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Abstract 8 

Deep generative models are used to generate arbitrary molecular structures with the desired 9 

chemical properties. MolGAN is a renowned molecular generation models that uses generative 10 

adversarial networks (GANs) and reinforcement learning to generate molecular graphs in one 11 

shot. MolGAN can effectively generate a small molecular graph with nine or fewer heavy 12 

atoms. However, the graphs tend to become disconnected as the molecular size increase. This 13 

poses a challenge to drug discovery and material design, where large molecules are potentially 14 

inclusive. This study develops an improved MolGAN for large molecule generation (L-15 

MolGAN). In this model, the connectivity of molecular graphs is evaluated by a depth-first 16 

search during the model training process. When a disconnected molecular graph is generated, 17 

L-MolGAN rewards the graph a zero score. This procedure decreases the number of 18 

disconnected graphs, and consequently increases the number of connected molecular graphs. 19 
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The effectiveness of L-MolGAN is experimentally evaluated. The size and connectivity of the 20 

molecular graphs generated with data from the ZINC-250k molecular dataset are confirmed 21 

using MolGAN as the baseline model. The model is then optimized for a quantitative estimate 22 

of drug-likeness (QED) to generate drug-like molecules. The experimental results indicate that 23 

the connectivity measure of generated molecular graphs improved by 1.96 compared with the 24 

baseline model at a larger maximum molecular size of 20 atoms. The molecules generated by 25 

L-MolGAN are evaluated in terms of multiple chemical properties, QED, synthetic 26 

accessibility, and log octanol–water partition coefficient, which are important in drug design. 27 

This result confirms that L-MolGAN can generate various drug-like molecules despite being 28 

optimized for a single property, i.e., QED. This method will contribute to the efficient discovery 29 

of new molecules of larger sizes than those being generated with the existing method. 30 

 31 

Keywords: deep learning, generative adversarial network, graph convolutional network, 32 

molecular graph 33 

34 
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1. Introduction 35 

Machine learning-based molecular design of drugs is used to efficiently determine the desired 36 

molecular structure in drug discovery. It also aids the automated search for unknown molecular 37 

structures of the desired properties and predict their physical properties without requiring the 38 

domain knowledge of organic chemistry. A renowned classical molecular design model is 39 

inverse quantitative structure-activity relationship (inverse-QSAR) [1]. Based on the QSAR 40 

model—an analytical model of the relationship between molecular structure and bioactivity, 41 

formulated using molecular descriptors quantifying the features of the molecular structure—42 

inverse-QSAR performs a backward prediction of the molecular structure from the desired 43 

bioactivity. Therefore, to obtain a molecular structure with the desired bioactivity, it is 44 

necessary to select the appropriate molecular descriptors that are equivalent to the raw data of 45 

feature engineering in machine learning. However, it is difficult to identify the descriptors 46 

correlated with the desired bioactivity from the numerous available molecular descriptors, 47 

which is a core problem in inverse-QSAR analysis. 48 

Several molecular-structure search methods based on deep generative models, which generate 49 

new data with similar features as the original without the availability of predetermined feature 50 

vectors for the dataset, have been proposed and developed. Most adopt a graph-based approach 51 

in which the molecular structure is represented as a graph and are classified into two approaches 52 

in terms of the molecular generation process: sequential iterative process and one-shot 53 
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generation [2]. 54 

In the sequential iterative process, molecules are assembled stepwise by adding atoms and 55 

bonds to a predefined scaffold. The advantage of the generative model [3–6] when combined 56 

with the sequential iterative process is the assurance of chemical validity of the generated 57 

molecules. Thus, it is possible to obtain functional molecules by reliably generating larger 58 

molecules. However, the disadvantage of the sequential iterative process is the increased 59 

computational cost of verifying the valence, topological prediction of molecular structure, and 60 

graph isomorphism to calculate the reconstruction error when iteratively assembling molecules. 61 

In one-shot generation, a molecule is generated by determining the combination of atoms and 62 

bonds in a single step. The advantage of the generative model combined with one-shot 63 

generation [2,7–10] is the simplicity of its architecture and algorithm. Its computational cost is 64 

smaller than the sequential iterative process. Consequently, the generative model can be 65 

optimized in a short time. However, the one-shot generation method can only generate small 66 

molecular graphs because the number of possible connections between atoms in larger 67 

molecules increases quadratically, increasing the likelihood of the generation of chemically 68 

invalid molecules [8]. 69 

One of the most successful generative models using the one-shot generation scheme is the 70 

molecular generative adversarial network (MolGAN) [7]. MolGAN generates small molecular 71 

graphs with the desired chemical properties by combining GANs [11] and reinforcement 72 
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learning. It can generate chemically valid molecules if the number of heavy atoms used for 73 

molecular representation is nine or fewer. However, when this number exceeds nine, many 74 

disconnected molecular graphs are generated. 75 

To overcome this issue, we propose a large MolGAN (L-MolGAN), an improved version of 76 

the MolGAN model, for generating larger, more connected molecular graphs. Increasing the 77 

number of connected molecular graphs in MolGAN will lead to the rapid generation of large 78 

molecular graphs. We integrated into L-MolGAN a mechanism that enhances the generation of 79 

connected graphs in the generative process of MolGAN. The first stage of the model judges if 80 

the generated molecular graph is connected or disconnected. If the graph is disconnected, it 81 

will be penalized during model training. Consequently, the generation of disconnected 82 

molecular graphs is suppressed in the model optimization process. 83 

The contributions of this study are: 84 

1. An improved MolGAN that produces large (up to 20 atoms), novel molecules without 85 

disconnections. 86 

2. A molecular graph expansion mechanism that penalizes, and consequently suppresses, 87 

the production of disconnected graphs. 88 

The remainder of this paper is organized as follows. Section 2 presents an overview of the 89 

proposed L-MolGAN and a method to represent the molecular graph and the framework of the 90 

original MolGAN. A method to improve the connectivity of molecular graphs generated by L-91 
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MolGAN is also described in this section. Then, in Sections 3 and 4, the effectiveness of the 92 

proposed model is validated by comparing its performance in generating new molecules with 93 

that of the original MolGAN using a publicly available dataset of drug-like molecules. Finally, 94 

the paper is concluded in Section 5. 95 

 96 

2. Method 97 

2.1 Model Architecture 98 

MolGAN, which is the baseline model, consists of GANs (generator and discriminator) and a 99 

reward network. In this model, the molecular structure is represented by a graph. The L-100 

MolGAN adds a mechanism called molecular graph expansion to the baseline model that 101 

increases the number of generated connected molecular graph. The model architecture of L-102 

MolGAN is illustrated in Fig 1. The L-MolGAN differs from the original MolGAN only in 103 

terms of the molecular graph expansion mechanism, highlighted by the colored box in the 104 

figure. 105 

 106 

Fig 1 Model architecture of L-MolGAN for generating large molecular graph. It consists 107 

of a generator, a discriminator, a reward network, and a molecular graph expansion mechanism. 108 

Molecular graphs are generated by inputting into the generator vectors sampled from a prior 109 

distribution. The discriminator classifies the input molecular graph into generator-produced or 110 
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dataset. The reward network predicts the chemical properties of the input molecular graph. 111 

 112 

GANs were used to learn the molecular features of the training dataset, and the reward network 113 

was trained to predict the chemical properties of the given molecular graph. A multi-layer 114 

perceptron (MLP) was adopted for all three components, the generator, the discriminator, and 115 

the reward network, similar to the baseline study by De Cao et al. [7]. In the following 116 

subsections, we shall explain the molecular representation and each network model, as well as 117 

the proposed modifications to the baseline model. 118 

2.2 MolGAN 119 

2.2.1 Molecular representation as a graph 120 

Studies related to the artificial generation of molecules using deep generative models [12–14] 121 

represented molecules as strings using the simplified molecular-input line-entry system 122 

(SMILES) [15]. The linear SMILES is in turn generated string using a recurrent neural network 123 

and long short-term memory. Thus, the molecule of interest was artificially produced. 124 

However, the inherent syntax of SMILES is complex, and the chemical structure and properties 125 

of a molecule can vary drastically with the order of the string and changes in a single character. 126 

In addition, the same molecule has multiple string representations, making it impossible to 127 

determine a unique SMILES [16, 17]. To avoid these problems, researchers have developed 128 

molecular graphs that represent molecules based on the graph theory. 129 

Molecular graphs are an intuitive, more robust representation of molecules compared with 130 
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intermediate representations such as SMILES. In this study, the molecules were treated as 131 

labeled undirected graphs. A molecular graph was defined as 𝐺 = (𝑉, 𝐸), where 𝐸 and 𝑉 132 

denote a set of edges and nodes, respectively. Each atom and each bond that make up a molecule 133 

correspond to a node 𝑣𝑖 ∈ 𝑉 and an edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 , respectively. The molecular graph 134 

consists of two types of matrix: the node feature matrix and the adjacency matrix. The node 135 

𝑣𝑖 ∈ 𝑉 in the molecular graph 𝐺 was defined by the one-hot vector 𝑥𝑖  in T dimensions, 136 

where T represents the number of types of atoms. From this vector, the type of atom, which is 137 

an attribute of node 𝑣𝑖 , can be determined. The node feature matrix is represented by 138 

aggregating all node feature vectors. The edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸  in the molecular graph 𝐺 139 

indicates that nodes 𝑣𝑖 and 𝑣𝑗  are connected. In addition to the connections between nodes, 140 

the type of bond 𝑦 ∈ {1, … , 𝑌} is considered in the molecular graph, where Y is the number of 141 

bond types. In this study, the node feature matrix X = [x1, … , xN]T ∈  ℝ𝑁×𝑇 and the adjacency 142 

matrix A ∈  ℝ𝑁×𝑁×𝑌 were used to identify the types of atoms in all node sets of the molecular 143 

graph 𝐺 and the adjacency matrix. 144 

2.2.2 Generative adversarial networks 145 

GANs are deep generative models that aim to generate samples similar to a training set by 146 

approximating the model distribution to an empirical distribution. In computational molecular 147 

design, adversarial generation is an important strategy for producing molecular species similar 148 

to a given molecular dataset. 149 
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GANs can be interpreted as an implicit generative model as it does not need assume a specific 150 

probability distribution for the model distribution when approximating the empirical 151 

distribution. This eliminates the need for an explicit likelihood function for approximating the 152 

probability distribution. On the one hand, the variational autoencoder (VAE) [18], a likelihood-153 

based model, adopts a method to approximate the empirical and model distributions by 154 

assuming in advance the latter to be Gaussian and maximizing the evidence lower bound 155 

instead. On the other hand, GANs adopt a method to approximate the model distribution to the 156 

empirical distribution by parameterizing the distribution with a deep neural network and 157 

estimating its density ratio. GANs mainly consist of two deep neural networks to approximate 158 

the distribution by density ratio estimation: generator 𝐺𝜃, generates a new sample 𝐺(𝑧; 𝜃) 159 

similar to the training sample 𝑥~𝑝𝑑𝑎𝑡𝑎 by inputting a random number 𝑧~𝑝𝑧 obtained from 160 

a prior distribution 𝑝𝑧 ; discriminator 𝐷𝜑 , which accurately identifies the input data as a 161 

training sample 𝑥~𝑝𝑑𝑎𝑡𝑎 or a sample 𝐺(𝑧; 𝜃) generated by the generator. Training generator 162 

𝐺𝜃  to generate samples similar to the empirical distribution means will yield worse 163 

identification results for the samples produced by the generator. In other words, the density 164 

ratio estimation problem is replaced by a classification problem, which can be effectively 165 

solved by deep neural networks are good. Therefore, these deep neural networks can be 166 

considered players in the minimax game of Equation 1, which shows the expected value of the 167 

cross-entropy error. 168 
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 169 

min
𝜃

max
𝜑

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷𝜑(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷𝜑(𝐺𝜃(𝑧)))]  (1) 170 

 171 

In adversarial learning, the generator is trained to generate samples similar to the training set 172 

and misidentify them to the discriminator. In contrast, the discriminator is trained to correctly 173 

discriminate between the samples generated by the generator and those from the training set. 174 

With this process, the two models coevolve in adversary, with the generator minimizing the 175 

second term in Equation 1 and the discriminator maximizing the linear sum of the first and 176 

second terms. The alternate optimization the two neural networks through back-propagation, a 177 

sample is eventually generated such that the discriminator cannot distinguish between real and 178 

fake samples. 179 

2.2.3 Generator 180 

The generator can generate molecular graphs with the desired chemical properties. In this study, 181 

its architecture was a simple MLP with four layers. The number of units in each layer was 256, 182 

512, 1024, and 2200, respectively. By inputting a random number 𝑧  sampled from the 183 

standard normal distribution 𝑁(0, 𝐼) into the generator, we output the adjacency matrix �̃� 184 

and the node feature matrix �̃� representing the molecular graph. The output graph �̃� = (�̃�, �̃�) 185 

is a probabilistic complete graph, which is interpreted as a categorical distribution for the types 186 

of atoms and bonds. Here, �̃� contains the existence probabilities of the nodes and edges for 187 
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each bond type, and �̃� the class probabilities of the nodes. To enable its transformation into a 188 

chemically valid molecular graph, the discrete graph 𝐺 = (𝐴, 𝑋)  was obtained using the 189 

argmax function on the output probabilistic complete graph �̃� = (�̃�, �̃�). The adjacency matrix 190 

was defined as A ∈  ℝ𝑁×𝑁×𝑌, and the node feature matrix as X = [x1, … , xN]T ∈ ℝ𝑁×𝑇. 191 

The maximum number of nodes in the molecular graph was set to N = 20, and the number of 192 

bond types to Y = 5. The five types of bonds are single bond, double bond, triple bond, aromatic 193 

bond, and no bond. The number of types of atoms was set to T = 10: carbon, nitrogen, oxygen, 194 

fluorine, phosphorus, sulfur, chlorine, bromine, and iodine, and one-padding symbol. Thus, the 195 

maximum number and types of atoms and bond types were restricted. These constraints shall 196 

be used to determine the generator architecture. The dimensions of the output adjacency and 197 

output node feature matrices were represented by 𝑁 ×  𝑁 ×  𝑌 (i.e., 20 ×  20 ×  5) and 198 

𝑁 ×  𝑇 (i.e., 20 ×  10), respectively. 199 

To output the two types of matrices simultaneously, an output layer is required to output the 200 

2200-dimensional vector, which is the sum of the number of elements of the adjacency and 201 

node feature matrices. The number of units in the output layer depends on these constraints. 202 

The random number inputs to the generator had 256 dimensions. Based on the results of 203 

existing research, the number of units in each hidden layer was set as a multiple of the number 204 

of dimensions of the input random numbers. The 2200-dimensional vector output from the 205 

generator was split into two vectors—2000- and 200-dimensional vectors—to create the 206 
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adjacency and node feature matrices. These divided vectors were then transformed into the 207 

dimensionality of each defined matrix. Consequently, the output molecular graph is a complete 208 

probabilistic graph. 209 

The final output molecular graph is a chemically valid molecular graph. Therefore, the argmax 210 

function was used to break the weak bonds in the complete graph. The output of this operation 211 

on the adjacency matrix �̃� is the adjacency matrix A binarized at [0,1]. The node feature 212 

matrix �̃� was also binarized using the same process. Finally, a new molecular graph with the 213 

correct valence was generated through the optimized molecular generation process. 214 

However, this adversarial generation process only generates molecular species similar to the 215 

training set. Moreover, it is necessary to introduce methods to improve the properties of the 216 

generated molecules such as reinforcement learning, which uses a deterministic policy in the 217 

process of molecule generation. We incorporated the deep deterministic policy gradient method 218 

[19] into a generative model to optimize the non-differentiable chemical indices based on the 219 

literature. The stochastic policy is expressed as 𝜋(𝑎|𝑠; 𝜃). This denotes the policy 𝜋𝜃  that 220 

probabilistically selects action 𝑎 for state 𝑠. In this case, 𝜃 is a parameter used when the 221 

policy is being modeled. The deterministic policy 𝜇𝜃 is the policy 𝑎 = 𝜇𝜃(𝑠), where action 222 

a is uniquely determined for a certain state s. This policy is optimized by updating 𝜃  to 223 

maximize the behavioral value function for this behavior. In this study, the policy was 𝐺, and 224 

state 𝑠 was represented as a random number 𝑧. Thus, for a random number 𝑧, the molecular 225 
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graph is uniquely generated according to the deterministic policy. In the deep deterministic 226 

policy gradient method, the deterministic policy and action value functions were approximated 227 

using a deep neural network. Therefore, a property prediction neural network, which can be 228 

trained using gradients, was introduced into the action value function for calculating rewards. 229 

The rewards can then be used to generate molecules with indistinguishable chemical properties. 230 

These properties can be maximized by varying the policy parameters in the direction of the 231 

approximated action value gradient. 232 

By formulating these series of processes, we trained the generator such that the objective 233 

function 𝐿(𝜃) in Equation 2 was minimized. A molecular graph with the desired chemical 234 

properties similar to the training data was generated by minimizing the linear combination of 235 

the GAN loss, 𝐿𝐺𝐴𝑁, and the reinforcement learning loss, 𝐿𝑅𝐿: 236 

 237 

𝐿(𝜃) =  𝜆 ∙ 𝐿𝑅𝐿 + (1 − 𝜆) ∙ 𝐿𝐺𝐴𝑁,   (2) 238 

 239 

where 𝜆  is a hyperparameter that balances between adversarial learning and property 240 

optimization. This tunable parameter takes values in the range of 𝜆 ∈  [0, 1]. 241 

2.2.4 Discriminator and Reward network 242 

The architecture of these two neural networks, discriminator and reward network, were 243 

implemented by a simple MLP with three layers. The three hidden layers of both the 244 
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discriminator and the reward network had 512, 256, and 2 units, respectively. The input 245 

molecules were discriminated by the discriminator as the training set or molecules sampled by 246 

the generator. The chemical properties of the input molecules were predicted using the reward 247 

network. In the generation process, the discriminator outputs the discrimination rate of 248 

authenticity based on the feature vector of the entire molecular graph, and the reward network 249 

outputs the predicted score of the chemical property. The generator can be optimized by feeding 250 

back the outputs. 251 

However, a simple MLP cannot directly handle the graph structure data. Therefore, it would be 252 

necessary to develop a graph convolution operation specific to the graph structure data before 253 

inputting molecular graphs into the two models. The type of bond between atoms must be 254 

considered when convoluting the molecular graph. Therefore, based on the literature, we used 255 

a relational graph convolution operation that considers the attributes of the edges on a graph 256 

[20, 21]. This operation uses the adjacency matrix to convolute the node information for each 257 

edge attribute as follows: 258 

 259 

ℎ𝑖
(𝑙+1)

 =  𝜎(∑ ∑
1

|𝑁𝑖|𝑗∈𝑁𝑖
𝑟𝑟 ∈ 𝑅 𝑊𝑟

(𝑙)
ℎ𝑗

(𝑙)
+ 𝑊0

(𝑙)
ℎ𝑖

(𝑙)
)   (3) 260 

 261 

where ℎ𝑖
𝑙 is the feature representation of node 𝑣𝑖 in the 𝑙th layer, 𝑅 is the set of relations, 262 

and 𝑁𝑖
𝑟  is the set of nodes connected by the relation 𝑟  in node 𝑣𝑖 . Thus, a linear 263 
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transformation was performed by extracting the neighboring node information for each relation. 264 

The self-loop was convolved similarly. 265 

Finally, a nonlinear transformation was performed over the input signal by the activation 266 

function 𝜎 , and the feature representation ℎ𝑖
(𝑙+1)

 of the 𝑙 + 1 st layer was output. The 267 

convolution of a node uses its own information as well as information from its neighboring 268 

nodes. The output of the hidden layer was recursively used same as in a neural network by 269 

accumulating the convolutions. Finally, each convolved node information was aggregated into 270 

a single feature representation. Each time the convolution operation was repeated, the 271 

neighboring node information was convolved; thus, a global feature representation revealing 272 

the entire graph was obtained from the local features. 273 

The generator and discriminator were used to facilitate the adversarial learning of the molecular 274 

generation model. The discriminator was trained to maximize Equation 1. The parameters of 275 

the generator was updated via backpropagation through the discriminator to the generator.  276 

The generator and the reward network were used to optimize the chemical properties of 277 

molecules. The generator used the reward network output as a reward, and the parameters of 278 

the two models were updated using the deep deterministic policy gradient method. In addition, 279 

the reward network was trained by back-propagating the error between the output of the reward 280 

network and the estimated property using RDKit [22], a chemoinformatics tool. Reinforcement 281 

learning for chemical properties optimization was performed once for every three iterations of 282 
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adversarial learning. The parameters of the reward network were fixed in adversarial learning, 283 

whereas the parameters of the discriminator are fixed in the chemical properties optimization. 284 

2.2.5 Molecular graph generation using the trained MolGAN 285 

The optimized generator was extracted from the trained MolGAN model and used to generate 286 

new molecules by inputting random numbers sampled from the standard normal distribution 287 

into the generator. Changes in these numbers resulted in different molecular graphs. This 288 

allowed the generator to generate not only known molecules but also unknown ones included 289 

in the training dataset. 290 

2.3 L-MolGAN and Molecular Graph Expansion Mechanism 291 

According to the literature [7, 8], the number of nodes in the generated molecular graph is 292 

small, which is the problem we aim to solve. Earlier studies evaluated the MolGAN under the 293 

condition that only nine heavy atoms can be used to produce a molecular graph without 294 

disconnection. However, this limit is not practical in drug discovery, especially for larger 295 

molecules because the more the atoms, the more the disconnected graphs. To solve this 296 

problem, we propose modifications to the MolGAN. 297 

We suppress the generation of disconnected graphs by penalizing them during the model 298 

training process. The detailed algorithm is as follows: 1) for each generated graph, its 299 

connectivity is checked by depth-first search (DFS) and 2) if the graph is disconnected, its 300 

chemical property score is set to zero as a penalty; otherwise, its score is predicted by the 301 
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reward network. This is similar to the general training process. DFS is a recursive and 302 

exhaustive algorithm used to search all nodes of a graph or a tree. With DFS, the entire graph 303 

is traversed by starting at a certain node in the molecular graph and following the edges. If all 304 

the nodes in the graph can be reached, the graph is considered connected. Repeated 305 

penalizations to a disconnected graph will suppress its generation and increase the number of 306 

connected graphs generated. We refer to these modifications as the “molecular graph expansion 307 

mechanism,” and rename the resulting improved MolGAN as L-MolGAN. 308 

3. Experiment 309 

We shall investigate the effectiveness of the L-MolGAN by comparing it with the baseline 310 

MolGAN. In all experiments, we set the QED as a singular objective to derive new drug 311 

candidates and trained two modes (i.e., the model training was performed to optimize QED 312 

score with an RL objective). Its effectiveness was evaluated in terms of 1) how well it works 313 

for large molecular graph generation and 2) how many novel drug-like molecules it generates. 314 

The general settings of the model training and its evaluation metrics shall be described in 315 

Subsections 3.1 to 3.3. Then, three different numerical experiments shall be described in the 316 

Subsections 3.4 to 3.6. 317 

3.1 Dataset 318 

In this study, ZINC-250k [23], a renowned molecular datasets, was used in the experiments to 319 

generate molecular graphs. ZINC-250k is made up of 250 000 commercial drug-like molecules 320 
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randomly selected from the ZINC database. The maximum number of constituent heavy atoms 321 

of a molecule in ZINC-250k is 38. Particularly, a subset of ZINC-250k was sampled by 322 

randomly choosing 15 000 molecules from ZINC-250k, with the maximum number of 323 

constituent heavy atoms limited to 20, which is approximately twice the molecular size of that 324 

used in the baseline study by De Cao et al. [7]. 325 

3.2 Evaluation metrics 326 

We employed the generally used indices of validity, novelty, and uniqueness to evaluate the 327 

molecular generation model. Validity is the percentage of chemically valid molecules among 328 

the generated molecules. Note that validity is not a measure of the connectivity of molecules 329 

but only the valence of atoms. Novelty is the percentage of valid molecules among the 330 

generated molecules not included in the training data. In this study, these molecules were 331 

defined as novel molecules. Uniqueness is the percentage of generated molecules that are valid 332 

as well as unique. This measure indicates the degree of diversity among the molecules 333 

generated. Furthermore, species, the number of unique and connected molecular graphs, was 334 

introduced to clearly represent the number of unique molecules that were derived. The ideal 335 

molecular generation model should generate novel, valid, and connected molecules. 336 

Additionally, connectivity, which is the percentage of connected graphs, is one of the most 337 

important metrics introduced in this study. It indicates the percentage of valid and connected 338 

molecular graphs among the ones generated. 339 
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Furthermore, three chemical indicators were used to evaluate the chemical properties of the 340 

generated molecules, QED [24], solubility, and synthetic accessibility (SA) score. In QED, 341 

drug-like properties were calculated using a weighted geometric mean based on the distribution 342 

of multiple drug-properties data. Solubility indicates the degree of hydrophilicity of a molecule, 343 

which was quantified by the logP coefficient. This coefficient is defined as the logarithm of the 344 

concentration ratio of different solvents [25]. The SA score indicates the ease of synthesis of a 345 

molecule [26]. In this experiment, all chemical-property scores were manipulated to take values 346 

in the range of [0,1]. Note that the property scores of molecules with disconnected graphs in 347 

the L-MolGAN were set to zero as a penalty. 348 

3.3 Model training 349 

MolGAN and L-MolGAN were trained using the Adam optimizer [27] with a learning rate of 350 

0.0001 to optimize the QED for all the experiments. Mini-batch training was conducted to 351 

stabilize the learning. The batch size was set to 100. With an early stopping strategy, the model 352 

training was terminated when the average change in loss during 10 epochs was less than 1.0% 353 

or when the maximum number of epochs (300) had been reached. Mode collapse [28], a 354 

situation where similar data are generated regardless of the arbitrariness of numbers input to 355 

the generator, is one of the crucial issues in GANs. To circumvent this issue, we used mini-356 

batch training and the early stopping strategy mentioned above. 357 

In another study [7], researchers terminated model training when the uniqueness score fell 358 
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below 2.0%. However, this cause the generated molecules to become more homogenous 359 

because several epochs would be solely dedicated to satisfying the termination criterion. 360 

Therefore, we focused on the average loss change in the training process to determine the 361 

termination criterion, rather than thresholding for each property score. 362 

3.4 Experiment I: Parameter study of learning balance 363 

We investigated the extent to which the value of parameter 𝜆, which balances the chemical 364 

properties optimization and adversarial learning, affects the characteristics of the generated 365 

molecules. The optimal choice of 𝜆  for the molecular generation model was determined 366 

through this experimental task. The value of 𝜆 was varied from 0.0 to 1.0 in increments of 0.2, 367 

and the model was trained in five trials for each value. 368 

As explained earlier, we optimized the QED to generate drug-like molecules. The trained model 369 

that maximized the sum of validity, novelty, uniqueness, and QED scores was selected as the 370 

reference to evaluate the performance of the molecular generation model. 371 

3.5 Experiment II: Performance comparison of proposed 372 

method with existing method 373 

The proposed method and the baseline model (MolGAN) were compared in terms of 374 

performance using the evaluation metrics described in Subsection 3.2. The representative 375 

model for each method was chosen through a parametric study of 𝜆. 376 

3.6 Experiment III: Generation and evaluation of novel 377 
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molecules 378 

The proposed method was evaluated in terms of the number of novel drug-like molecules that 379 

can be derived. Here, new molecules were generated by inputting into the pretrained generator 380 

random numbers sampled 5000 times from the standard normal distribution. The chemical 381 

properties of the generated molecules were evaluated using RDKit. Novel molecules with the 382 

desired chemical properties were identified from the generated molecules. The 20 molecules 383 

with the highest QED scores were chosen, and their chemical properties were examined in 384 

terms of novelty and ease of synthesis. 385 

In addition, in drug discovery and materials design, the generated molecules should not only 386 

satisfy a single property (such as the QED) but also possess other properties such as 387 

synthesizability. Therefore, SA and logP were chosen in addition to the QED to evaluate the 388 

molecules generated in this experiment. However, there is a tradeoff between QED and logP 389 

[29]. There is no single best molecule but several ‘good’ molecules that exist within the 390 

envelope of all the generated molecules. Here, we refer to them as ‘dominant molecules’ and 391 

chose them in terms of the three chemical properties, QED, SA, and logP, for each combination 392 

of two of the three properties. Furthermore, we classified them into hydrophiles and lipophiles 393 

based on the logP score and verified if the dominant molecules possessed both the properties. 394 

Both hydrophilicity and lipophilicity are important properties considered in drug design. 395 
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4. Results and Discussion 396 

4.1 Experiment I: Parametric study of learning balance 𝝀 397 

The effect of 𝜆 on the molecules generated by the L-MolGAN are summarized in Table 1. The 398 

table indicates that the mean value of validity increases with an increase in 𝜆, while its standard 399 

deviation decreases. The same tendency was observed for the connectivity and QED scores. In 400 

contrast, the uniqueness decreased as 𝜆 increased. We believe this could have been caused by 401 

the occurrence of mode collapse in the model training, as reported by a conventional study [7]. 402 

Consequently, as 𝜆  increases, the generative model becomes more susceptible to mode 403 

collapse. This would also affect the diversity of the generated molecules, as evidenced by the 404 

decrease in the standard deviation of every molecular property index with an increase in 𝜆. 405 

 406 

Table 1 Comparison of properties of molecules generated at different 𝝀 by the proposed 407 

method. Each value indicates the mean and the standard deviation of each metric for five trials. 408 

𝝀 

Validity 

[%] 

Uniquen

ess [%] 

Novelty 

[%] 

Connecti

vity [%] 

QED SA logP Species 

0.0 28.62 ± 

6.43 

19.66 ± 

6.53 

100.00 ± 

0.00 

59.82 ± 

15.5 

0.62 ± 

0.03 

0.29 ± 

0.05 

0.54 ± 

0.05 

72.60 ± 

41.67 

0.2 80.72 ± 

2.71 

8.46 ± 

2.40 

100.00 ± 

0.00 

85.57 ± 

9.10 

0.77 ± 

0.04 

0.21 ± 

0.11 

0.59 ± 

0.06 

138.00 ± 

41.74 
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0.4 94.70 ± 

3.34 

4.10 ± 

4.92 

100.00 ± 

0.00 

95.26 ± 

4.92 

0.82 ± 

0.02 

0.12 ± 

0.05 

0.60 ± 

0.04 

72.60 ± 

41.67 

0.6 95.00 ± 

3.31 

3.21 ± 

1.09 

100.00 ± 

0.00 

94.85 ± 

5.58 

0.85 ± 

0.03 

0.16 ± 

0.07 

0.62 ± 

0.03 

76.80 ± 

20.98 

0.8 98.79 ± 

1.88 

0.30 ± 

0.11 

100.00 ± 

0.00 

99.81 ± 

0.24 

0.82 ± 

0.05 

0.10 ± 

0.06 

0.55 ± 

0.08 

10.20 ± 

5.12 

1.0 96.79 ± 

0.21 

0.04 ± 

0.02 

100.00 ± 

0.00 

100.00 ± 

0.0 

0.86 ± 

0.05 

0.16 ± 

0.09 

0.55 ± 

0.11 

1.60 ± 

0.89 

 409 

The average QED score from the training data was 0.76 ±  0.12. The QED score of the newly 410 

generated molecules for 𝜆 = 0.0 was smaller than the average. The scores with other 𝜆 values 411 

were greater than the average. Validity, connectivity, and QED for 𝜆 = 0.0 were remarkably 412 

smaller than those of the other settings. The generator should be trained not only to improve 413 

the chemical property score, but also to suppress the generation of invalid molecules during 414 

the optimization. However, at 𝜆 = 0.0, the model training was completely dedicated to the 415 

adversarial learning of the generative model, rather than the chemical properties optimization. 416 

It is plausible that the overall performance at 𝜆  = 0.0 was the weakest because of the 417 

generation of several invalid graphs. 418 

From these results, we chose 𝜆 = 0.6 as the optimal value, which maximizes the total values 419 
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of all the considered evaluation metrics. Furthermore, a single representative model, which had 420 

the largest total value among the five trials for 𝜆 = 0.6, was chosen. This setting shall be used 421 

for all subsequent experiments with MolGAN as well as L-MolGAN. 422 

 423 

Fig 2 Distribution of QED scores of molecules generated by the proposed method at the 424 

different 𝜆 . The black solid line labeled as ‘ZINC subset’ indicates the distribution of 425 

molecules included in the training dataset. Kernel density estimation has been used to depict 426 

the QED distribution. Only the connected molecular graphs are used for the density estimation. 427 

 428 

Fig 2 shows the distribution of QED scores of molecules generated by the proposed method, 429 

estimated using the best-performing generative model for each 𝜆 value. Additionally, ‘ZINC 430 

subset’ indicates the distribution of molecules included in the training dataset. 431 

We shall focus on the peak of each distribution to determine the effect of 𝜆. Because each 432 

distribution has multiple peaks, we shall focus only on the highest one. As 𝜆 increases, the 433 

peak shifts to a higher QED score. Specifically, when 𝜆 was larger than 0.4, the peak shifted 434 

to a higher QED score than that of the training data. From the fact that the model was trained 435 

to maximize the QED score, we confirmed that the model was well-optimized. Note that a 436 

narrower distribution was obtained owing to the mode collapse with a larger 𝜆. 437 

4.2 Experiment II: Performance comparison of the proposed 438 
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method with existing methods 439 

Table 2 lists the results of the performance comparison between MolGAN and L-MolGAN in 440 

generating molecules. The results confirm the validity, connectivity, and QED scores of the L-441 

MolGAN were better than those of the MolGAN. 442 

 443 

Table 2 Comparison of molecules generated by MolGAN and L-MolGAN 444 

Model 

Validity 

[%] 

Uniqueness 

[%] 

Novelty 

[%] 

Connectivity 

[%] 

QED SA logP Species 

MolGAN 94.53 5.97 100.00 48.12 0.85 0.47 0.60 44.00 

L-MolGAN 98.91 4.88 100.00 94.32 0.88 0.23 0.66 88.00 

 445 

Particularly, connectivity of graphs saw an improvement of 1.96 times in L-MolGAN over the 446 

existing model. However, the uniqueness and SA of L-MolGAN were worse than those of 447 

MolGAN. This indicates that the molecules generated by MolGAN were more diverse than L-448 

MolGAN and are relatively easy to synthesize. However, the lower connectivity score of 449 

MolGAN indicates the presence of several disconnected molecules in the generated molecules. 450 

In this regard, the L-MolGAN is more effective in generating valid as well as connected 451 

molecules than the MolGAN. 452 

In addition, the lower SA score in the L-MolGAN suggests that the model generates molecular 453 
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graphs with more complex molecular structures because they have mostly connected nodes. 454 

Both models generated entirely novel molecules that did not exist in the training data; however, 455 

MolGAN had a connectivity score of 48.12%. In contrast, the L-MolGAN achieved a higher 456 

connectivity score of 94.32%. These results suggest that the proposed model generates larger, 457 

more novel drug-like molecules, and has more practical implications for drug discovery 458 

compared with the existing method. 459 

 460 

Fig 3 Distributions of the QED score in the molecules generated by the representative 461 

models of MolGAN and L-MolGAN. Kernel density estimation has been used to depict the 462 

QED distribution. Only the connected molecular graphs were used for the density estimation. 463 

 464 

Fig 3 illustrates the distribution of QED scores estimated from the molecules generated by the 465 

L-MolGAN and MolGAN. These distributions only represent the connected molecular graphs. 466 

The average QED values of the training data, MolGAN, and L-MolGAN were 0.76, 0.81, and 467 

0.88, respectively. In Fig 3, the training data and MolGAN have a single peak, whereas L-468 

MolGAN has two. In addition, the peak positions of the training data and MolGAN were similar. 469 

However, the distribution of MolGAN is narrower than that of the training data and has higher 470 

QED scores than the training data. These results indicate that MolGAN has been successful at 471 

chemical properties optimization. 472 
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A closer look at the distribution in L-MolGAN in Fig 3 reveals two large peaks; one is close to 473 

the peak position of the MolGAN and the training data, while the other is located where the 474 

QED score is higher. We hypothesize that the peak in MolGAN and one of the peaks in L-475 

MolGAN were close to those of the training data because the optimization of chemical 476 

properties was strongly affected by the properties of mode of the QED distribution in the 477 

training data. 478 

Another peak in the L-MolGAN was located where the QED score was greater than 0.9. 479 

Notably, in this range of QED, the distributions of MolGAN and training data contained few 480 

molecules. This indicates that the L-MolGAN can exploit molecular graphs with better QED 481 

scores than the MolGAN. We assumed this was so because the L-MolGAN generated many 482 

connected molecular graphs. Improvement in connectivity would contribute to the generation 483 

of substituents and molecular skeletons with higher QED scores. Moreover, because the QED 484 

score is based on the physical properties of a molecular graph, it can be even calculated for 485 

disconnected graphs. For this reason, contrary to our presupposition, the chemical properties 486 

would be optimized for disconnected graphs as well. These results suggest that the L-MolGAN 487 

can overcome this issue in MolGAN. 488 

4.3 Experiment III: Generation and evaluation of novel 489 

molecules 490 

Fig 4 illustrates a two-dimensional description of the best 20 molecules with the highest QED 491 
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scores generated by the optimized generator of L-MolGAN. 492 

 493 

Fig 4 Two-dimensional representation of 20 molecules with the best QED scores. The 494 

numbers at the bottom of each molecule represent the corresponding QED, logP, and SA scores. 495 

 496 

Most molecules contained one or two sulfur atoms in their structures. In addition, many had 497 

QED scores of 0.9 or higher, indicating that their chemical properties were superior to those of 498 

the ZINC dataset. However, because their SA scores were significantly small, the molecules 499 

generated may be unrealistic. Therefore, we focused on the relationship between the structure 500 

of the generated molecules and their synthesizability. 501 

1,3-Thiazole was included as the common substructure of the top 20 molecules. Thiazole is a 502 

nitrogen-containing five-membered heterocyclic compound, which is a common skeleton in 503 

molecules used in pharmaceuticals and agrochemicals. The bicyclic ring skeleton was also 504 

found to be a common substructure within thiazole-containing molecules with an SA of 0.0. 505 

This skeleton is composed of five carbon or sulfur atoms bridging the carbon atoms at the 2 506 

and 5 positions of the thiazole ring. Nine out of the top twenty molecules had these 507 

characteristics. The bicyclic ring skeleton is difficult to synthesize because of the high steric 508 

strain of the molecule. 509 

 510 
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Fig 5 Three-dimensional representation of the thiazole and bicyclic skeletons. 511 

 512 

Fig 5 represents the three-dimensional model of the common thiazole and bicyclic ring 513 

skeletons included in the generated molecules. Because the thiazole ring skeleton has a planar 514 

structure, the atoms and substituents (i.e., the two methyl groups) in the ring lie on the same 515 

plane because the thiazole ring is aromatic. However, the planarity of the thiazole ring and its 516 

surroundings in the bicyclic ring skeleton is broken. The planarity of the thiazole ring was not 517 

maintained at the 2 and 5 carbon positions. This steric strain is affected by the number of atoms 518 

to be bridged. Therefore, we concluded that they were unrealistic due to the steric strain caused 519 

by the bicyclic framework. However, the L-MolGAN could generate these molecules, which 520 

have not yet been discovered. Therefore, it was worth an attempt to synthesize them as drug 521 

candidates. 522 

Fig 6 highlights the dominant molecules chosen in the QED–SA space. The dotted line 523 

indicates the envelope of the generated molecules. We confirmed that a tradeoff between the 524 

QED and SA scores, and the existence of eight dominant molecules. The dominant molecules 525 

[A] to [F] with a high QED score had a common cyclic substructure, whereas molecules [G] 526 

and [H] with low QED scores were chain-like. This suggested the potential of heterocyclic 527 

compounds as oral drugs. It is plausible that the synthesis became difficult when the ring 528 

structure contained two or more heteroatoms. Consequently, molecules [A] to [C] exhibited an 529 
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SA of less than 0.2, and that of molecules [D] to [F] approximately 0.5. 530 

 531 

Fig 6 Dominant molecules identified through QED and SA scores ([A] to [H]). The points 532 

indicate all the molecules generated by the L-MolGAN. The dotted line indicates the envelope 533 

of the generated molecules. 534 

 535 

Subsequently, the dominant molecules were selected in SA–logP space, as shown in Fig 7. The 536 

molecule [H] was also chosen in the QED–SA space. We only reported molecules with higher 537 

lipophilicity based on the logP score. The molecule [H] was also chosen in the QED–SA space. 538 

The dominant molecules with higher lipophilicity in the QED–logP space are also shown in 539 

Fig 8. The molecule [B] was also chosen in the QED–SA space. Several dominant molecules 540 

were sulfur-containing compounds. 541 

 542 

Fig 7 Dominant molecules with higher lipophilicity identified through SA and logP scores 543 

([H], [I] and [J]). The points indicate all the molecules generated by the generator of L-544 

MolGAN. The dotted line indicates the envelope of the generated molecules. 545 

 546 

Fig 8. Dominant molecules with higher lipophilicity identified through QED and logP 547 

scores ([B], [K] to [Q]). The points indicate all the molecules generated by the L-MolGAN. 548 
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The dotted line indicates the envelope of the generated molecules. 549 

 550 

The dominant molecules with higher hydrophilicity in the QED–logP space are shown in Fig 551 

9. Molecules [A] and [C] are also chosen in the QED–SA space. Fig 10 indicates molecules in 552 

the SA–logP space. Molecules [E], [G], and [H] were already chosen in the QED–SA space. In 553 

addition, the molecule [R] was also chosen in the QED–logP space. 554 

 555 

Fig 8 Dominant molecules with higher hydrophilicity identified through QED and logP 556 

scores ([A], [C], [R] to [U]). The points indicate all the molecules generated by the L-MolGAN. 557 

The dotted line indicates the envelope of the generated molecules. 558 

 559 

Fig 9 Dominant molecules with higher hydrophilicity identified through SA and logP 560 

scores ([E], [G], [H], [R] and [V]). The points indicate all the molecules generated by the L-561 

MolGAN. The dotted line indicates the envelope of the generated molecules. 562 

 563 

These results revealed the generation of a variety of dominant molecules by the L-MolGAN. 564 

Although the model was trained to optimize only the QED for drug discovery, a variety of 565 

molecules were identified among several combinations of the three chemical properties. 566 

Additionally, there was no best single molecular graph that simultaneously optimized the three 567 
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chemical properties or their combinations. This motivated us to search for a variety of 568 

molecular graph among conflicting optimization goals of plural chemical properties. Future 569 

studies should apply a multi-objective optimization framework to the proposed method to 570 

search for dominant molecules with higher chemical property scores and more diverse 571 

chemical structures and properties. 572 

 573 

5. Conclusions 574 

The performance of the MolGAN deteriorates when generating a molecular graph with a 575 

molecular size larger than nine atoms, owing to the increase of disconnected graphs. This 576 

introduces challenges in the design of drugs with large molecules. We addressed this challenge 577 

by adding to the MolGAN a molecular graph expansion mechanism that penalizes disconnected 578 

graphs and referred to it as L-MolGAN. The L-MolGAN improved the number of connected 579 

graphs generation on the ZINC-250k molecular dataset by a factor of 1.96, compared with the 580 

MolGAN. We also confirmed the generation of a variety of drug-like molecules by the L-581 

MolGAN, even though it was optimized for a single property, i.e., QED. The L-MolGAN shall 582 

contribute to the efficient discovery of new molecules larger than those generated by the 583 

MolGAN. 584 
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