics and Markov chain Monte Carlo to directly sample target physical distributions 

in novel ways. Such protocols come with several unique advantages over traditional simulations; 

recent studies, including our own work with PixelCNN-based autoregressive models[1] have 

demonstrated that appropriately trained generative models can draw accurate samples from the 

configuration spaces of proteins[2] and 2 and 3 dimensional amorphous aggregates of carbon and 

silicon[1,3,4], all without the complexities which may attend long-time and/or large-scale 

traditional simulation of the same system. At this time, we just at the beginning of our exploration 

of the potential of this class of methods for analysis and discovery of new materials and 

macromolecules. 

The key insight postulated in our previous work[1] was that by exploiting the finite-range of 

structural correlations inherent to amorphous materials, one may train a generative, autoregressive 

model on samples with a maximum size on the order of that length and use it to accurately simulate 

samples of unlimited size. In general, we refer to this type of algorithm as a morphological 

autoregressive protocol (MAP), which was implemented in this case via the Gated PixelCNN 

architecture[5]. Beyond showing the empirical evidence that such a method generates convincing 

molecular configurations, there are important questions about how and why it is able to do so, and 

whether the generated configurations are simulated in the conventional sense of them being 

sampled from a physical distribution. What kind of physical information does such a model 

contain? What are the conditions within which the model will generate accurate samples? What 

kind of sampling process does this type of potentially multidimensional sequence embody? In this 

work, we explain the theoretical underpinnings of a morphological autoregressive protocol and 

present rigorous answers to these questions.  

Our work to date has been focused on a particular MAP architecture known as PixelCNN. 

PixelCNN is an autoregressive convolutional generative model which can be used to sample a 

chemical morphology upon which it has been trained, iteratively, at a very low cost[6,7], up to 

practically arbitrary size. It is further architecturally flexible, easy to train, and naturally admits 

the use of conditioning variables[5]. A primary advantage of this, and other MAP approaches is 

that, via straightforward correlation modelling, it cheaply computes human interpretable sample 

probabilities for any size of sample. We consider PixelCNN as the prototypical MAP architecture, 

and will demonstrate its strengths in Section IV, though other suitable methods exist[7,8]. 

The paper is organized as follows: in Section II we outline the concept of a morphological 

autoregressive protocol and develop an expression which defines its propagation, in Section III we 

demonstrate its properties as a sequence generator on a discrete grid, in Section IV we illustrate 

key features of MAP sequences via numerical experiments, and we conclude in Section V.  
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II. The Morphological Autoregression Protocol (MAP). 

A. Morphological Sampling as Sequence Propagation 

We define a morphological autoregression protocol as an approach which casts morphological 

sampling as the generation of some sequence, {𝑋}, encoding information about a corresponding 

physical system, most commonly in the form of particle positions. Such a sequence advances 

according to the general form, 

Equation 1 

𝑋𝑖 = 𝜓[𝑐𝑏 + 𝐹({𝑋𝑗<𝑖})], 

with 𝑐𝑏 a linear bias, 𝐹({𝑋}) accounting for the correlations between 𝑋𝑖 and previously generated 

points {𝑋𝑗<𝑖}, and 𝜓[𝑥] a function which parses these correlations into outcomes for the 

atomic/molecular structure at point 𝑖. The precise form of 𝜓[𝑥] depends on the way this structure 

is encoded in 𝑋𝑖, and will be discussed in the next subsection, IIB. 

Allowing the index 𝑖 run over multiple dimensions, we may generate N-dimensional sequences 

corresponding to structures of real materials. We are particularly interested in materials which 

have a finite morphological correlation length, i.e., amorphous materials. For such materials, the 

length of the ‘history’ which must be considered may be truncated at some finite correlation length, 

𝐿𝑐, without loss of accuracy, 

Equation 2 

lim
𝑖→∞

𝐹({𝑋𝑗<𝑖}) = 𝐹({𝑋𝑗∈𝐿𝑐}). 

 
Figure 1: Illustration of the amount of context required to predict the sequence value at 𝑋𝑖, for 

sequences defined on a 1D or 2D grid. The maximum size of context required to accurately predict 

𝑋𝑖 is known as the correlation length, 𝐿𝑐. 
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To sample some target physical distribution, one has only to propagate this sequence, with the 

statistics of the physical system encoded in 𝐹({𝑋}) and 𝑐𝑏.  As the sequence progresses, it will 

simulate the physical system, that is, it will draw samples from the target distribution. We will 

demonstrate in the next subsection that direct evaluation of 𝐹({𝑋}) is unfeasible for most practical 

purposes. Therefore, in practice, the ability of such a sequence generator to produce accurate, 

unbiased, and well-distributed samples depends on accurate modelling of 𝐹({𝑋}). 

A popular family of approaches to model 𝐹({𝑋}) are generative autoregressive models, 

including PixelRNN, PixelCNN and their derivatives[5,9,10]. These models leverage the 

expressiveness and generality of deep neural networks to efficiently model the statistics of a target 

physical distribution with minimum human intervention. A key advantage of MAP architectures 

as we will see in the next section is that they produce explicit sample probabilities for samples of 

arbitrary size at no additional cost. Combining this with the physical intuitions also outlined in 

Section IIB makes simulation via MAP largely end-to-end human interpretable. Interpretability is 

less straightforward in non-autoregressive approaches to direct sampling such as autoencoders[11] 

or generative adversarial networks[12]. They fulfill similar overall functions and have certain 

advantages, particularly in the rate of sample generation[6,7], but they do not as easily admit 

computation of sample probabilities, or rationalization of particle positions based on local 

arguments. Since we are interested in providing the rationalization for the physicality of the 

generated molecular configurations, we work with models that are as interpretable as possible. 

 

B. Encoding the Correlation Cluster Expansion in the MAP 

The above definition for a MAP is very general and does not tell us e.g., the range of possible 

values or physical meaning of sequence elements 𝑋𝑖; many representations and interpretations are 

possible and potentially desirable in different cases. We will proceed using the following 

definitions, carried over from our previous work with PixelCNN[1] which provide practical 

advantages for keeping this method straightforward and applicable to a wide range of 

computational and experimental datasets: 

1. The sequence {𝑋} maps to a discrete N-dimensional spatial grid, which is filled 

elementwise, typically via Raster scan, using contextual information up to a maximum 

range of 𝐿𝑐 from the predicted element. 

2. 𝑋𝑖 represents the occupation of grid point 𝑖, with 𝑁𝑐 different possible classes of 

occupants e.g., different atomic elements, nanoparticles, or molecular fragments, being 

represented via different integer values of 𝑋𝑖. 

A MAP following these definitions sequentially outputs integers representing morphological 

features on a discrete spatial grid. To advance the sequence, we begin by computing the probability 

for the next sequence element to be of class 𝜃, for all possible classes 𝑁𝑐, 

Equation 3 

𝑝(𝑋𝑖 = 𝜃|{𝑋𝑗<𝑖}) = 𝑁[𝑐𝑏,𝜃 + 𝐹𝜃({𝑋𝑗∈𝐿𝑐})], 

with {𝜃 ∈ ℤ+|𝜃 ≤ 𝑁𝑐},  and 𝑁[{𝑥}] the softmax classwise normalization function, 
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Equation 4 

𝑁[𝑥𝑖] =
𝑒𝛽𝑥𝑖

∑ 𝑒𝛽𝑥𝑗𝑗

, 

where we take the effective inverse temperature, 𝛽 = 1. This produces normalized, nonzero 

probabilities for each possible class, ∑ 𝑝(𝑋𝑖 = 𝜃𝜔|{𝑋𝑗∈𝐿𝑐})
𝑁𝑐
𝜔=1 = 1, which we sample to advance 

the sequence, 

Equation 5 

𝑋𝑖 ∼ 𝑝({𝑋(𝑗<𝑖}}). 

This element then becomes part of the context, {𝑋𝑗<𝑖+1}, used to predict the next sequence element, 

and so on. 

These definitions yield a very general and easily interpretable sequence and allow us to explain 

the operation of a MAP in a clear and practical terms. One may, however, choose to work with 

different definitions, most pertinently in a continuous coordinate basis and/or with a continuous 

space of outputs. Though either of these could be approximated with a sufficiently dense grid of 

discrete values, it bears discussing how one might analyze a MAP sequence in a continuous basis. 

The discussion of correlation expansion which takes up the rest of this section is easily adapted to 

continuous space, with the correlation coefficients redefined as continuous functions in that space. 

However, the possibility of infinitely high-order correlations may make their modelling unwieldy. 

It should also be noted that the propagation of such a sequence in continuous space may require 

additional adjustments, and the validity of our arguments will depend on the choices made at that 

stage. 

To develop the concepts required to describe the simulation of complex systems such as 

amorphous molecular aggregates using a MAP, we will consider a series of increasingly complex 

physical systems. Our goal is to improve the clarity and interpretability of the generative deep 

learning process, often regarded as a black-box modelling technique, by gradually increasing the 

complexity from analytically solvable models to one that requires a deep neural network, while 

keeping track of the physical features that are being captured. As a foundation, we begin with one 

of the simplest possible physical distributions, the single-component ideal gas. Since there are no 

inter-particle interactions, particle positions are completely uncorrelated; specific knowledge of 

any or all particle positions (prior sequence elements) is worthless in predicting the occupation of 

any unknown grid points. 𝐹𝜃({𝑋}), which incorporates information from previous sequence 

elements, is zero for all classes and all configurations. For a given sequence element 𝑋𝑖, we can 

trivially predict its probability of being occupied or unoccupied (𝑋𝑖 = 1, 0) with only a linear bias 

term. Also note that since there are only two classes in this system, it is sufficient to explicitly 

model the correlations for only one of them and infer the other, 𝑝(𝑋𝑖 = 1) = 1 − 𝑝(𝑋𝑖 = 0), 

Equation 6 

𝑝(𝑋𝑖 = 1) = 𝑁[𝑐𝑏,1] = 𝜌 

𝑝(𝑋𝑖 = 0) = 𝑁[𝑐𝑏,0] = 𝑁[−𝑐𝑏,1] = 1 − 𝜌 
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with 𝜌 as the grid occupation density for particles, and zero dependence on any prior element of 

the sequence 𝑋𝑗<𝑖. Substituting the softmax normalization for 𝑁[{𝑥}], we have, 

Equation 7 

𝑒𝑐𝑏,1

𝑒𝑐𝑏,1 + 𝑒−𝑐𝑏,1
= 𝜌 

𝑐𝑏,1 =
1

2
ln (−

𝜌

𝜌 − 1
). 

Thus, with only knowledge of average particle density, one could simulate this system ad 

infinitum, gridpoint-by-gridpoint, simply by sampling Equation 6 against a uniform random 

number 𝑥~[0,1). 

Equation 6 suffices for non-interacting systems but fails for systems wherein particle positions 

are correlated in any way. The class of systems with interacting particles includes most of those of 

interest in chemistry and materials science including crystals, glasses, and other amorphous 

materials, and therefore an equation which accounts for inter-particle correlations is required to 

simulate them. We turn to statistical mechanics for inspiration on how to proceed in the case of 

interacting particles. Consider the energy of a 3D, dilute, isotropic fluid with weak pairwise 

interactions (a nearly ideal gas):  

Equation 8 

𝐸 = 𝐾𝐸𝑖𝑑𝑒𝑎𝑙 + ⟨𝑈⟩ =
3

2
𝑁𝑘𝐵𝑇 +

1

𝑍𝑁
∫𝑑𝑟𝑟2𝑢(𝑟)𝑔(𝑟). 

The first term 𝐾𝐸𝑖𝑑𝑒𝑎𝑙 is the ideal gas kinetic energy with 𝑁 as particle number, 𝑇 as temperature 

and 𝑘𝐵 as the Boltzmann constant. The second term ⟨𝑈⟩ is the perturbation due to pairwise 

interactions, with 𝑢(𝑟) as the pair potential, 𝑔(𝑟) as the radial pair correlation function and 𝑍𝑁 as 

the 𝑁-particle partition function.  

We can introduce prior sequence elements in a similar way to neighboring particles, and write 

an expression which incorporates pairwise correlations between prior sequence elements, and the 

proposed 𝑁𝑐 elements for 𝑋𝑖, 

Equation 9 

𝑝(𝑋𝑖 = 𝜃|{𝑋𝑗<𝑖}) = 𝑁 [𝑐𝜌,𝜃 + ∑∑𝑐𝑗,𝜔,𝜃𝛿𝑋𝑗,𝜔

𝑁𝑐

𝜔𝑗∈𝐿𝑐

], 

where 𝑐𝜌,𝜃 contains the influence of average density for sequence elements, (e.g., particles) of class 

𝜃, and the sums account for correlations between gridpoint 𝑋𝑖, with proposed class 𝜃, and prior 

elements 𝑋𝑗 of class 𝜔, weighted by coefficients 𝑐𝑗,𝜔,𝜃, with 𝛿𝑖,𝑗 as the Kronecker delta function. 

This type of correlation function is suitable for simple systems, such as a dilute fluid where > 2 

particles are unlikely to aggregate or even interact simultaneously. 

In some such systems, direct evaluation of the coefficients, 𝑐𝑗,𝜔,𝜃 for the equilibrated system 

may be possible through knowledge of the pair potential. As an example, consider a dilute single-

component fluid at very low temperature which interacts via finite-range repulsive potential. Since 

this, like the earlier ideal gas example is a single component system, it is sufficient to explicitly 
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model the correlations of only one of the classes. At equilibrium, particle positions will be strongly 

anticorrelated within the interaction range, 𝑅𝑐, and uncorrelated beyond this range. With this 

knowledge we can infer the results of Equation 9 for all possible particle environments, given 𝜃 =

1,0 for occupied and unoccupied gridpoints respectively, 

𝑝 

Equation 10 

(𝑋𝑖 = 1|{𝑋𝑗∈𝑅𝑐}) =

{
  
 

  
 

0 𝑓𝑜𝑟 ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

> 0

𝜌𝑒𝑓𝑓 𝑓𝑜𝑟  ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

= 0,

 

𝑝 

Equation 11 

(𝑋𝑖 = 0|{𝑋𝑗∈𝑅𝑐}) =

{
  
 

  
 

1 𝑓𝑜𝑟 ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

> 0

1 − 𝜌𝑒𝑓𝑓 𝑓𝑜𝑟  ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

= 0,

 

where 𝜌𝑒𝑓𝑓 is greater than the actual particle density 𝜌 due the excluded volume ∝ 𝑅𝑐
3 around each 

particle. The values of inter-particle correlation and density coefficients, 𝑐𝑗,1,1 and 𝑐𝜌,1, which 

fulfill the above conditions can be computed given the average density, grid spacing, and 

interaction range. In the simplest case, with 𝑅𝑐 = 1 and 𝜌 ≪ 1, we can evaluate a simplified 

Equation 9 accounting for particle-particle correlations, 

Equation 12 

𝑝(𝑋𝑖 = 1|{𝑋𝑗∈𝑅𝑐}) = 𝑁 [𝑐𝜌,1 + ∑ 𝑐𝑗,1,1𝛿𝑋𝑗,1
𝑗∈𝑅𝑐

], 

and isolate the coefficients which produce the outcomes inferred above, 

Equation 13 

𝑝(𝑋𝑖 = 1|{𝑋𝑗∈𝑅𝑐}) =

{
  
 

  
 
𝑁[𝑐𝜌,1 + 𝑛 ⋅ 𝑐𝑗,1,1] 𝑓𝑜𝑟 ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

> 0

𝑁[𝑐𝜌,1] 𝑓𝑜𝑟  ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

= 0,
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Equation 14 

𝑝(𝑋𝑖 = 0|{𝑋𝑗∈𝑅𝑐}) =

{
  
 

  
 
𝑁[−𝑐𝜌,1 − 𝑛 ⋅ 𝑐𝑗,1,1] 𝑓𝑜𝑟 ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

> 0

𝑁[−𝑐𝜌,1] 𝑓𝑜𝑟  ∑𝛿𝑋𝑗,1

𝑅𝑐

𝑗

= 0,

 

 

Equation 15 

𝑐𝜌,1 =
1

2
ln (−

𝜌𝑒𝑓𝑓

𝜌𝑒𝑓𝑓 − 1
), 

Equation 16 

𝑐1,1 = −∞, 

where 𝑛 = ∑ 𝛿𝑋𝑗,1
𝑅𝑐
𝑗 , the number of particles within 𝑅𝑐 of 𝑋𝑖. 

Pair correlations alone are generally insufficient to accurately describe amorphous molecular 

systems. The propensity in such materials for particles to aggregate, through processes as diverse 

as chemical bonding and long-time annealing, generally necessitate the consideration of 

correlations between more than two particles at a time. As an example, consider in Figure 2 a 

sample of mutually attractive particles, initially set at random positions on a grid, and allowed to 

aggregate over time. At the time the system was sampled, the aggregates share a narrow size 

distribution centered on nine particles. How could we assign an unknown pixel, 𝑋𝑖, on this grid as 

filled or empty using contextual information? If we considered isotropic pair correlations within 

𝐿𝑐 = 4, we would find only that there are 15 particles near 𝑋𝑖. To distinguish whether 𝑋𝑖 is within, 

directly adjacent to, or simply nearby an existing aggregate, is impossible with pair correlations 

alone. To distinguish these environments, one must incorporate many-body correlations which 

specific give information on the size, orientation and proximity of any nearby aggregates. 
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Figure 2: Sample of particles on a square grid in mid-aggregation, with gridpoint 𝑋𝑖 highlighted 

for resampling. 

To incorporate multi-particle correlations, we borrow inspiration from the statistical mechanics 

of dense fluids in the form of the cluster expansion, which corrects by orders Equation 9 with 

many-body interactions[13]. We develop a corresponding cluster expansion, collecting 

correlations order-by-order.  

Equation 17  

𝑝(𝑋𝑖 = 𝜃|{𝑋𝑗<𝑖}) = 𝑁 [𝑐𝜌,𝜃 + ∑ ∑ ∑𝑐{𝑥,𝜔},𝜃∏𝛿𝑋{𝑥}𝑚 ,{𝜔}𝑚

Ω

m

𝑁𝑐

{𝜔}{𝑥}∈𝐿𝑐

Ω𝑚𝑎𝑥

Ω

], 

where Ω is the cluster size, {𝑥} the set of correlating gridpoints and {𝜔} the set of class identifiers 

for {𝑥}. For example, 𝑐{𝑥,𝜔},𝜃, contains the influence of the set of Ω sequence elements {𝑥} ∈ 𝐿𝑐, 

with classes {𝜔} ≤ 𝑁𝑐𝑙𝑎𝑠𝑠, on the probability of a particle of class 𝜃 being found on gridpoint 𝑖. 

Similarly to the case of the cluster expansion for dense fluids, evaluating this using a naive brute 

force approach is generally impractical for three reasons: 1) the number of terms explodes 

exponentially with correlation length, 𝐿𝑐, maximum cluster size, Ω𝑚𝑎𝑥, and number of output 

classes, 𝑁𝑐. 2) In general, the coefficients 𝑐{𝑥,𝜔},𝜃 cannot be computed directly from fundamental 

physics but must be fit using training examples. 3) Since the Kronecker delta function will only 

return nonzero when a specific cluster, {𝑥, 𝜔}, appears, the coefficients in Equation 17 can only be 

fit using training examples which contain the exact many-body correlations assigned to each 

coefficient. Rather than learning generalizable heuristics or trends within the training distribution, 

Equation 17 can only accurately describe correlations identical or very similar to those it has 

already encountered. Therefore, fitting this equation accurately requires well-sampled 

configurations of every possible permutation of {𝑥 ∈ 𝐿𝑐, 𝜔 ≤ 𝑁𝑐}, up to order Ω. 
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Since naïve parameterization of this function is extremely difficult for nontrivial problems; our 

approach is to resort to deep learning models, known for their almost unreasonable effectiveness 

in fitting extremely complex, highly multidimensional functions with a tractable number of 

parameters[14]. In Section III we present the process of sampling by means of sequence generation 

using the MAP. 

 

III. MAP Sequence Propagation and Properties 

In this section we show that sequences generated with a MAP are physically sound simulations 

of materials. We approach this question by first making an analogy with the Markov Chain Monte 

Carlo (MCMC) simulation/sampling protocol. MCMC is considered a simulation tool because it 

generates ensembles of system’s configurations sampled from a physical distribution. This is done 

by constructing aperiodic and irreducible Markov chains with the same equilibrium state as the 

physical distribution. These properties are guaranteed e.g., in the Metropolis algorithm by the 

sufficient but not necessary detailed balance condition,  

Equation 18 

𝑝(𝑥|𝑥′)𝑝(𝑥′) = 𝑝(𝑥′|𝑥)𝑝(𝑥), 

between states of the chain, 𝑥, 𝑥′. This relation determines the transition rates between states at 

equilibrium and requires all states of the Markov Chain to be connected. MAP sequences of the 

type described in Equation 3 also constitute an aperiodic, irreducible Markov chain, guaranteed to 

converge to a unique equilibrium distribution[15], though without strict detailed balance. We note 

that ‘equilibrium’ in this sense does not refer to the equilibrium state of the physical system being 

sampled, but rather the stationary state of the MAP Markov chain. Indeed, a hallmark of many 

amorphous or glassy systems is their nonequilibrium character, and it is therefore crucial that we 

can sample such out-of-equilibrium distributions. When Equation 17 is well approximated, by a 

neural network or other numerical model, the distribution of the MAP ‘equilibrium’ state will 

match that of the physical system being sampled. We liken this type of modelling to the 

parameterization of e.g., interatomic potentials by empirical functions, in that, when well-fit, both 

a MAP guided by a correlations model and molecular dynamics simulation under the influence of 

a force field will converge to a physical distribution.  

We now prove that a MAP sequence constitutes an aperiodic, irreducible Markov chain 

beginning by rewriting Equation 3 as a probability distribution for the configuration of the next 

contextual field 𝐶𝑖 conditional upon the current contextual field 𝐶𝑖−1, 

Equation 19 

𝑝(𝑋𝑖|{𝑋𝑗∈𝐿𝑐}) = 𝑝(𝐶𝑖|𝐶𝑖−1), 

where 𝐶𝑖 and 𝐶𝑖−1 are the contextual fields {𝑋𝑖−1…𝐿𝑐}, {𝑋𝑖−2…𝐿𝑐−1}, used to predict successive 

sequence elements (see Figure 3 for a visual explanation). We will begin for simplicity in 1D, 

where 𝐶𝑖 and 𝐶𝑖−1 share the same elements except for the newest element of 𝐶𝑖, 𝑋𝑖, and the oldest 

element of 𝐶𝑖−1, 𝑋𝑖−𝐿𝑐.  
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Figure 3: Recasting 1D sequence generation from predicting the occupation of the next pixel, to 

predicting next context state, given the current one, 𝐶𝑖−1 → 𝐶𝑖.  

We may then consider the dynamics of a new configurational state space, defined as all 𝑁𝑐
𝐿𝑐 

permutations of the contextual field, 𝐶𝑖. Propagation in this space is mediated by transition 

probabilities 𝑝(𝐶𝑖|𝐶𝑖−1) computed via Equation 3, in practice modelled using a neural network. 

 
Figure 4: Example graph representations of the state space of 1D 𝐶𝑖’s with 𝑁𝑐 = 2, (a) 𝐿𝑐 = 2 and 

(b) 𝐿𝑐 = 3. The numbered nodes represent states, 𝐶𝑖, of the chain, with directed edges between 

states where 𝑝(𝐶𝑖|𝐶𝑖−1) ≠ 0. 

In Figure 4 we present minimal illustrative examples of the state spaces of MAP sequences in 

the form of directed graphs of the space of 1D context states, (𝐶𝑖’s). The graph connectivity is 

determined by our definitions for a MAP sequence. Each node is connected via directed edge to 

exactly 𝑁𝑐 nodes, with exactly 𝑁𝑐 nodes connected to themselves. This arises from the permutation 

structure of the sequence; at each step we compute the normalized probabilities for all 𝑁𝑐 possible 

classes of the next element using Equation 3. From Equation 19 we can see that these probabilities 
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are exactly the transition probabilities between context states of the chain or equivalently nodes on 

the graph. Since we use a softmax function ( 

Equation 4) to normalize classwise probabilities, all the allowed transitions will have non-

vanishing probabilities for any finite 𝛽 < ∞. This means that the most distant states of the chain 

are connected within a maximum of 𝐿𝑐 steps, since, as we exemplify in Figure 4 and demonstrate 

explicitly in Figure 5, the sequence is free to choose any of 𝑁𝑐 options for the next element, 𝑋𝑖, 

with probability 𝑝(𝑋𝑖 = 𝜃|{𝑋𝑖∈𝐿𝑐}). 

 
Figure 5: (a) Demonstrating the permutation structure of the chain. Starting from any arbitrary 

state with elements {𝜃𝑥𝜃𝑦𝜃𝑧}, within a maximum of 𝐿𝑐  steps the sequence can reach any other 

arbitrary state of the chain {𝜃𝑎𝜃𝑏𝜃𝑐}. Panel (b) shows that a state with elements of all one class is 

self-connected. Since each state may always choose from all 𝑁𝑐 possible classes for its next 

element, a state which is composed only of elements of a single class always has finite probability 

for its next element to also be of the same class. This visually exemplified in the minimal examples 

in Figure 4. 

We also see in Figure 5 how 𝑁𝑐 states of the chain which have only elements from one class are 

self-connected. For example, given 𝑁𝑐 = 3, 𝐶𝑖 = {1,1,1}, {2,2,2}, {3,3,3} are the three self-

connected states. The fact that all states of the chain are connected means that it is irreducible, 

every state is in the same communicating class. Further, the chain can be easily seen to be aperiodic 

due to the presence of 𝑁𝑐𝑙𝑎𝑠𝑠 states which are self-connected. The irreducibility of the full chain 

means that the chain itself is also aperiodic[15], and since the transition probabilities do not change 

during propagation, the full MAP sequence is guaranteed to converge to a unique limiting or 

equilibrium distribution.  

While desirable, guaranteeing convergence in only one dimension is of limited value when the 

physical systems we are interested in describing are generally at least 2-dimensional. To 

demonstrate that this property holds in higher dimensions, this we will recast the propagation in 

2D or 3D to an effective 1D sequence. In 𝑁 > 1 dimensions, one must first select a pattern by 

which to propagate the sequence. We will follow the ubiquitous Raster pattern and accompanying 

masking, though others have been explored in this context[16]. From Figure 6, it appears naively 

that a MAP sequence may not be as well behaved in 2D, due to the presence of rows above 𝑋𝑖 

within 𝐶𝑖. We can see that determining the transition probability from 𝐶𝑖 to 𝐶𝑖−1 involves 

predicting the values not just of 𝑋𝑖, but of rows above, labelled 𝐵𝑖.  
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Figure 6: A Markov state model in 2D is complicated by the introduction of boundary terms 𝐵𝑖 as 

the sequence propagates from left to right, which are not accounted for in the conditional 

probability distribution for 𝑋𝑖. 

The situation is simplified by recasting a higher dimensional sequence as a 1D sequence of larger 

objects. As we show in Figure 7, this can be done in two steps. First, we switch the propagation 

pattern from elementwise from left to right, to row wise from the top down. This new sequence 

predicts the value of all the elements of a row 𝑖 simultaneously, using previous rows of width 𝑊 

within 𝐿𝑐 {𝑋𝑖…𝑖−𝐿𝑐
1…𝑊 } as context. This is now effectively a 1D sequence of 1D objects {𝑋𝑖

1…𝑊}, which 

we can make more explicit by re-expressing the permutations of row elements as single values in 

a larger set 𝑌 ≤ 𝑁𝑐
𝑊. 

 
Figure 7: Recasting a 2D MAP propagation from elementwise prediction in 2D (a) to full-row 

prediction in 2D (b), to elementwise prediction in 1D (c), with the new elements 𝑌𝑖 ≤ 𝑁𝑐
𝑊 labelling 

all possible permutations of {𝑋𝑖
1…𝑊}. 

This new 1D sequence exists in an irreducible, aperiodic state space in the same way as the 

original 1D, except that each state {𝑌1…𝐿𝑐} is connected to 𝑁𝑐
𝑊 other states, and 𝑁𝑐

𝑊 states are now 

self-connected. As we outline in Figure 8, these states of the contextual state space, 𝑅𝑖, have a size 

of 𝐿𝑐 ×𝑊 in the 2D basis of 𝑋𝑖’s, or 𝐿𝑐 in the 1D 𝑌𝑖 basis.  
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Figure 8: Illustration of row-wise propagation, using full-row-width contextual fields, 𝑅𝑖−1, to 

predict the next row of elements, or equivalently, to predict the next contextual field, 𝑅𝑖. 

We can quantify the transition probabilities between states 𝑅𝑖−1, 𝑅𝑖 by decomposing the joint 

probability for the full row {𝑋𝑖
1…𝑤} into elementwise probabilities using the chain rule.  

Equation 20 

𝑝(𝑅𝑖|𝑅𝑖−1) = 𝑝(𝑋𝑖
1 ∩ 𝑋𝑖

2 ∩ …∩ 𝑋𝑖
𝑊|𝑅𝑖−1) =∏𝑝(𝑋𝑖

𝑗
|{𝑋𝑘∈𝐿𝑐})

𝑊

𝑗

, 

In Equation 20, we see that this can be computed according to the familiar elementwise conditional 

probability from Equation 3. In practice, this is intractable to compute due to the extremely large 

state space of 𝑅𝑖’s, but it can be easily sampled by repeatedly propagating the sequence. This is 

not necessary in practice, since the conditional probabilities in Equation 20 are constants, the 

transition probabilities between any 𝑅𝑖 and 𝑅𝑖−1 are also constant, and the full chain is Markovian.  

The above arguments for reducing a 2D sequence to 1D by recasting the sequence from 

predicting elements to full rows function identically in higher dimensions. For example, in 3D one 

would propagate a 1D sequence in the state space of 𝐿𝑐 × 𝐻 ×𝑊 slabs, with elements 𝑌𝑖 ≤ 𝑁𝑐
𝐻×𝑊. 

As in 1D, 2 or 3D chains can be seen in this way to be Markovian, irreducible, and aperiodic.  We 

can therefore see that any 𝑁-dimensional MAP should converge to a unique equilibrium 

distribution, conditional only on the sample boundaries and initial condition, which as we discuss 

in Section IVB, is typically taken as blank. 

It is not ab-initio obvious what the mixing or equilibration time for such a sequence would be, 

but we can set lower bounds based on connectivity, and we provide a numerical example in Section 

IVB. All possible states in a MAP sequence are directionally connected within a maximum number 

of jumps 𝐿𝑐. If we presume that the sequence must explore a significant portion of the state space 

before equilibrating, it is reasonable to set a lower bound on the mixing time on the order of 𝐿𝑐. 

One can rigorously derive counting and diameter bounds following this reasoning[15]. When using 

a finite-temperature softmax normalization as we have done, a MAP contains no connectivity 

bottlenecks, and every state is connected to 𝑁𝑐𝑙𝑎𝑠𝑠 states. This does not mean that mixing will 

always be fast or barrierless since, while not bottlenecked, paths between e.g., initial conditions 

and high-probability regions may be gated by low-probability regions, acting just the same as high 

free energy barriers in a molecular dynamics simulation.  
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IV. Numerical Experiments 

In this section, we fit MAP sequence generators to a series of physically derived two-

dimensional systems, starting with dilute fluids, and finishing with a complex and highly correlated 

nanoparticle aggregate.  The purpose of these experiments is not to simply show that a PixelCNN-

based MAP can accurately learn and re-express the static correlations in each system. Rather, we 

make use of these examples specifically to illustrate the properties derived in the prior sections. 

 

A. Direct Correlation Fitting 

We begin by fitting the all-order correlation expansion Equation 17 via a brute force numerical 

approach. To keep the problem tractable, we consider very simple physical distributions, as shown 

in Figure 9, and truncate the maximum range and order of the considered correlations for each 

system, as shown in  

 

Table 1. Further, since there are only two possible pixel classes (occupied / unoccupied, 1 / 0), 

we may safely ignore cross-correlations between them, and examine the statistics of only one class. 

Since the model systems are dilute, we base our analysis on occupied pixels to minimize the 

required maximum correlation order. These simplifications yield the following correlation 

expansion to be fit,  

Equation 21 

𝑝(𝑋𝑖 = 1|{𝑋𝑗∈𝐿𝑐}) = 𝑁 [𝑐𝜌 + ∑ ∑ 𝑐{𝑥}∏𝑋𝑥𝑗
𝑗{𝑥}∈𝐿𝑐

Ωmax

Ω

]. 

 

 
Figure 9: Examples from the training sets for the 3 dilute fluids, with panels (a-c) corresponding 

to systems (1-3), cold with repulsive interactions, hot with repulsive interactions and hot with 

attractive interactions, respectively, with all interactions ranges set to 1. 
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Table 1: Properties of physical systems numerically fit to the truncated correlation expansion. The 

correlation length and order are emergent properties of the simulation parameters. Detailed 

simulation parameters given in Appendix A. 

System Relative 

Temperature 

Inter-

Particle 

Interactions 

Grid 

Occupation 

Density 

Correlation 

Length 𝐿𝑐 

Maximum 

Correlation 

Order 

# of Fitting 

Coefficients 

1 Cold Repulsive 5% 1 2 5 

2 Hot Repulsive 5% 2 3 79 

3 Hot Attractive 1% 3 3 301 

  

The simplicity of these distributions highlights the extreme difficulty of the all-order problem. 

For context, fitting even the simplified Equation 21 scales exponentially poorly with the range and 

complexity of considered correlations, to say nothing of the required training data. For example, 

with correlation order and length both equal to 5, a naïve fitting would require 5.9 million fitting 

coefficients. For Ω𝑚𝑎𝑥 , 𝐿𝑐 = 6, there are 439 million, and so on.  

Numerical fitting was accomplished via stochastic gradient descent in a custom PyTorch model, 

using PixelCNN-style masking and autoregression to hide information about ‘future’ pixels during 

training, and to generate new samples, respectively[9]. 
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Figure 10: Simulation results comparing training data, brute force correlation fitting and 

PixelCNN. Panels (a-c) and (d-f) show examples generated via MAP, using Equation 21 and 

PixelCNN, respectively, for the 3 different physical systems. Panels (g-i) and (j-l) show the pair-

correlation functions and particle neighborhood distributions respectively for particles the training 

data, and samples generated by the two fitting approaches. Details of the PixelCNN models used 

are given in Appendix A. 

We can see in Figure 10 that our simplifying assumptions Equation 21were well-justified, as the 

statistics of distributions generated by this truncated all-order model agree very well with the target 

distributions, and further with the higher-capacity convolutional neural network. While this is a 

good result for the brute force approach, the poor scaling noted above highlights the need for an 

alternative. Consider the system sampled in Figure 2; it is possible that a clever researcher could 

thoughtfully and painstakingly prune an all-order correlation expansion and possibly fit a tractable 

correlation function. Alternatively, they could train an off-the-shelf convolutional neural network 

to learn and re-express the salient features without human intervention. In any case, interesting 

physical systems such as e.g., organic heterojunctions and graphene derivatives go far beyond the 

ability of even specialists to model by hand, and so the case for a neural network approach is easy 

to make. 

 

B. Sequence Convergence with PixelCNN 

We now move to a significantly more complex physical system to illustrate the concepts of MAP 

convergence developed in Section III. Convergence analysis was omitted from Section IVA 

because, with such short correlation lengths and uncomplicated configurational motifs, they 

converge essentially immediately upon departing the sample boundary.  

In our prior experiments using a PixelCNN MAP to generate the structures of amorphous 

nanoparticle and 2D carbon aggregates, we have typically found that the MAP converges 
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(according to the human eye) within 1-2 multiples of the convolutional receptive field, 𝐿𝑐, from 

the sample boundary. This may sensitively depend on the choice of what exists outside the image 

boundary; we typically assign this boundary region a unique class which denotes ‘outside the 

sample’. One may also seed the boundary with samples from the training set, noise, or a related 

known structure, such as a known crystalline structure, to speed up convergence or direct 

generation to a particular phase or structural motif. At present we believe an empty boundary 

results in the most general, unbiased samples, and since the MAP converges quickly, we do not 

appear to pay a significant cost by having the sequence bootstrap itself from an empty initial 

condition in this way. 

To go beyond our visual intuition on this point, we demonstrate in Figure 11 the convergence 

properties of a PixelCNN model on a nanoparticle aggregate generated via Markov chain Monte 

Carlo (MCMC) simulations of solvent drying dynamics[17]. This system combines strong short-

range pair correlations with many-body correlations on the length scale of the solvent voids. In 

this system, the particles repel one another, but are strongly attracted to the solvent (see MCMC 

simulation and PixelCNN details in Appendix A). Particles are pushed together by drying of the 

solvent, resulting in the observed voids, with the remaining solvent (omitted) serving as a ‘glue’, 

keeping them close but not directly adjacent to one another.  

 
Figure 11: Panels (a) and (b) are example structures from the training data and generated by a 

PixelCNN model, respectively. We omit solvent to show particle positions only, both here and in 

training. Panel (c) compares the pair correlation functions between samples from the training data 

and generated by the PixelCNN MAP. Panel (d) shows the log of the product of pixel probabilities 

for each row, starting from the top of the sample, and for a context block, 𝑅𝑖, of size 𝐿𝑐 ×𝑊, 

averaged over 100 generated samples. The probabilities have been normalized for easier visibility 

on the same axis. 
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Figure 11 is very interesting, as it shows that the row-wise pixel probabilities saturate the 

maximum bound very quickly and, on average, vary relatively little once converged. This suggests 

that the sequence can reach high probability configurations before exploring a significant portion 

of the configuration space, here determined by the correlation length, 𝐿𝑐 = 61. Though the 

corresponding probabilities for whole contextual blocks, 𝑅𝑖 appear to take longer to converge, we 

see by the nearly vertical step around the correlation length, that this apparent lag in convergence 

is in very large part determined by the first few, very low probability rows. Once these early rows 

leave the context window, the sequence saturates its maximum probability, apparently converging 

to its equilibrium distribution. Since we cannot map the occupations of all possible states of the 

Markov chain (261×128) this relatively straightforward analysis cannot tell us unambiguously that 

the sequence fully equilibrates by the 70th row. However, the rapid saturation of the average row 

probability is compelling evidence that the sequence at least reaches high-probability 

configurations very quickly.  

It should be highlighted that this effective convergence is quite sensitive to the choice of what 

sits outside the system boundary, i.e., the context used to predict the earliest rows. If we had seeded 

the boundary with a sample from the training set, for example, the probabilities of the first few 

rows would likely have been significantly higher, as even the first predictions made by the network 

would be in familiar morphological territory. Also, while the sequence appears to converge easily 

on this relatively complex system, that does not preclude the existence of systems which may 

converge more slowly, perhaps including for example systems with multiple metastable phases.  

While we have found a Gated PixelCNN[5] architecture to perform very well with minimal 

tuning, there are classes of structures which have proven more challenging to model. Particularly, 

our models perform well but not perfectly on systems which combine sparsely populated samples 

with very long-range correlations. This includes systems such as monolayer amorphous carbon, 

modelled in our previous work[1], and nanoparticle aggregates similar to those modelled in Figure 

11, though with pixel occupation density reduced to 1.5%. We consider these challenges to be 

technical in origin, potentially correctable using upgraded architectures or conditioning 

variables[4,18–21], and not a major present concern. 

 

V. Conclusion 

We explored the theoretical underpinning which justifies the use of MAP models such as 

PixelCNN for simulation of amorphous chemical systems. Such a simulation tool could be used 

for a variety of sampling tasks of chemical relevance, most obviously cheaply simulating 

arbitrarily large samples of amorphous materials. 

 We explained that the role of deep autoregressive models such as PixelRNN or PixelCNN is to 

efficiently approximate the exact all-order correlation cluster expansion on a physical system. This 

is extremely important since direct evaluation of the all-order expression via brute force is 

essentially impossible beyond trivial models. Deep learning algorithms save the user the effort of 

identifying and modelling by-hand the correlations which determine the structures of amorphous 
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systems, instead allowing the model to learn them efficiently and automatically with minimal 

intervention. We also showed that, when the autoregressive sequence is defined on a discrete grid 

with discrete classes of outputs, and with probabilities normalized via softmax function, such a 

sequence constitutes a converging Markov chain with a unique equilibrium state and well-defined 

lower bounds on its mixing time. When trained properly, propagation of an equilibrated sequence 

constitutes sampling from the target distribution. 

In the space of generative models for structure prediction, we may now add to the list of 

advantages for MAP approaches: beyond flexibility and ease of use, we have here elucidated the 

process by which such an approach parses structural data to model the structural correlations of 

amorphous materials. Specifically, given the discreteness assumptions in Section IIB, we can see 

that MAP models in-practice approximate the exact all-order result given in Equation 17. MAP 

inputs, outputs and basic function are all human interpretable. Further, it is remarkable that such a 

sequence is guaranteed to converge to a unique equilibrium distribution in any dimension, 

conditional only on the initial / boundary condition. One has only to appropriately train the model 

such that it appropriately apportions probability density according to the target physical 

distribution. 

Future work on autoregressive structural sampling may proceed along three paths. First, 

algorithmic improvements such as equivariant convolutions[21] may continue to boost the speed 

and accuracy of MAP generators on atomistic systems, wherein sparsity and long-range correlation 

have presented a challenge for Gated PixelCNN. Second, extensions to more involved systems 

such as 3D aggregates of molecules present a rich environment for structural modelling and 

exploration of functional materials. Finally, and most relevant for this study are comparisons 

between generative models which can be used for structure prediction. Within autoregression, one 

may consider alternatives to PixelCNN, such as PixelRNN[7] or PixelSNAIL[16], and weigh their 

advantages and disadvantages. Looking further to normalizing flows, autoencoders and generative 

adversarial networks[2,3,22] which have been developed for similar tasks, one may consider the 

mathematical similarities and differences between the activity of these models. Is there a 

connection between how a MAP models many-body structural correlations to, for example, the 

way that a generative adversarial network or normalizing flow reshape an input distribution to a 

physical one? In some sense the answer must be yes, but the details of how and why may inform 

future developments in this space. 
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Appendix A: Computational Details 

1. Nanoparticle systems: parameters and simulation details 

The nanoparticle systems modelled in Section IV were generated by a basic Markov chain Monte 

Carlo algorithm incorporating optional solvent and drying dynamics on a 2D grid[17]. The Markov 

Chain advances via Metropolis algorithm under the influence of the model Hamiltonian, 
Equation 22 

H = ϵ𝑛𝑛∑ninj
𝑖,𝑗

+ ϵll∑lilj
ij

 + ϵnl∑nilj
ij

 + μ∑li
i

, 

with particles denoted by 𝑛 and solvent by 𝑙, their respective interactions by 𝜖𝑛𝑛, 𝜖𝑙𝑙 and 𝜖𝑛𝑙, and 

the chemical potential of the solvent by 𝜇. In our simulations all interactions were limited ty a 

range of 1.  

The simpler systems modelled in Section IVA considered only nearest-neighbor particle-particle 

interactions and equilibrated extremely quickly.   

 

 

Table 2: Parameters for MCMC simulations of dilute fluids. 

System 1 2 3 

𝝐𝒏𝒏 1 1 −1 

𝑻 ~0 1 1 

𝝆 5% 5% 1% 

Age 100 steps 100 steps 100 steps 

 

The more complex system modelled in Section IVB incorporated solvent interactions and drying 

dynamics, as well as annealing, though with interactions still limited to nearest neighbors.  

 

Table 3: Parameters for drying MCMC simulations of mutually repulsive nanoparticles in an 

attractive solvent. 

Param. Value 

𝝐𝒍𝒍 −2 
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𝝐𝒏𝒍 −20 

𝝐𝒏𝒏 −4 

𝝁 11 

𝑻 1 

𝝆 10% 

Age 2000 steps 

 

2. PixelCNN parameters and implementation details 

The PixelCNN model used in this study is nearly identical to that used in our previous work[1]. 

It consists of horizontal and vertical convolutional stacks with gated activations, two fully-

connected layers and a softmax normalization at the end, all set-up identically to the original Gated 

PixelCNN[5]. The only architectural difference is the addition of skip connections after each 

horizontal stack activation directly to the output layers, inspired by WaveNet[23]. 

For the modelling in Section IVA, for each system a small PixelCNN model with 48 

convolutional filters per layer and a number of convolutional layers equal to the correlation length, 

𝐿𝑐, was trained on 10000 64 × 64 samples of each of the distributions. The more complex 

aggregate in Section IVB was modelled using a PixelCNN with 60 layers, 20 filters per layer and 

trained on 18,000 256 × 256 samples. 

References 

[1] M. Kilgour, N. Gastellu, D.Y.T. Hui, Y. Bengio, L. Simine, Generating Multiscale 

Amorphous Molecular Structures Using Deep Learning: A Study in 2D, J. Phys. Chem. 

Lett. (2020) 8532–8537. https://doi.org/10.1021/acs.jpclett.0c02535. 

[2] F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators: Sampling equilibrium states of 

many-body systems with deep learning, Science (80-. ). 365 (2019). 

https://doi.org/10.1126/science.aaw1147. 

[3] M. Comin, L.J. Lewis, Deep-learning approach to the structure of amorphous silicon, Phys. 

Rev. B. 100 (2019) 94107. https://doi.org/10.1103/PhysRevB.100.094107. 

[4] C. Casert, K. Mills, T. Vieijra, J. Ryckebusch, I. Tamblyn, Optical lattice experiments at 



 23 

unobserved conditions and scales through generative adversarial deep learning, (2020) 1–

11. http://arxiv.org/abs/2002.07055. 

[5] A. Van Den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, K. Kavukcuoglu, 

Conditional image generation with PixelCNN decoders, in: Adv. Neural Inf. Process. Syst., 

2016: pp. 4797–4805. http://arxiv.org/abs/1606.05328. 

[6] P. Ramachandran, T. Le Paine, P. Khorrami, M. Babaeizadeh, S. Chang, Y. Zhang, M. 

Hasegawa-Johnson, R. Campbell, T. Huang, Fast generation for convolutional 

autoregressive models, 5th Int. Conf. Learn. Represent. ICLR 2017 - Work. Track Proc. 

(2019) 1–5. 

[7] A. Van Den Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel recurrent neural networks, 33rd 

Int. Conf. Mach. Learn. ICML 2016. 4 (2016) 2611–2620. 

[8] X. Chen, N. Mishra, M. Rohaninejad, P. Abbeel, PixelsNail: An improved autoregressive 

generative model, in: 6th Int. Conf. Learn. Represent. ICLR 2018 - Work. Track Proc., 

2018. 

[9] A. van den Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel Recurrent Neural Networks, 

(2016). http://arxiv.org/abs/1601.06759. 

[10] T. Salimans, A. Karpathy, X. Chen, D.P. Kingma, PixelCNN++: Improving the PixelCNN 

with Discretized Logistic Mixture Likelihood and Other Modifications, 5th Int. Conf. Learn. 

Represent. ICLR 2017 - Conf. Track Proc. (2017) 1–10. http://arxiv.org/abs/1701.05517. 

[11] M. Comin, L.J. Lewis, Deep-learning approach to the structure of amorphous silicon, Phys. 

Rev. B. 100 (2019) 94107. https://doi.org/10.1103/PhysRevB.100.094107. 



 24 

[12] K. Mills, C. Casert, I. Tamblyn, Adversarial generation of mesoscale surfaces from small 

scale chemical motifs, Under Rev. (2020). 

[13] F. Schreiber, F. Zanini, F. Roosen-runge, Virial Expansion – A Brief Introduction, (2011) 

1–16. 

[14] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature. 521 (2015) 436–444. 

https://doi.org/10.1038/nature14539. 

[15] D.A. Bini, G. Latouche, B. Meini, D.A. Bini, G. Latouche, B. Meini, Introduction To 

Markov Chains, Numer. Methods Struct. Markov Chain. (2007) 3–22. 

https://doi.org/10.1093/acprof:oso/9780198527688.003.0001. 

[16] X. Chen, N. Mishra, M. Rohaninejad, P. Abbeel, PixelsNail: An improved autoregressive 

generative model, 6th Int. Conf. Learn. Represent. ICLR 2018 - Work. Track Proc. (2018). 

[17] E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Drying-mediated self-assembly of 

nanoparticles, Nature. 213901 (2003) 271–274. https://doi.org/10.1038/nature02087. 

[18] M. Jaderberg, K. Simonyan, A. Zisserman, K. Kavukcuoglu, Spatial transformer networks, 

Adv. Neural Inf. Process. Syst. 2015-Janua (2015) 2017–2025. 

[19] W. Luo, Y. Li, R. Urtasun, R. Zemel, Understanding the effective receptive field in deep 

convolutional neural networks, in: Adv. Neural Inf. Process. Syst., 2016: pp. 4905–4913. 

[20] C. Ye, M. Evanusa, H. He, A. Mitrokhin, T. Goldstein, J.A. Yorke, C. Fermüller, Y. 

Aloimonos, Network Deconvolution, (2019). http://arxiv.org/abs/1905.11926. 

[21] B.K. Miller, M. Geiger, T.E. Smidt, F. Noé, Relevance of Rotationally Equivariant 



 25 

Convolutions for Predicting Molecular Properties, (2020) 1–12. 

http://arxiv.org/abs/2008.08461. 

[22] K. Mills, C. Casert, I. Tamblyn, Adversarial generation of mesoscale surfaces from small 

scale chemical motifs, J. Phys. Chem. C. (2020) 8–12. 

https://doi.org/10.1021/acs.jpcc.0c06673. 

[23] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. 

Kalchbrenner, A. Senior, K. Kavukcuoglu, WaveNet: A Generative Model for Raw Audio, 

(2016) 1–15. http://arxiv.org/abs/1609.03499. 

 


