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In this work, we propose a new method to calculate the molecular nonradiative electronic

relaxation rates based on the numerically exact time-dependent density matrix renormal-

ization group theory (TD-DMRG). This method could go beyond the existing frameworks

under the harmonic approximation (HA) of the potential energy surface (PES) so that the

important anharmonic effect could be considered when large electronic energy is trans-

ferred into the vibrations to excite them to the high energy levels. The effectiveness and

scalability of the method are verified in calculating the internal conversion (IC) rate of

azulene by comparing it with the analytically exact results under HA. Furthermore, we in-

vestigate the validity of HA in a two-mode model with Morse potential. We find that HA is

unsatisfactory unless only the lowest several vibrational states of the lower electronic state

are involved in the transition process when the adiabatic excitation energy is relatively low.

As the excitation energy increases, HA first underestimates and then overestimates the IC

rates when the excited state PES shifts towards the dissociative side of the ground state

PES. On the contrary, HA slightly overestimates the IC rates when the excited state PES

shifts towards the repulsive side. In both cases, higher temperature enlarges the error of

HA.
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I. INTRODUCTION

Nonradiative electronic relaxation (NRER) is an important process in the photophysics of

molecular optoelectronic materials. It includes internal conversion process (IC) between the elec-

tronic states of the same spin manifold and intersystem crossing process (ISC) between the elec-

tronic states of different spin manifolds.1 For organic photovoltaics and organic light-emitting

system, the NRER processes from the excited state to the ground state is an unfavorable pro-

cess which dissipates electronic energy into vibrational reservoirs and leads to the reduction of

the energy conversion efficiency of the devices. Considering the important role of NRER in the

molecular photophysical processes, how to calculate the rate of NRER theoretically has always

been a hot topic. 2–9

Currently, the real-time nonadiabatic dynamics simulation and the rate theory relying on the

Fermi’s golden rule (FGR) are the two main approaches to study NRER process. Nonadia-

batic dynamics directly simulate the nuclear motions over the coupled potential energy surfaces

(PES) to obtain the real-time population on each electronic state. Though full-quantum dynam-

ics methods have made great progress in recent years, it is still limited by the system size of

complex molecules.10–12 Even if less accurate, nonadiabatic mixed quantum-classical dynamics

(NA-MQC) methods provide a promising way to handle large systems.13–15 One of the intriguing

features of NA-MQC is that it could combine with the modern electronic structure calculation in

an on-the-fly fashion to simulate ab-initio dynamics without requiring a precomputed global PES

which is necessary in most full-quantum wave-packet methods.16 Recently, several semiclassi-

cal methods have also been extended to simulate the nonadiabatic dynamics combined with the

mapping strategy.17–20 It should be noted that in these methods the anharmonicity of the molecu-

lar PES is inherently considered. The main shortcoming of the real-time nonadiabatic dynamics

methods to investigate the NRER process is that the accessible timescale is often limited to several

picoseconds. Hence, they are suitable to describe the ultrafast transition process, such as transition

through the conical intersection where the coupling between the electronic states is very strong.21

However, the NRER rates of a large portion of useful fluorescent molecules have timescales of

nanosecond or even longer,22 far beyond what the current real-time nonadiabatic dynamics meth-

ods could accurately reach.

Complementary to the real-time simulation, in the regime where the coupling between the

states is weak, the rate theory based on FGR has been successfully developed to describe the rel-
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atively slower processes. The study on this topic has a long history. Robinson and Frosch first

outlined the harmonic oscillator approximation model to describe the NRER processes 50 years

ago.23,24 Afterwards, Lin established the framework using the displacement harmonic oscillator

model to treat small polyatomic molecules with Duschinsky rotation effect (DRE) (mode-mixing

effect) under the promoting mode approximation.3,25,26 In recent years, Shuai et al. have devel-

oped an analytical formalism called thermal vibration correlation function (TVCF) to calculate the

NRER rate in the time domain.5,27–29 Under harmonic approximation (HA) of the initial and final

electronic PES, this formalism could fully take DRE into consideration and gives the analytically

exact transition rates. This method has been successfully used to calculate the NRER rate includ-

ing IC and ISC processes of a lot of molecules at ab-initio level.29,30 However, it is known that

HA is only valid in the low energy regime around the equilibrium configuration and the higher the

energy, the stronger the anharmonic effect, especially for the floppy modes. Consequently, HA

may not be reliable to describe the PES of the lower electronic state in the NRER process, because

the large electronic excitation energy is dumped into the vibrations resulting in a relatively high

vibrational quanta. Some former studies have attempted to investigate the anharmonic effect on

the NRER rates of molecules in the FGR framework. Ianconescu and Pollak applied semiclassical

initial value representation method to study the IC rate in a two-mode model with Morse poten-

tial.31 They found that HA is mostly unsatisfactory in a wide parameter regime. Humeniuk et al.

assessed the validity of HA for several coumarin dyes when predicting the fluorescence quantum

yields in solution.32 They found that the accuracy of HA for the radiative decay rate is remarkable,

while HA will underestimate the IC rates. Hence, HA will lead to an unreliable prediction of

fluorescence quantum yield compared to the experiments. However, their method to deal with the

Morse PES is based on the exact diagonalization and sum-of-states approach, which is not scalable

to large systems. Though the aforementioned semiclassical method is scalable and seems promis-

ing in a model system, further benchmarking is still required to verify the universality. Therefore,

it is important to develop a scalable and numerically exact method to calculate NRER rates beyond

HA.

In this work, we propose to calculate the NRER rate with the numerically exact time-dependent

density matrix renormalization group method (TD-DMRG).33–36 In recent years, TD-DMRG has

emerged as a powerful method to simulate large-scale full-quantum dynamics,37–44 such as elec-

tronic spectroscopy of molecular aggregates, real-time internal conversion in pyrazine, carrier

mobility in one-dimensional molecular crystal, etc. There are several advantages of TD-DMRG
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compared to the other numerical methods: (i) The accuracy could be systematically improved by a

single parameter; (ii) The Hamiltonian that can be handled is flexible once it could be represented

in a sum-of-products form45,46 and thus TD-DMRG could handle both model anharmonic PES

and PES of real molecules after some preprocessing;47,48 (iii) The scaling of computational cost

is polynomial with system size and thus it is scalable for polyatomic molecules; (iv) The time

evolution of wavefunction (at zero temperature) and density matrix (at finite temperature) could

be simulated in a same framework49,50. These advantages make TD-DMRG a suitable method to

calculate the molecular NRER rates.

The remaining sections of this paper are arranged as follows: In section II. THEORY, the

Hamiltonian and method are described. In section III. RESULTS & DISCUSSIONS, firstly the IC

rate of azulene under HA is calculated and compared with the analytically exact results to demon-

strate the effectiveness and scalability of the method. Secondly, IC rate of a two-mode model

system with Morse potential are investigated to assess the validation of HA at different circum-

stances. Unlike the harmonic potential, the IC rate with the Morse potential is not analytically

solvable. Finally, the conclusion is presented in section IV. CONCLUSION.

II. THEORY

A. Hamiltonian and transition rate

The molecular Hamiltonian of two uncoupled electronic states could be expressed as Eq. (1),

where the mass-weighted coordinates are used. The potential energy operator is expanded by the

two adiabatic electronic states |ψi〉, |ψ f 〉.

Ĥ0 =
N

∑
l=1

p̂2
l

2
+

U f +Vf (q1,q2, · · · ,qN) 0

0 Ui +Vi(q1,q2, · · · ,qN)

 (1)

Ui/ f is the minimal energy of PES at equilibrium configuration. To set up the Hamiltonian for

a specific molecule, the difficulty is how to obtain the (semi-)global PES Vi/ f . Even nowadays,

it is still a hard task to obtain a (semi-)global PES for polyatomic molecules with more than 20

atoms. The cut-high dimensional model representation (cut-HDMR) or called n-mode represen-

tation method51,52 and the high-order Taylor expansion method53,54 are two practical methods to

include the anharmonicity for large systems. Under HA, this difficulty is bypassed and only two

normal mode analysis at the equilibrium configuration are required. The PES can be simplified
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with the normal coordinates.

Vi/ f = ∑
l

1
2

ω
2
i/ f ,lq

2
i/ f ,l (2)

The normal coordinates of the initial and final states are connected by the Duschinsky rotation

matrix S and the normal-mode projected displacement ∆q as Eq. (3). The method to calculate

these two parameters at ab-initio level has been well established.28,55,56

q f ,m = ∑
l

Smlqi,l−∆q f ,m (3)

The perturbation operator that couples the two electronic states is denoted as Ĥ1. In the IC process,

Ĥ1 is the first order nonadiabatic coupling operator as Eq. (4).

Ĥ1 = ∑
m

(
〈ψi|p̂m|ψ f 〉|ψi〉〈ψ f |+h.c.

)
p̂m (4)

In the ISC process, Ĥ1 is the spin-orbit coupling operator.

Ĥ1 = 〈ψi|V̂SOC|ψ f 〉|ψi〉〈ψ f |+h.c. (5)

When the coupling is weak, it is appropriate to calculate the transition rate between the two elec-

tronic states with FGR:

WT =
2π

h̄ ∑
i, f

Pi|H1,i f |2δ (E f −Ei) (6)

Pi is the Boltzmann distribution of the initial state i at temperature T . We calculate WT in the time

domain by Fourier transform of the Dirac function, the Eq. (7). Hence, the key to calculate the

rate is to calculate the time correlation function (TCF) shown in Eq. (9).

δ (E f −Ei) =
1

2π h̄

∫
∞

−∞

e−i(E f−Ei)t/h̄ dt (7)

WT =
1
h̄2

∫
∞

−∞

〈Ĥ1(t)Ĥ1〉T dt (8)

〈Ĥ1(t)Ĥ1〉T = Tr(
1
Z

e−β Ĥ0eiĤ0t/h̄Ĥ1e−iĤ0t/h̄Ĥ1) (9)

At T = 0 , TCF could be further simplified to Eq. (10),

〈Ĥ1(t)Ĥ1〉= eiE0t/h̄〈0|Ĥ1e−iĤ0t/h̄Ĥ1|0〉 (10)

where |0〉 is lowest eigenstate of the initial PES. In this work, we focus on the rate of IC process

with nonadiabatic coupling operator as Eq. (4). But the rate of ISC process could be calculated in
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the same manner. For IC with the Condon approximation,

|H1,i f |2 = |〈φi|〈ψi|Ĥ1|ψ f 〉|φ f 〉|2 = ∑
m,n

I∗mIn (11)

Im = 〈ψi|p̂m|ψ f 〉〈φi|p̂m|φ f 〉 (12)

where φi/ f is the vibrational wavefunction. From Eq. (11), we can find that |H1,i f |2 is a summation

over two parts: diagonal terms with n = m and off-diagonal terms with n 6= m. If the vibrational

degrees of freedom (DoF) are uncoupled, Im could be further simplified as

Im = 〈ψi|p̂m|ψ f 〉〈χi(qm)|p̂m|χ f (qm)〉∏
l 6=m
〈χi(ql)|χ f (ql)〉, (13)

where χ(qm) is the eigenstate of a single DoF qm.

B. TD-DMRG method

In TD-DMRG, the wavefunction ansatz is

|Ψ〉= ∑
{a},{σ}

Cσ1σ2...σN |σ1σ2 . . .σN〉 (14)

= ∑
{a},{σ}

Aσ1
a1

Aσ2
a1,a2

. . .AσN
aN−1
|σ1σ2 . . .σN〉 (15)

where |σi〉 is the orthonormal primitive basis set for each DoF. N is the total number of DoFs in

the system. As the full-rank coefficient Cσ1σ2...σN is approximated as the product of a chain of

rank-3 matrix Aσi
ai−1,ai , this ansatz is called a matrix product state (MPS).50 The dimension of ai

is called the (virtual) bond dimension, denoted as MS. It is worth noting that the accuracy of an

MPS could be systematically improved with MS. The dimension of σi is called the physical bond

dimension, denoted as d. In this work, we use the simple harmonic oscillator basis to expand

each DoF. If necessary, the discrete variable representation (DVR)57 is used to approximate the

matrix elements of potential energy operator such as the Morse-type operator. Similar to the

wavefunction, a common operator Ô can also be represented in the matrix product form, called

matrix product operator (MPO), as shown in Eq. (16).

Ô = ∑
{w},{σ},{σ ′}

W σ ′1σ1
w1 W σ ′2σ2

w1,w2 . . .W
σ ′NσN
wN−1 |σ

′
1σ
′
2 . . .σ

′
N〉〈σNσN−1 . . .σ1| (16)
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With MPO, it is convenient to represent Ô|Ψ〉 as another enlarged MPS with bond dimension

MOMS.

Ô|Ψ〉= ∑
{w,a},{σ ′}

A′σ
′
1
{w,a}1

A′σ
′
2
{w,a}1,{w,a}2

. . .A′σ
′
N
{w,a}N−1

|σ ′1σ
′
2 . . .σ

′
N〉 (17)

where

A′σ
′
i
{w,a}i−1,{w,a}i

= ∑
σi

W σ ′i σi
wi−1,wiA

σi
ai−1,ai

(18)

In Eq. (10), the initial state |0〉 at zero temperature can be obtained through the typical DMRG

ground state algorithms by iteratively optimizing each local matrix A.34,50 At finite temperature, to

obtain the thermal equilibrium density matrix ρβ = e−β Ĥ0
Z(β ) for a canonical ensemble, the imaginary-

time Schrödinger equation is integrated from τ = 0 to τ = β/2.

− ∂

∂τ
ρ(τ) = Ĥ0ρ(τ) (19)

The initial state ρ(0) at infinitely high temperature (β = 0) is a locally maximally entangled state,

which is easily represented as an MPO with MO = 1.

ρ(0) = ∏
i

∑
σi

1√
d
|σi〉〈σi| (20)

ρ(τ) is normalized with condition 〈〈ρ(τ)|ρ(τ)〉〉 = Tr(ρ(τ)†ρ(τ)) = 1 after each step of time-

evolution. Therefore, ρ(β/2) = e−β Ĥ0/2/
√

Z(β ) = ρ
1/2
β

. Hence, the TCF in Eq. (9) can be

re-expressed as:

C(t) = Tr
(
ρ

1/2
β

eiĤ0t/h̄Ĥ1e−iĤ0t/h̄Ĥ1ρ
1/2
β

)
(21)

This method could equivalently be formulated according to the thermal field dynamics method,

also known as the purification method by introducing an auxiliary space.49,50

There are many time evolution schemes to propagate the wavefunction and density matrix ac-

cording to the Schrödinger equation along the real-time or imaginary-time axes, and they are thor-

oughly compared in Ref. 58 and Ref. 59. In this work, we adopt the time-dependent variational

principle based evolution schemes. The variable-mean-field (VMF) scheme is used to propagate

the wavefunction with matrix unfolding60 and adaptive Dormand-Prince’s 5/4 Runge-Kutta algo-

rithm. The second order projector-splitting scheme (PS) is used to propagate the density matrix for

higher efficiency. Readers are referred to our former works for more details about the derivation

and implementation.59 The computational cost of a single time-step is O
(
N(M2

SM2
Od2+M3

SMOd+

M3
Sd2)

)
for the former and O

(
N(M2

SM2
Od4 +M3

SMOd2)
)

for the latter, which are both polynomial

with system size. All the calculations in the next section are carried out with our in-house code

Renormalizer.61
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III. RESULTS & DISCUSSIONS

A. IC rate of azulene under HA

To verify the correctness of the implementation and demonstrate the effectiveness and scalabil-

ity of the method, in this section we calculate the rate kic of IC process of azulene from the S1 state

to S0 state under HA. This molecule has often been used as a prototypical system to benchmark

new methods.7,28 Under HA, the TVCF method5,27 (implemented in MOMAP62) is analytically

exact and thus serves as a reference. The equilibrium configuration and normal mode analysis of

the ground state and excited state of azulene are calculated by density functional theory (DFT) and

time-dependent DFT at B3LYP/6-31G(d) level in Gaussian 16.63 The number of normal modes of

azulene is 48. The Duschinsky rotation matrix S and normal mode projected displacement ∆q as

in Eq. (3) are calculated by MOMAP.62 In the TD-DMRG calculations, the coordinates used are

the normal coordinates of the ground state. The time step is 0.25fs and the total time of simulation

is 425fs. The primitive basis for each DoF is the harmonic oscillator basis up to 20 quanta. The

TCF C(t) in Eq. (21) calculated by TVCF and TD-DMRG with different bond dimension MS are

shown in Fig. 1. The results with MS = 2 (blue dashed line) deviate from the exact value after

40fs and thus is not accurate enough to calculate kic (See Table.I). The results with MS = 20 (red

dashed line) are consistent with the exact values at the resolution scale shown in Fig. 1. The tran-

TABLE I. The internal conversion rate kic of azulene from the S1 state to the S0 state with harmonic ap-

proximation calculated by the analytically exact TVCF method and TD-DMRG method with different bond

dimension MS.

Method kic(×1010 s−1) at 0K kic(×1010 s−1) at 300K

TVCF 2.14 2.41

TD-DMRG

MS = 2 0.44 1.31

MS = 5 1.30 1.85

MS = 10 1.98 2.21

MS = 20 2.11 2.32

MS = 40 2.15 2.40

MS = 60 2.16 2.41
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FIG. 1. The real and imaginary part of the time correlation function C(t) at T = 0K and T = 300K

calculated by the analytically exact TVCF method implemented in MOMAP62 (black solid line) and TD-

DMRG with bond dimension MS = 2 (blue dashed line) and MS = 20 (red dashed line).

sition rates kic are listed in Table. I. A Lorentzian broadening factor 100cm−1 is applied to make

the time-integration of TCF converge. The analytically exact value is 2.14× 1010 s−1 at 0K and

2.41×1010 s−1 at 298K. The results of TD-DMRG converge very fast with MS and MS = 20 could

obtain a quantitatively accurate rate —— 2.11×1010 s−1 at 0K and 2.32×1010 s−1 at 298K. The

computational wall-clock time for the whole simulation with MS = 20 is 51 minutes at 0K and 12

hours 17 minutes at 300K. Though it is much more expensive than the TVCF method under HA,

the proposed method based on TD-DMRG could go beyond HA and the cost is not expected to

increase too much depending on the specific form of the anharmonic PES.

B. Two-mode model with Morse potential

Although TD-DMRG is not limited to the small systems, in this section we adopt a minimal

two-mode model with Morse potential as Ref. 31 to investigate the anharmonic effect on the inter-

nal conversion rate from the excited state to the ground state, in which PES of the ground state is

characterized by two independent Morse potential along each vibrational DoF, while PES of the

excited state is still harmonic (Typically, the excited state is prepared at low energies where a har-
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monic approximation is reasonable). Even though this model seems simple, unlike the harmonic

potential, the internal conversion rate with the Morse potential cannot be calculated analytically.

The form of PES could be regarded as the 1-mode representation of a more complex PES.52 In ad-

dition, there is no mode-mixing between the two PESs in the current model. The potential operator

is

Vi =Ve = ∑
l=1,2

1
2

ω
2
e,lq

2
e,l (22)

Vf =Vg = ∑
l=1,2

Dl(1− e−αlqg,l)2 (23)

qe,l = qg,l−∆ql (24)

Ui−U f = Ead (25)

where Ead is the adiabatic excitation energy. The two parameters to define a Morse potential is

the dissociation energy D and the ‘width’ of the potential well 1/α . A schematic diagram of the

potential energy curve along one coordinate is shown in Fig. 2. A positive/negative ∆q represents

that the excited state PES is shifted towards the dissociative/repulsive side of the ground state PES.

FIG. 2. A schematic diagram of the potential energy curve of the two-mode model along one coordinate.

The black curve is the Morse potential Vg = D(1−e−αq)2 of the ground state. The red curve is the harmonic

approximation of the Morse potential at the equilibrium position. The blue curve is the harmonic potential

of the excited state.

In order to compare with the results in Ref. 31, the same parameters are adopted here, D1 =

D2 = D = 5.52eV and α1 = α2 = α = 2.23amu−1/2Å
−1

(0.0277a.u.). Under HA, the harmonic
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frequency at the equilibrium position is ωg,1 = ωg,2 = ωg =
√

2α2D = 3868cm−1. The harmonic

excited state PES has ωe,1 = ωe,2 = ωe = 774cm−1. In addition, the displacements are the same

for the two DoFs ∆q1 = ∆q2 = ∆q. The derivative coupling along each coordinate is set to be the

same 〈ψe| ∂

∂q1
|ψg〉 = 〈ψe| ∂

∂q2
|ψg〉 = C. Hence, the generalized internal conversion rate is defined

as kic =WT/C2 using the constant C2 as the unit. As in Ref. 31, TCF is multiplied by a Gaussian

type broadening factor to make it converge after a finite period of time.

WT =
1
h̄2

∫
∞

−∞

〈Ĥ1(t)Ĥ1〉T e−
σ(Ee)2t2

2h̄2 dt (26)

σ(Ee) is chosen to represent the mean energy interval between the successive vibrational states on

the ground state.

N(Ee) = Tr[Θ(Ee− Ĥg)]≈
1
2
[(

Ee

h̄ωg
)2 +

Ee

h̄ωg
] (27)

σ(Ee) =
dEe

dN
(28)

where Θ is the Heaviside step function and N(Ee) is the number of quantum states below Ee.

Ee is the lowest energy of the excited vibronic state. As Ref. 31, the actual σ(Ee) used in all

the calculations is 7 times the value defined in Eq. (27),(28). Since in the current model the two

modes are not coupled or mixed, the formal propagator eĤg/eτ could be exactly represented as an

MPO with MO = 1, and the initial state |0〉 at zero temperature or ρ(0) at finite temperature is

also a Hartree product state with MS = 1. In addition, Ĥ1 could be represented as an MPO with

MO = 2. Therefore, during the time-evolution, the time-dependent wavefunction in Eq. (10) and

Eq. (21) could be exactly represented as an MPS with at least MS = 2 (The numerical results with

different MS are shown in Fig. S1 in the supplementary material.). It should be mentioned that in

Ref. 31, the Hamiltonian includes a momentum coupling term p̂1 p̂2/M. Since this term is found

to have only a minor effect on kic, it is neglected in the current work. In the subsequent numerical

results, the time step is 8 a.u. (about 0.2 fs). The total simulation time is 240 a.u. to obtain the

TCF using TD-DMRG and then kic is calculated according to Eq. (26). We note that in Ref. 31,

only the diagonal terms n = m of the summation in Eq. (11) are included to calculate kic and the

off-diagonal terms n 6= m are all neglected. This approximation is similar to the widely known

promoting mode approximation,3 which is valid in the case that only one mode called promoting

mode has an appreciable derivative coupling and its displacement is approximately zero. However,

considering that this approximation may not always be suitable for all systems, we include the off-

diagonal terms when calculating the internal conversion rates.
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FIG. 3. a) The dependence of kic on the adiabatic excitation energy Ead/D at zero temperature calculated

by TD-DMRG with different size of primitive basis set. Only the diagonal terms in Eq. (11) are included.

The results in Ref. 31 are also plotted for comparison (black line). b) kic with or without the off-diagonal

terms in Eq. (11) calculated by TD-DMRG with d = 60. (The displacement is ∆q = 0.7/α . The virtual

bond dimension used are MS = 4. Morse: full treatment of the anharmonic Morse PES. HA: harmonic

approximation of the Morse potential. )

First, we consider the zero temperature case in which the initial state is the lowest vibronic

state of the excited state with zero vibrational quanta in each normal coordinate. With ∆q = 0.7/α

fixed, kic with different Ead is shown in Fig. 3a in which only the diagonal terms in Eq. (11) are

included. The results of TD-DMRG have already converged with physical bond dimension d = 60

(the largest quanta of the harmonic oscillator basis) and are consistent with the results of Ref. 31

by the semi-classical initial value representation approach. However, Fig. 3b shows that the off-

diagonal terms are also very important in this model, which increase kic in some regimes and

decrease it in the other regimes according to the different Ead. This difference can be attributed to

that the off-diagonal terms have different signs when the final vibronic state varies. Fig. 4 shows

the relative size of the matrix elements of the off-diagonal terms to that of the diagonal terms

2I1I2/(|I1|2 + |I2|2), whose value is between -1 and 1.

Since the Morse potential is asymmetrical unlike the harmonic potential, the direction of the

relative displacement ∆q between the two PESs matters. Fig. 5 shows the 2D contour of the ratio

of kMorse
ic on the Morse potential to kHA

ic on the harmonic potential with different displacement ∆q

and adiabatic excitation energy Ead at temperature T = ωg/5. At three representative displace-
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FIG. 4. The relative size of the matrix elements of the off-diagonal terms to that of the diagonal terms

2I1I2/(|I1|2 + |I2|2) defined in Eq. (11) and Eq. (12) at zero temperature. The vibrational wavefunction

φg(q1,q2) = χHA
ng,1

(q1)χ
HA
ng,2

(q2) of the final state is characterized by two quantum number——ng,1 and ng,2,

which are both ranging from 0 to 11.

ments ∆q = 0.7/α , 0/α and −0.52/α , kic with different temperatures are shown in Fig. 5b, 5c

and 5d. The convergence of the primitive basis set is shown in Fig. S2, S3 and S4 of the supple-

mentary material. It is obvious that HA could give accurate results when Ead is relatively small

(Ead/D ∼ 0). In this regime, only the vibronic state at the bottom of the ground state PES is in-

volved in the transition process. For this low-energy state, HA is valid as expected. This situation

would be encountered in the charge/energy transfer process between molecules of the same kind

and ISC process in which the energies of the singlet and triplet state are very close such as the

thermally activated delayed fluorescence system.64 However, a higher energy and a larger positive

displacement make the HA-valid regime much narrower. In the regimes that HA obviously fails,

two trends can be found within the current model:

1. When the excited state PES shifts towards the dissociative side of the ground state PES

(α∆q > 0, the top half of Fig. 5a), HA will first underestimate kic and then overestimate

kic as Ead increases. In addition, kic with the Morse potential drops much rapidly as Ead

increases compared to that with harmonic potential once the peak is passed (Fig. 5b, 5c).

2. When the excited state PES shifts towards the repulsive side of the ground state PES (α∆q<

0, the bottom half of the Fig. 5a), HA slightly overestimates kic (Fig. 5d).
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FIG. 5. a) The ratio of the internal conversion rate on the Morse potential with respect to that under HA

with different displacements and adiabatic excitation energies. The temperature is T = ωg/5. b)-d) The

dependence of kic on the adiabatic excitation energy calculated by TD-DMRG with different displacements

b) ∆q = 0.7/α , c) ∆q = 0/α and d) ∆q = −0.52/α , at different temperatures (T = 0, ωg/5, 2ωg/5), with

or without HA. The physical and virtual bond dimension in all these calculations are d = 100 and MS = 4.

The comparison of the results with different d is shown in the supplementary material.

To examine the generality of the trends described above, we also calculate kic with D′ = D, α ′ =

2/3α and D′ = 4/9D, α ′ = α . The similar 2D contours as Fig. 5a are shown in Fig. S5 of the

supplementary material. The trends are qualitatively the same. Besides these two trends, in both

cases, the higher the temperature, the greater the error of HA.

Two fundamental differences between the vibrational wavefunctions of Morse potential χMorse
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FIG. 6. a) Middle panel: the vibrational wavefunction of the ground state with quantum number n = 3 on

the Morse potential (solid black) and approximated harmonic potential under HA (solid red). Upper panel:

the lowest vibrational wavefunction of the excited state with ∆q = 0.7/α (solid blue) and the cumulative

overlap between the initial and final wavefunctions (dashed black and red lines). Lower panel: same as the

upper panel but with ∆q = −0.52/α . b) same as (a) but the quantum number of vibrational state of the

electronic ground state is n = 10.

and harmonic potential χHA with the same quantum number n may explain the two trends. First,

the amplitude of χMorse is larger than χHA on the dissociative side, while smaller on the repulsive

side, as shown in the middle panels of Fig. 6a (n = 3) and Fig. 6b (n = 10). Second, by comparing

these two panels, χMorse spreads very fast to the dissociative side as the quantum number increases,

while χHA with the same quantum number is relatively localized. Consequently, when α∆q > 0

and the quantum number of the final vibrational state is small (Ead is small), the larger amplitude

of χMorse in the region of the initial vibrational wavefunction χe(n = 0) will result in a larger

overlap SMorse
g,e and thus a larger Franck-Condon (FC) factor as shown in the the upper panel of

Fig. 6a (n = 3) and so is the transition rate kic. As the quantum number increases, χMorse quickly

spreads to the dissociative side and the amplitude of χMorse in the region of χe decays much more

rapidly once the large head of χMorse crosses χe compared to the more localized χHA, resulting in a

smaller FC factor as shown in the upper panel of Fig. 6b (n = 10). Quantitatively, SMorse
g,e decreases

from 0.4 to 0.025 while SHA
g,e only decreases from 0.3 to 0.2 when the quantum number increases

from 3 to 10. In addition, χMorse has more nodes than χHA with similar excitation energy, leading

to a more serious phase cancellation when calculating the overlap. On the repulsive side, though
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χMorse is also localized, the amplitude of χMorse is smaller than that of χHA, resulting in a smaller

overlap as shown in the lower panel of Fig. 6a and Fig. 6b. To understand the temperature effect,

Fig. 7 shows that the square of matrix element 〈χe(q)| ∂

∂q |χg(q)〉 in Eq. (13) (playing the role as

a prefactor of the FC factor) is relatively larger for initial state with higher vibrational quanta ne.

Therefore, when the thermally populated initial states with higher vibrational quanta get involved

with the temperature, the error of HA is significantly larger.
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FIG. 7. The square of the matrix elements 〈χe(q)| ∂

∂q |χg(q)〉 between different initial vibrational states

of electronic excited state (distinguished by vibrational quanta ne) and series of final vibrational states of

electronic ground state (distinguished by the energy E(χg,n)) on a) Morse potential, b) harmonic potential

under HA. Each triangle,inverted triangle or circle denotes a state with lines as a guide to the eye. The

results are calculated through exact diagonalization. The displacement is ∆q = 0.7/α .

IV. CONCLUSION

In this work, we propose to use TD-DMRG to calculate the rate of molecular nonradiative

electronic relaxation process based on the Fermi’s golden rule. Firstly, we calculate the internal

conversion rate of azulene under the harmonic approximation, in which the Duschinsky rotation

effect is fully taken into consideration. The results are consistent with the analytically exact results

calculated by the thermal vibration correlation function method and the computational scaling is

polynomial, which demonstrates the effectiveness and scalability of the current method to be ap-

plied to large polyatomic molecules. Secondly, we calculate the internal conversion rate of a
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two-mode model system with Morse potential and assess the validity of harmonic approximation.

We emphasize that the off-diagonal terms neglected in the former studies are also important to

the transition rate and the harmonic approximation is unsatisfactory in a large parameter regime

unless only the lowest several vibrational states of the lower electronic state are involved in the

transition process when the adiabatic excitation energy is relatively low. Since the Morse potential

is asymmetrical, the error of the harmonic approximation strongly depends on the direction of the

shift of the excited state potential energy surface with respect to the ground state. When α∆q > 0,

the harmonic approximation will first underestimate the IC rate and then overestimate it as the

excitation energy increases. This is due to that the amplitude of the wavefunction on the Morse

potential is larger than that of the harmonic potential in the dissociative side but the wavefunction

spreads quickly with energy while the harmonic wavefunction is much more localized. Hence,

the Franck-Condon factor between the initial and final states on the Morse potential is first larger

and then smaller than that under harmonic approximation. When α∆q < 0, the harmonic approx-

imation will slightly overestimate the IC rate because the wavefunction on the Morse potential is

also localized on this side but the amplitude is smaller. Moreover, higher temperature will enlarge

the error of harmonic approximation. It should be mentioned that though we focus on the rate

of internal conversion process in the numerical examples in this work, the same approach could

also be used in the calculation of the intersystem crossing rates. Finally, the potential energy sur-

face of the real molecules is much more complicated than the simple Morse potential and thus the

two-mode model is too ideal to fully describe the anharmonic effect on the rate of nonradiative

electronic relaxation of real molecules. Therefore, applying the current TD-DMRG method to the

real molecules with ab-initio anharmonic potential energy surface is worth further study.

SUPPLEMENTARY MATERIAL

See the supplementary material for the internal conversion rates kic calculated by TD-DMRG

with different virtual bond dimension MS and physical bond dimension d. Additional results with

different Morse potential parameters can also be found.
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FIG. 1. The convergence of the bond dimensions MS for MPS in the two-mode model used in the main text. The displacement ∆q = 0.7/α .
the temperature T = 2ωg/5, the physical bond dimension d = 100 .The result indicates that MS = 4 is large enough in this calculation.
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displacement ∆q = 0.7/α . With all the temperatures considered, the results with physical bond dimension d = 100 and d = 140 are the same,
indicating that d = 100 is large enough in this calculation.
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FIG. 3. The convergence of the primitive basis set (simple harmonic oscillator basis) in the two-mode model used in the main text. The
displacement ∆q = 0/α . With all the temperatures considered, the results with physical bond dimension d = 100 and d = 140 are the same,
indicating that d = 100 is large enough in this calculation.
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FIG. 4. (a). The convergence of the primitive basis set (simple harmonic oscillator basis) in the two-mode model used in the main text. The
displacement ∆q = −0.52/α . The results with d = 100 are consistent with that of d = 140 except the Morse potential with T = 2ωg/5. (b).
For Morse potential with T = 2ωg/5, larger basis set is tested. With d up to 220, kic is still not converged in the high energy region. However,
considering the error caused by the insufficient basis in this case dose not change the relative relationship between the internal conversion rate
calculated from Morse potential and its harmonic approximation, we still use d = 100 in the main text for higher efficiency.
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FIG. 5. (a), (b) and (c) show the ratio of the internal conversion rate on the Morse potential with respect to that under HA with different
displacements and adiabatic excitation energies. (a). D = D0, α = α0. The same as Fig. 5a in the main text. (b). D = D0, α = 2/3α0.
(c). D = 4/9D0, α = α0. In all cases, D0 = 5.52eV, α0 = 2.23amu−1/2Å−1, ωe = ωg/5 and T = ωg/5. The parameter for TD-DMRG
calculations are all d = 100, Ms = 4.


	manuscript
	Evaluating the anharmonicity contributions to the molecular excited state internal conversion rates with finite temperature TD-DMRG
	Abstract
	Introduction
	Theory
	Hamiltonian and transition rate
	TD-DMRG method

	Results & Discussions
	IC rate of azulene under HA
	Two-mode model with Morse potential

	Conclusion
	SUPPLEMENTARY MATERIAL
	Acknowledgments
	References
	DATA AVAILABILITY


	SI
	Supplementary materials for ``Evaluating the anharmonicity contributions to the molecular excited state internal conversion rates with finite temperature TD-DMRG''


