Copper(II) Ketimides in sp³ C-H Amination

Isuri U. Jayasooriya,^a Abolghasem (Gus) Bakhoda,^{a,b} Rachel Palmer,^a Kristi Ng,^a Nour L. Khachemoune,^a Jeffery A. Bertke,^a Timothy H. Warren^a*

Commercialy available benzphenone imine (HN=CPh₂) reacts with β -diketiminato copper(II) *tert*-butoxide complexes [Cu^{II}]-O^tBu to form isolable copper(II) ketimides [Cu^{II}]-N=CPh₂. Structural characterization of the three coordinate copper(II) ketimide [Me₃NN]Cu-N=CPh₂ reveals a short Cu-N_{ketimide} distance (1.700(2) Å) with a nearly linear Cu-N-C linkage (178.9(2)°). Copper(II) ketimides [Cu^{II}]-N=CPh₂ readily capture alkyl radicals R• (PhCH(•)Me and Cy•) to form the corresponding R-N=CPh₂ products that competes with N-N coupling of copper(II) ketimides [Cu^{II}]-N=CPh₂ to form the azine Ph₂C=N-N=CPh₂. Copper(II) ketimides [Cu^{II}]-N=CAr₂ serve as intermediates in catalytic sp³ C-H amination of substrates R-H with ketimines HN=CAr₂ and ^tBuOO^tBu as oxidant to form *N*-alkyl ketimines R-N=CAr₂. This protocol enables the use of unactivated sp³ C-H bonds to give R-N=CAr₂ products easily converted to primary amines R-NH₂ via simple acidic deprotection.

Introduction

Transition metal-catalysed sp³ C-H amination protocols have gained an immense attention in the synthetic community over the past couple of decades.¹⁻⁴ A majority of these protocols proceed via metal-nitrene^{2,5} [M]=NR' or metal-amide [M]-NR'R" intermediates.^{1,6} Extensive studies on such intermediates and underlying mechanisms have paved the way towards more efficient sp³ C-H amination protocols.¹

Related metal-ketimide [M]-N=CR'R" intermediates, however, have received less attention in C-H amination chemistry. The strong metal-N_{ketimide} interaction makes ketimides effective spectator ligands. For instance, ketimides stabilize high valent homoleptic Mn(IV)⁷, Fe(IV)⁸ and Co(IV)⁹ complexes (Fig. 1a). In some cases, ketimides can also form via nickel and copper arylimido/nitrene intermediates [M]=NAr via C-C coupling at the para-position of the aryl nitrene ligand (Fig 1b). While this reactivity was initially uncovered with nickel βcomplexes,¹⁰ diketiminato reversible C-C bond formation/cleavage in related copper complexes provides access to free copper nitrenes [Cu]=NAr that participate in sp³ C-H amination.^{11, 12}

Fewer examples of ketimides exist, however, in which the ketimide ligand serves as a reactive intermediate in discrete transition metal complexes.¹³ Metal ketimide intermediates have been proposed in several Pd-catalysed cross-coupling reactions of aryl (Fig. 1c)¹⁴ and alkyl halides (Fig. 1d)¹⁵ with benzophenone imine. Cu-catalysed photoredox cross-coupling reactions of redox-active alkyl esters (Fig. 1e)¹⁶ and Cu-catalysed benzylic sp³ C-H amination of with benzophenone imine (Fig. 1f)¹⁷ are among other examples that may be mediated by metal-ketimide intermediates. Moreover, Stahl and colleagues have proposed copper(II) ketimides in the N-N oxidative coupling of imines Ar₂C=NH to azines Ar₂C=N-N=CAr₂ under aerobic or electrocatalytic conditions (Fig. 1g).^{18, 19}

Herein we describe discrete first-row transition metalketimide complexes intimately involved in C-H amination Isolated ketimides of first row transition metals

Fig. 1. Transition metal ketimide complexes.

Fig. 2. Mechanism of C-H functionalisation via β -diketiminato copper(II) intermediates [Cu^{II}]-FG.

chemistry. Building upon the Kharasch-Sosnovsky reaction,²⁰⁻²² we have demonstrated that copper(II) alkyl amides $[Cu^{II}]$ -NHR²,²³ anilides $[Cu^{II}]$ -NHAr,^{6,24} and aryloxides $[Cu^{II}]$ -OAr²⁵ serve as key intermediates in a radical relay protocol for sp³ C-H functionalisation (Fig. 2). Formed via acid-base^{6,23,24} or transesterification²⁵ reactions between $[Cu^{II}]$ -O^tBu with H-FG or Ac-FG reagents, these copper(II) complexes $[Cu^{II}]$ -FG capture sp³-C radicals R• generated via H-atom abstraction from R-H to furnish the functionalized product R-FG. We anticipated that the relatively high acidity of the imine N-H bond²⁶ coupled with a preference for binding at copper with softer N-donors should enable the formation of $[Cu^{II}]$ -N=CAr₂ species from $[Cu^{II}]$ -O^tBu complexes and HN=CPh₂ to examine copper(II) ketimides in C-H amination catalysis.

Results and discussion

Synthesis and characterization of copper(II) ketimides

Monitored by UV-vis spectroscopy, addition of benzophenone imine (1 equiv.) to a solution of $[Me_3NN]Cu-O^{t}Bu$ (**2a**) in toluene at -80 °C results in decay of the characteristic UV-vis absorption of **2a** at 470 nm with growth of a new band at 570 nm (Figure S2). Performed on a preparative scale, this new species $[Me_3NN]Cu-N=CPh_2$ (**3a**) may be isolated as dark purple crystals from pentane at -35 °C in 78% yield (Fig. 3a).

The X-ray crystal structure of $[Me_3NN]Cu-N=CPh_2$ (**3a**) (Fig 3a) reveals the Cu-N_{ketimide} distance of 1.700(2) Å, significantly shorter than the Cu-N bond found in the copper(II) amide $[Cl_2NN]Cu-NHAd$ (1.839(9) Å)²³ and copper(II) anilide $[Cl_2NN]Cu-NHAr^{Cl3}$ (1.847(3) Å).⁶ Copper(II) ketimide **3a** possesses a nearly linear Cu-N3-C24 angle of 178.9(2)°. These values remarkably differ from those in the homoleptic copper(I) ketimide $[Cu-N=CPh_2]_4$ with bridging ketimide ligands that lead to a square-like tetrameric structure with Cu-N distances 1.8471(19)–1.8613(19) Å and Cu-N-Cu angles of 94.17(9)–98.25(9).²⁷ To outline difference between coordination of anionic ketimide ligands and their neutral ketimine counterparts, we prepared the corresponding benzophenone imine adducts [Me₃NN]Cu(NH=CPh₂) (**4a**) and [Cl₂NN]Cu(NH=CPh₂) (**4b**) (Fig 3b). These copper(I) complexes feature substantially longer Cu-N_{ketimine} distances of 1.8940(14) and 1.8937(14) Å with a pronounced bend in the Cu-ketimide linkage with Cu-N-C angles of 132.68(12) and 130.25(12)°.

UV-vis analysis of copper(II) ketimide [Me₃NN]Cu-N=CPh₂ (3a) reveals the presence of a single low energy absorption band at 570 nm (ϵ = 1910 M⁻¹cm⁻¹) in toluene at room temperature. The EPR spectrum of **3a** in a mixture of toluene and pentane at room temperature shows a signal centred at $g_{\rm iso}$ = 2.081 with very well resolved coupling to $^{63/65}$ Cu ($A_{\rm Cu}$ = 298.0 MHz) and additional hyperfine modelled with three equivalent ¹⁴N nuclei (A_N = 35.0 MHz) (Figure S13). The related copper(II) ketimide [Cl₂NN]Cu-N=CPh₂ (3b) prepared from [Cl₂NN]Cu-O^tBu (**2b**) and HN=CPh₂ exhibits a similar spectroscopic profile. The UV-vis spectrum of [Cl₂NN]Cu-N=Ph₂ (**3b**) exhibits a single absorption at 520 nm ($\varepsilon = 3120 \text{ M}^{-1} \text{ cm}^{-1}$) in toluene at room temperature and possesses a similar isotropic EPR spectrum to that of 3a (Figure S14). Unfortunately, the greater thermal sensitivity of [Cl₂NN]Cu-N=Ph₂ (**3b**) has precluded its crystallographic characterization.

Copper(II) ketimide reactivity: radical capture and N-N bond formation

The ability of many β -diketiminato copper(II) complexes to participate in catalytic sp³ C-H functionalisation via radical relay (Fig. 2) encouraged us to assess the reactivity of copper(II) ketimides **3** towards alkyl radicals. We find that [Cu^{II]}-N=CPh₂ species **3a** and **3b** capture alkyl radicals R• to provide the corresponding R-N=CPh₂ products (Fig. 4a). For instance, reaction of **3a** and **3b** with (*E/Z*)-azobis(α phenylethane) at 90 °C that generates the benzylic radical

Fig. 3. (a) Synthesis and structure of copper(II) ketimides. (b) Synthesis and structure of copper(I) imine adducts.

Fig. 4. Reactivity of copper(II) ketimides. ^a2 equiv. diazene radical precursor.

PhCH(•)Me upon heating provides the alkylated imine PhCH(N=CPh₂)Me in 40% and 74% yields, respectively. Generation of Cy• radicals in the presence of **3a** and **3b** by heating ${}^{t}BuOO{}^{t}Bu$ in cyclohexane (via H-atom abstraction by ${}^{t}BuO•$ radicals) provides Cy-N=CPh₂ in 58% and 41% yields, respectively.

Upon heating to 60 °C, copper(II) ketimides **3a** and **3b** undergo N-N coupling to form benzophenone azine $Ph_2C=N-N=CPh_2$ isolated in 66% and 90% yields, respectively (Fig. 4b). This is identified as a competing reaction for radical capture at copper(II) ketimides **3a** and **3b**.

Copper(II) ketimides in sp³ C-H amination

With a fundamental understanding of copper(II) ketimide formation and reactivity, we explored these complexes in catalytic C-H amination via radical relay. Using ethylbenzene as a model R-H substrate, we screened a modest range of copper(I) β -diketiminato catalysts **1** that possess different electronic and steric properties (Table 1). The catalyst [Cl₂NN]Cu (**1b**) provides the highest yield compared to more electron-rich (**1a** and **1c**) and electron-poor (**1d**) catalysts. Increasing the ^tBuOO^tBu oxidant amount does not significantly improve the yield. Lowering the temperature from 90 °C reduces the yield drastically (Table S1), possibly due to binding of the ketimine HN=CAr₂ to the copper(I) catalyst (Fig. 3b) that inhibits ^tBuOO^tBu activation.²⁸

Table 1. Copper catalyzed C-H amination of ethylbenzenewith benzophenone imine.

→ ^H			N=CPh ₂
	NH	5 mol% [Cu ^I]	
		1.2 equiv. ^t BuOO ^t Bu	50
	+ Ph Ph	24 h, 90 °C	Ja
		-2 ^t BuOH	
Entry	Catalyst	(X, R ¹ , R ²)	Yield (%)
Entry 1.	Catalyst [Me ₃ NN]Cu 1a	(X, R ¹ , R ²) (Me, Me, Me)	Yield (%) 34
Entry 1. 2.	Catalyst [Me ₃ NN]Cu 1a [Cl ₂ NN]Cu 1b	(X, R ¹ , R ²) (Me, Me, Me) (Me, Cl, H)	Yield (%) 34 65
Entry 1. 2. 3.	Catalyst [Me ₃ NN]Cu 1a [Cl ₂ NN]Cu 1b [/Pr ₂ NN]Cu 1c	(X, R ¹ , R ²) (Me, Me, Me) (Me, Cl, H) (Me, [/] Pr, H)	Yield (%) 34 65 30

Conditions: 50 equiv. R-H. All yields determined by ¹H NMR.

Table 2. Copper catalyzed C-H amination with benzophenone imine derivatives.

Conditions: 10 equiv. R-H, 1.2 equiv. ¹/_{BuOO}¹Bu, 1 mol% [Cl₂NNCu], 90 °C, 24 h. Yields determined by ¹H NMR.

The azine $Ph_2C=N-N=CPh_2$ is the main byproduct in these catalytic C-H amination reactions, representing non-productive consumption of H-N=CPh₂. In a previous study of C-H amination with anilines H_2NAr employing the [Cl₂NN]Cu/^tBuOO^tBu catalyst system, electron-poor anilines provided the highest yields in the face of competing diazene ArN=NAr formation.²⁴ Copper(II) anilido intermediates [Cu^{II}]-NHAr serve as intermediates in C-H amination with anilines H₂NAr; those derived from electron-poor anilines H₂NAr (e.g. Ar = 2,4,6-Cl₃C₆H₂) proved more resistant to reductive bimolecular N-N bond formation.6,24

To examine whether similar electronic changes in the ketimine H-N=CAr₂ could similarly promote more efficient catalysis, we explored two electron-poor ketimine derivatives H-N=CAr₂ (Ar = 4-CF₃C₆H₄ and 4-FC₆H₄) in C-H amination (Table 2). Although the *p*-CF₃ substituted imine provides a higher C-H amination yield with cyclohexane (C-H BDE = 97 kcal/mol),²⁹ the increase in yield is modest with the benzylic substrate ethylbenzene (C-H BDE = 87 kcal/mol).²⁹ No significant differences were observed between benzophenone imine and the *p*-F substituted analogue.

While electron-poor imines can give somewhat higher C-H amination yields, we most broadly examined the commercially available H-N=CPh₂ to survey the scope of R-H substrates in sp³ C-H amination (Table 3). Ethers such as THF, 1,4-dioxane, or even 12-crown-4 undergo C-H amination at the α -carbon in relatively high yields (6a - 6d). Amination of the benzylic secondary C-H bonds in heteroaromatic substrates occurs (6f -6g), though yields may be lower due to the possibility of coordination of these substrates and/or products to the copper(I) centre that can decrease the rate of reoxidation with ^tBuOO^tBu.²⁸ Aromatic substrates with benzylic C-H bonds undergo C-H amination in moderate to high yields (6h - 6k). Cycloalkanes with stronger, unactivated sp³ C-H bonds give moderate yields with electron-poor ketimine $HN=CAr'_2$ (Ar' = 4-CF₃C₆H₄) (6l - 6o). The bicyclic eucalyptol undergoes C-H amination in 32% yield (6e). These aminated products may be isolated either as benzophenone derivatives R-N=CPh₂ (6a - 6g) or as the primary ammonium salts $[R-NH_3]CI$ via deprotection upon acidic work up (**6h** - **6o**).

Table 3. Copper catalyzed sp^3 C-H amination with ketimines HN=CAr₂.

Conditions: 10 equiv. R-H, 1.2 equiv. ¹BuOO¹Bu, 1 mol% [Cl₂NN]Cu, 90 °C, 24 h. ^aYields with HN=CPh₂. ^bYields with HN=CAr'₂ (Ar' = 4-CF₃C₆H₄). ¹H NMR yields (isolated yields) for **6f** and **6g**.

Conclusions

The isolation of mononuclear copper(II) ketimides [Cu^{II}]-N=CPh₂ reveals the role that they play as intermediates in sp³ C-H amination. These reactive intermediates readily form via acid-base exchange between [Cu^{II}]-O^tBu and HN=CPh₂, amenable to spectroscopic and structural investigation. Importantly, [Cu^{II}]-N=CPh₂ complexes efficiently intercept alkyl radicals R• generated via H-atom abstraction by ^tBuO• from substrates R-H that ultimately enable the C-H amination of unactivated sp³ C-H substrates. DFT analysis reveals a significant amount of unpaired electron density at the ketimide N atom of 0.58 and 0.61 e⁻ for [Me₃NN]Cu-N=CPh₂ (3a) and [Cl₂NN]Cu-N=CPh₂ (3b) (Fig. S23), respectively, opening a facile pathway for C-N bond formation with radicals R• to form R-N=CPh₂ products (Fig 4a). Moreover, this spin density at the ketimide N-atom likely facilitates N-N bond formation via copper(II) ketimides [Cu^{II}]-N=CPh₂ to give the azine $Ph_2C=N-N=CPh_2$ (Fig. 4b), a competing pathway in sp³ C-H functionalisation. Use of the more electron-poor ketimine

HN=CAr' (Ar' = 4-CF₃C₆H₄) extends the scope of catalysis to unactivated sp³ C-H bonds in cycloalkanes (Table 3; entries 6I -60). Nonetheless, facile N-N bond formation also by copper(II) ketimides [Cu^{II}]-N=CAr₂ underscores the role that they may play in the (electro)catalytic copper(II) promoted oxidative N-N coupling of benzophenone imine to form benzophenone azine (Fig 1g).¹⁸

Experimental section

Detailed experimental procedures are provided in the Supporting Information.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to NSF (CHE-1665348 and CHE-1955942) for support of this work.

Notes and references

5.

7.

- Y. Park, Y. Kim and S. Chang, *Chem. Rev.*, 2017, 117, 9247-9301.
- 2. R. T. Gephart III and T. H. Warren, *Organometallics*, 2012, **31**, 7728-7752.
- P. Gandeepan, T. Muller, D. Zell, G. Cera, S. Warratz and L. Ackermann, *Chem. Rev.*, 2019, 119, 2192-2452.
- H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A.
 K. Singh and A. Lei, *Chem. Rev.*, 2017, **117**, 9016-9085.
 - D. Intrieri, P. Zardi, A. Caselli and E. Gallo, *Chem. Commun.*, 2014, **50**, 11440-11453.
- E. S. Jang, C. L. McMullin, M. Kass, K. Meyer, T. R. Cundari and T. H. Warren, J. Am. Chem. Soc., 2014, 136, 10930-10940.
 - R. A. Lewis, G. Wu and T. W. Hayton, *Inorg.* Chem., 2011, **50**, 4660-4668.
- R. A. Lewis, G. Wu and T. W. Hayton, J. Am. Chem. Soc., 2010, 132, 12814-12816.
- R. A. Lewis, S. P. George, A. Chapovetsky, G. Wu, J. S. Figueroa and T. W. Hayton, *Chem. Commun.*, 2013, 49, 2888-2890.
- G. Bai and D. W. Stephan, Angew. Chem. Int. Ed., 2007, 46, 1856-1859.

- A. G. Bakhoda, Q. Jiang, J. A. Bertke, T. R. Cundari and T. H. Warren, *Angew. Chem. Int. Ed.*, 2017, **56**, 6426-6430.
- K. M. Carsch, I. M. Dimucci, D. A. Iovan, A. Li, S.-L. Zheng, C. J. Titus, S. J. Lee, K. D. Irwin, D. Nordlund, K. M. Lancaster and T. A. Betley, *Science*, 2019, **365**, 1138-1143.
- 13. Y. Kondo, H. Morimoto and T. Ohshima, *Chem. Lett.*, 2020, **49**, 497-504.
- J. P. Wolfe, J. Åhman, J. P. Sadighi, R. A. Singer and S. L. Buchwald, *Tetrahedron Lett.*, 1997, **38**, 6367-6370.
- 15. D. M. Peacock, C. B. Roos and J. F. Hartwig, *ACS Cent. Sci.*, 2016, **2**, 647-652.
- 16. R. Mao, J. Balon and X. Hu, *Angew. Chem. Int. Ed.*, 2018, **57**, 9501-9504.
- 17. S. Kramer, Org. Lett., 2019, **21**, 65-69.
- M. C. Ryan, Y. J. Kim, J. B. Gerken, F. Wang, M. M. Aristov, J. R. Martinelli and S. S. Stahl, *Chem. Sci.*, 2020, **11**, 1170-1175.
- F. Wang, J. B. Gerken, D. M. Bates, Y. J. Kim and S. S. Stahl, *J. Am. Chem. Soc.*, 2020, **142**, 12349-12356.
- 20. M. S. Kharasch and G. Sosnovsky, J. Am. Chem. Soc., 1958, **80**, 756-756.
- 21. M. S. Kharasch, G. Sosnovsky and N. C. Yang, J. Am. Chem. Soc., 1959, **81**, 5819-5824.
- D. J. Rawlinson and G. Sosnovsky, Synthesis, 1972, 1, 1-28.
- S. Wiese, Y. M. Badiei, R. T. Gephart, S. Mossin, M. S. Varonka, M. M. Melzer, K. Meyer, T. R. Cundari and T. H. Warren, *Angew. Chem. Int. Ed.*, 2010, **49**, 8850-8855.
- R. T. Gephart III, D. L. Huang, M. J. Aguila, G. Schmidt, A. Shahu and T. H. Warren, Angew. Chem. Int. Ed., 2012, 51, 6488-6492.
- 25. T. K. Salvador, C. H. Arnett, S. Kundu, N. G. Sapiezynski, J. A. Bertke, M. Raghibi Boroujeni and T. H. Warren, *J. Am. Chem. Soc.*, 2016, **138**, 16580-16583.
- F. G. Bordwell and G. Z. Ji, J. Am. Chem. Soc., 1991, 113, 8398-8401.
- R. A. D. Soriaga, S. Javed and D. M. Hoffman, J. Clust. Sci., 2010, 21, 567-575.
- R. T. Gephart III, C. L. McMullin, N. G. Sapiezynski, E. S. Jang, M. J. Aguila, T. R. Cundari and T. H. Warren, *J. Am. Chem. Soc.*, 2012, **134**, 17350-17353.
- 29. Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2002.