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ABSTRACT 

 Metal-catalyzed enantioselective conjugate additions are highly reliable methods for 

stereoselective synthesis, however multi-component reactions that are initiated by conjugate arylation 

of acyclic p-systems are rare. These processes generally proceed with poor diastereoselectivity while 

requiring basic, moisture sensitive organometallic nucleophiles. Here we show that Rh-catalysts 

supported by a tetrafluorobenzobarrelene ligand (Ph-tfb) enable the enantio-, diastereo-, and Z-selective 

a,d-difunctionalization of electron-deficient 1,3-dienes with organoboronic acid nucleophiles and 

aldehyde electrophiles to generate Z-homoallylic alcohols with three stereocenters. The reaction 

accommodates diene substrates activated by ester, amide, ketone, or aromatic groups and can be used 

to couple aryl, alkenyl, or alkyl aldehydes. Diastereoselective functionalization of the Z-olefin unit in the 

addition products allow for the generation of compounds with five stereocenters in high dr and ee. 

Mechanistic studies suggest aldehyde allylrhodation is the rate determining step, and unlike reactions 

of analogous Rh-enolates, the Rh-allyl species generated by d-arylation undergoes aldehyde trapping 

rather than protonolysis, even when water is present as a co-solvent. These findings should have 

broader implications in the use of privileged metal-catalyzed conjugate addition reactions as entry points 

towards the preparation of acyclic molecules containing non-adjacent stereocenters.  
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INTRODUCTION 

 Transition-metal catalyzed enantioselective conjugate addition reactions are among the most 

well-studied and reliable methods for the stereocontrolled formation of carbon–carbon bonds.1 They 

have enjoyed widespread use in natural products synthesis, medicinal chemistry campaigns, and the 

large scale preparation of enantioenriched small molecules (Fig 1a).2 The Rh-catalyzed conjugate 

arylation of electron-deficient alkenes using boronic acid derived nucleophiles arguably provides the 

most accommodating platform to generate b-arylated stereocenters, achieving high selectivity profiles 

across structurally diverse classes of substrates under weakly basic conditions.1b, 1d While studied less 

intensely than additions to alkenes, electron-poor dienes can undergo metal-catalyzed conjugate 

addition to generate a new stereocenter d to an activating group (Fig 1b).3 The olefin unit in the product 

is primed for subsequent functionalization, making this an ideal entry point into the preparation of acyclic 

molecules with multiple stereocenters. Achieving positional selectivity for nucleophile addition (b vs d) 

while forming products with high olefin regio- and stereoselectivity (E vs Z, a,b- vs b,g-unsaturation) with 

acyclic diene substrates remains a challenge. Examples are restricted to Cu-catalyzed alkylations4 and 

allylations,5 and Co-catalyzed alkynylations,6 these processes give E-alkene products. The Z- and 

enantioselective d-arylation of carbonyl-activated dienes with aryl boroxines can be achieve with Ir-

based catalysts, although products of the reactions are typically isolated after isomerization to the a,b-

unsaturated species or hydrogenation of the alkene.7 Given the current difficulty in preparing acyclic 

molecules with multiple stereocenters in a single step,8 the development of new processes that leverage 

the mechanistic steps of metal-catalyzed conjugate additions in multi-component couplings would be 

valuable. 
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Figure 1. Overview of methods for the metal-catalyzed, enantioselective addition of carbon 

nucleophiles to electron-poor dienes (G = electron-withdrawing group).  

 

 Metal-catalyzed conjugate addition reactions generate nucleophilic intermediates after the initial 

addition step (Fig 1). These species’ are usually protonated to generate hydroarylation products. In 

contrast, in a limited number of reports have shown that the nucleophilic metal intermediate generated 

in an enantioselective conjugate addition reaction, typically an enolate, can be intercepted by non-proton 

electrophiles generating products with two adjacent stereocenters (Fig 1c).1c, 1d, 9 This approach is 

generally restricted to cyclic conjugate acceptors like cycloenones or to intramolecular reactions with 

tethered electrophiles.1c, 1d, 10 In the case of Rh-catalyzed a,b-difunctionalizations, the use of Ti-aryl11 or 

9-BBN-aryl12 reagents under non-protic conditions instead of aryl boronic acids is required to suppress 

rapid protonation of enolate intermediates.13 By analogy, intercepting the nucleophilic metal-allyl 

intermediated generated by d-addition to a 1,3-diene with an external electrophile, like an aldehyde, 

would allow the preparation of acyclic products with 1,4-stereocenters (Fig 1d).8b While several 
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enantioselective diene carbo-difunctionalization reactions are known, none functionalize acyclic 

substrates to generate non-adjacent stereocenters at the a- and d-positions.14 We recently developed 

the racemic Z-selective reductive coupling of electron-deficient dienes and aldehydes15 and questioned 

whether the Rh-allyl intermediate generated in an enantioselective d-arylation could be trapped in a 

similar way.16 Achieving the stereoselective diene a,d-difunctionalization triggered by conjugate 

arylation would require high selectivity at several mechanistic steps (Fig 2) including: (i) suppression of 

direct aldehyde arylation from Rh-aryl intermediate A,17 (ii) site and enantioselective diene d-arylation,18 

(iii) aldehyde trapping of Rh-allyl intermediate B without h1-h3-h1 allyl face-swapping or chain-walking 

isomerization,19 and (iv) selective protonolysis of only Rh-alkoxide intermediate C and not B which would 

lead to hydroarylation products. Here, we show that Rh-catalysts with chiral tetrafluorobenzobarrelene 

ligands enable the enantioselective d-arylation of organoboronic acid nucleophiles to dienes followed 

by the Z-syn selective a-trapping of aldehydes. (Fig 1d). The three-component reaction products can 

be readily converted in linear compounds with five adjacent stereocenters. Mechanistic studies show 

that Rh-allyl intermediates generated by the d-arylation of dienes are uniquely suited to undergo 

stereoselective interception with non-proton electrophiles, contrasting the reactivity of related Rh-

enolate intermediates. 
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Figure 2. Mechanistic framework for the Rh-catalyzed enantioselective a,d-difunctionalization of dienes. 

 

RESULTS AND DISCUSSION 

Reaction Development 

 With the aim of developing a three-component coupling reaction initiated through a metal-
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allyl face-swapping (see below for a discussion). The catalyst loadings could be reduced to 1 mol% total 

Rh/ligand with similar yields and selectivities. The use of Ir(tfb)-based catalysts resulted in no product 

formation (<2% yield, see the SI for details). 

 

 

Figure 3. Impact of chiral ligands and reaction conditions on the enantioselective diene a,d-

difunctionalization; 1:aldehyde:ArB(OR)2 = 1:1.5:2, yields determined by 1H NMR, ee determined by 

chiral HPLC, dr is the ratio of product to all other isomers, see the SI for details. aUnless noted using 

[Rh(Ph-tfb)Cl]2. bAt room temperature. c9 hour reaction Ar = 3-BrC6H4, Ar’ = 3-ClC6H4. 
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Br substitution (19). The dienoate partner can feature either alkyl or aryl groups at the d-position (2, 20–

23). Variation of the diene’s ester substituent had little impact on selectivity (Me, Bn, long-chain alkyl, 

each ≥95% ee) with uniformly high yields and selectivities observed. Dienamides, including those 

featuring the Weinreb amide engaged in the reaction to give products as nearly single diastereomers 

and in ³95% ee (25, 26). Dienyl arenes could be used in place of carbonyl-activated dienes to prepare 

allylic substrates with syn-1,2-diaryl units in >95% ee (27–29). A dienone substrate underwent a,d-

difunctionalization with reduced diastereoselectivity (70:30) to give 30 but with high enantioselectivity 

for both products (97% ee major, 95% ee minor). Less successful substrates include those with aryl 

iodide groups (13), pyridyl aldehydes, and d-disubstituted dienoates (see the SI for more details). 

 The enantioselective diene addition process can be used to access other classes of products, 

including those featuring skipped 1,4-(E,Z)-dienes by the use of alkenyl boronic ester nucleophiles (31), 

1,5-dienes by the use of a,b-unsaturated aldehyde partners (32) and dialkyl Z-homoallylic alcohols by 

the use of alkyl aldehydes (33). When a d-unsubstituted aryl diene is used as a reaction partner (R1 = 

H), the sense of enantio-addition arising from the d-arylation step is relayed to the aldehyde 

allylrhodation step to give products with two stereocenters in 94% ee, remote from the initial arylation 

(34).14c Collectively these scope studies demonstrate that under suitable conditions, enantioselective 

Rh-catalyzed conjugate addition can be relayed to electrophile trapping by Rh-allyl intermediates with 

high fidelity to generate stereochemically rich, acyclic molecules.  
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Figure 4. Scope of the Rh-catalyzed, enantioselective diene a,d-difunctionalization dienes. Unless 

noted, yields are of isolated material with ≥95:5 dr. aYield determined by 1H NMR. bdr of isolated material 

94:6–90:10. See SI for full details. 
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36 which contains remote 1,4-stereocenters. Dihydroxylation of 35 followed by LiAlH4 reduction of the 

intermediate lactone afforded tetrahydroxy product 37 as a single stereoisomer in 39% overall yield. 

Diastereoselective alkene epoxidation using V(O)(acac)2 and t-BuOOH or dibromination with [N(Me3Bn)] 

Br3 yielded acyclic products with five consecutive tertiary stereocenters (38, 39). The syn-b-hydroxy 

ester unit is also poised for further functionalization, for example in the synthesis of amino alcohol 40, 

generated in 50% overall yield and 99% ee by ester hydrolysis of 36 followed by Curtius rearrangement 

and carbamate ring opening. 

 

 

Figure 5. Functionalization of a,d-difunctionalization product 35 to generate stereochemically rich 

acyclic compounds. Ar = 4-OMeC6H4. See the SI for details and reaction conditions.  
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selectivity is consistent with a six-membered transition state involving a Rh-allyl nucleophile and the 

incoming aldehyde (Fig 6b).21 The minor diastereomer generated in the reaction, formed in ~2 to 10 % 

depending on the combination of substrates, is the Z-syn addition product arising from ally face 

swapping of intermediate B to Rh-allyl B’ (Figure 6b). Formation of the minor diastereomer increases 

when using less effective catalysts or when the initial aldehyde concentration is lowered, suggesting if 

trapping of B is too slow, allyl isomerization occurs. Moderate to high Z-syn diastereoselectivity is 

observed with achiral catalyst like [Rh(cod)Cl]2, suggesting that the chiral ligands do not impact the 

selectivity at this step. 

 The reaction demonstrates a brief induction period which arises from the initial conversion of the 

[(Ph-tfb)RhCl]2 pre-catalysts to the active (Ph-tfb)RhOH catalyst.1d When using [(Ph-tfb)RhOH]2, LiOH 

is not required but its presence increases reaction rates. Preliminary kinetic data obtained by variable 

time normalization plots22 using [(Ph-tfb)RhOH]2 as the catalyst show the reaction to be first order in 

[Rh] and aldehyde, approximately zero order in diene, and partial positive order in aryl boronic acid (see 

the SI for details). These observations suggest that aldehyde allylation from B is the rate determining 

step.  

 The (Ph-tfb)Rh-allyl intermediate is uniquely selective for aldehyde trapping over protonation 

despite the high concentration of water present in the reaction (5 M). To probe this behaviour, a series 

of competition and rate experiments were conducted. In the absence of aldehyde, diene 1 undergoes 

addition and protonation to generate d-hydroarylation product 41 in 90% yield and 95% ee (Fig 6c). The 

hydroarylation reaction is ~20 times slower than a,d-difunctionalization with aldehyde electrophiles. 

Given the similar mechanistic pathway, Rh-allyl protonolysis is likely also the slow step in direct d-

arylations of dienes (Fig 6c). Contrasting the reactivity of dienes, simple a,b-unsaturated esters, such 

as 42, do not undergo addition to aldehyde under the standard conditions (Fig 6d). The Rh-enolate 

derived from b-arylation of alkene 42 undergoes fast protonation to give 43 in 97% yield after 2.5 hours. 

In competition studies between alkene and diene, products from diene difunctionalization (44) are 

formed at a faster rate than products from alkene arylation (43) (Fig 6e). In the absence of aldehyde, 
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diene d-arylation product is formed at similar rates to alkene b-arylation (Fig 6f). This is despite large 

differences in rates for independent experiments, where near quantitative alkene b-arylation occurs in 

less than 30 minutes. The slowing of alkene b-arylation rates in the presence of diene can be rationalized 

by the diene substrate preferentially binding to the Rh catalyst, effectively poisoning the b-arylation 

pathway. 

 Geometrical isomers of the standard diene E,E-1 are less productive substrates in a,d-

difunctionalization (Fig 6g). Z,E-1 slowly generates the same product stereoisomer as E,E-1 with 

reduced diastereoselectivity, while E,Z- and Z,Z-1 are resistant to d-arylation. Under the reaction 

conditions Z,E-1 is converted to E,E-1 in a process catalyzed by Rh (see the SI for details). Improved 

yields when using Z,E-1 could be achieved by modifying the conditions to increase isomerization (2.5 

mol% Rh at room temperature) and by using the more slowly reacting pinacol ester in place of the 

boronic acid as the nucleophile. Under the modified conditions, 66% yield of 2 was obtained in 97% ee 

and 82:18 dr from Z,E-1, showing that crude mixture of diene products obtained by carbonyl olefination 

or cross-coupling, commonly obtained in ~80:20 E,E/Z,E mixtures, can be using without removal of the 

Z,E isomer.  

 Taken together, these mechanistic studies show that (Ph-tfb)Rh-allyl species are well suited to 

engage non proton electrophiles in multi-component coupling reactions triggered by d-arylation. By 

tailoring the reaction conditions (i.e. relatively high concentration and slight excess of aldehyde), 

diastereoselective coupling to aldehyde outpaces Rh-allyl h1-h3-h1 isomerization, ultimately leading to 

the formation of one stereoisomer from the 16 possible outcomes. The reactivity of Rh-allyl species 

contrasts that of Rh-enolate intermediates for which electrophile trapping is stymied by rapid 

protonolysis.  
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Figure 6. Mechanistic studies of the Rh-catalyzed a,d-difunctionalization of dienes. (a) Stereochemical 

model for d-arylation. (b) Stereochemical model for aldehyde allylrhodation. (c) Reactivity comparison 

of aldehyde trapping vs protonation. (d) Reaction of electron-deficient alkenes under the standard 

conditions. (e) Diene/alkene competition studies in the presence of aldehyde (0.5 M total acceptor). (f) 

Diene/alkene hydroarylation rate and competition study. (f) Impact of dienoate geometry on reaction 

and Z,E-diene isomerization. 
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CONCLUSIONS 

 Metal-catalyzed conjugate arylations are a practical and dependable reaction platform to 

generate stereocenters at positions remote from carbonyl or arene activating groups. This work shows 

that Rh catalysts featuring chiral benzobarrelene ligands can promote the enantioselective d-arylation 

of several classes of electron-poor dienes to generate Rh-allyl intermediates that can be coupled to 

aldehydes with high chemo- and stereoselectivity. The products contain a stereotriad separated by a Z-

alkene unit which would be tedious to prepare using a stepwise approach. The more general 

understanding of the reactivity of Rh-allyl intermediates formed by conjugate arylation should open this 

approach to alternative classes of reaction partners. 
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