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Abstract

Alchemical free energy methods have become indispensable in computational drug

discovery for their ability to calculate highly accurate estimates of protein-ligand a�ni-

ties. Expanded ensemble (EE) methods, which involve single simulations visiting all

of the alchemical intermediates, have some key advantages for alchemical free energy

calculation. However, there have been relatively few examples published in the litera-

ture of using expanded ensemble simulations for free energies of protein-ligand binding.

In this paper, as a test of expanded ensemble methods, we computed relative binding

free energies using the Open Force Field Initiative force field (codename “Parsley”) for

twenty-four pairs of Tyk2 inhibitors derived from a congeneric series of 16 compounds.

The EE predictions agree well with the experimental values (RMSE of 0.94 ± 0.13

kcal mol�1 and MUE of 0.75 ± 0.12 kcal mol�1). We find that while increasing the
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number of alchemical intermediates can improve the phase space overlap, faster con-

vergence can be obtained with fewer intermediates, as long as the acceptance rates are

su�cient. We find that convergence can be improved using more aggressive updating

of the biases, and that estimates can be improved by performing multiple independent

EE calculations. This work demonstrates that EE is a viable option for alchemical

free energy calculation. We discuss the implications of these findings for rational drug

design, as well as future directions for improvement.

Introduction

Over the last decade, alchemical free energy methods have increased in accuracy and com-

putational e�ciency to become the dominant modeling approach for computing high-quality

estimates of ligand binding free energy.1–4 Particularly popular have been relative binding

free energy methods, which can typically deliver accuracies within 1 kcal mol�1.5–7 Unlike

absolute free energy methods, which require the complete decoupling of a molecule’s non-

bonded interactions, relative free energy methods only require alchemically transforming

the set of atoms that di↵er between two molecules, resulting in better phase space overlap

between alchemical intermediates. This e�cient approach is especially useful for structure-

based computational lead optimization, where one frequently makes make small changes to

a single sca↵old, and many tools are now widely available to automate and perform these

calculations.8–13

The expanded ensemble (EE) method, similar to simulated tempering, is an algorithm

in which multiple thermodynamic ensembles are adaptively sampled in the same simula-

tion.14 Specific variants of this adaptive approach include self-adjusted mixture sampling

(SAMS)15,16 and the accelerated weight histogram method.17 Most other free energy ap-

proaches rely on multiple parallel or coupled simulations performed for each alchemical

intermediate, as in Hamiltonian replica exchange,18,19 Therefore, the ability to sample mul-

tiple ensembles in a single simulation replica is attractive for many applications, such as
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enabling large-scale virtual screening on distributed parallel computing platforms.20–22 EE

methods, however, have not been widely adopted for estimating ligand binding free energies

per se, although much work has been done towards improving adaptive expanded ensemble

estimates for calculating free energies from perturbed Hamiltonians.23–26

Of the handful of studies that have previously used EE for ligand binding, all have fo-

cused on the problem of computing absolute binding free energies (ABFE).22,27,28 In the

SAMPL4 host-guest challenge, Monroe et al. showed that EE yields estimates comparable

to other methods, in a system where molecular flexibility and multiple binding modalities

are important.27 Rizzi et al. report similarly results in the recent SAMPL6 host-guest chal-

lenge.28 To our knowledge, no group has published an example of relative binding free energy

(RBFE) estimates predicted using EE. In theory, expanded ensemble simulations are par-

ticularly well-suited for absolute binding free energies, as the ligand is able to freely bind

and unbind, sampling di↵erent binding modes. However, even with relative binding free

energies, the available phase space changes between ligands, meaning there is likely to be

some sampling advantage even here. Given the better thermodynamic overlap of relative vs.

absolute methods, we hypothesized that EE calculations would perform well at this task.

To see if this was the case, we examined the performance of EE in estimating RBFE for

a set of twenty-four pairs of Tyk2 inhibitors (Figure 1) selected from a congeneric series of

16 compounds designed by Liang et al.29,30 Below, we present our methodology and results,

which suggest that EE can predict RBFEs accurately and e�ciently, given appropriately

chosen protocols. We explore the sensitivity of prediction accuracy and adaptive conver-

gence to a number of di↵erent parameters and analysis choices, and discuss some possible

improvements of the algorithm for the future.
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Figure 1: Illustration of the structure of Tyk2 (PDBid: 4GIH) used for all calculations.
Tyk2 is shown in complex with ligand ejm 31 in Table 1.29

Methods

The expanded ensemble method

Consider a set of N thermodynamic ensembles parameterized by �, where � ranges between

0 and 1. For a set of �i values indexed by i = 1, ..., N , each ensemble is defined by a reduced

potential energy function ui(x) = �U(x|�i), where � = (kBT )�1. The goal of the expanded

ensemble (EE) method is to use Monte Carlo sampling to perform a random walk in �-space,

throughout a single simulation, where all thermodynamic states defined by di↵erent values of

� are uniformly sampled, or alternately, satisfy some other desired distribution as a function

of �. This is achieved through the use of configuration-independent bias potentials f̃i, that

modify each potential energy function as u0
i(x) = ui(x) � f̃i. The values of f̃i are adjusted

on-the-fly, and adaptively refined to achieve, in this case, equal visitation of each of the N

states. If the states are all visited equally, then the di↵erence in the biases �f̃ij = f̃j� f̃i are

equal to the true di↵erence in free energies �fij. The value �f1N = fN � f1 is the change

in the free energy over the entire alchemical transformation.

In this study, to adaptively refine estimates of f̃i, the Wang-Landau (WL) flat-histogram

algorithm is used.31 This algorithm periodically evaluates a histogram of values hi storing

the number of times state i is visited. At each iteration t, the histogram and the free energy
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estimates f̃i are updated:

h(t+1)
i  h(t)

i + 1 (1)

f̃ (t+1)
i  f̃ (t)

i � � (2)

The quantity � is called in this study Wang-Landau (WL) increment, and it is initially set to

a large value (for example, 10 kBT ). This has the e↵ect of penalizing visits to state i so that

subsequent MC moves to other states will more likely be accepted. When the histogram is

su�ciently flat, the WL increment is scaled by a factor ↵ < 1, and the histogram counts hi

are reset to zero. The histogram is su�ciently flat if the ratio Nratio of all histogram values

hi to the mean value h̄ = 1
N

P
i hi is su�ciently close to 1. This is determined by ensuring

that both Nratio > ⌘ and 1/Nratio > ⌘ for all values of i, for some value of ⌘ (for example,

0.8) which we will call the Wang-Landau (WL) ratio.32–34

Relative binding free energy calculations

In RBFE calculations, two separate EE simulations are needed to predict relative free energy

of binding, ��G for a pair of ligands L and L⇤. In one simulation, the ligand L is alchemically

transformed to L⇤ in aqueous solution to obtain �GL. In the other simulation, a receptor-

bound ligand RL is transformed to RL⇤ to obtain �GRL. The RBFE can then be obtained

as ��G = �GRL ��GL (Figure 2).

Preparation of structures and force field parameters for Tyk2 and

its inhibitors

Structure preparation and initial coordinates. The Tyk2 dataset is part of the

Schrödinger’s “JACS set”5 and was used in several RBFE benchmark studies.5,6,35,36 The

receptor model is based on the X-ray structure of PDB ID 4GIH (resolution 2.00 Å, Open-

Eye Iridium score 0.5, highly trustworthy).29 The preparation and initial coordinates of the

protein are the same as in Gapsys et al. 6 , where it was prepared with the Protein Prepara-
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tion Wizard37 using default settings: missing atoms, sidechains, and loops were modelled,

protein protonation states were assigned with PROPKA at pH 7.0, the hydrogen bonding

network was optimized. To relieve local clashes, a restrained minimization was performed

with a 0.5 Å heavy-atom RMSD displacement cut-o↵. The inhibitors were modelled in their

neutral form according to their protonation state at pH 7. For the construction of their

initial coordinates, the coordinates of the crystallographic ligand ejm 46 (see Table 1) were

used and all other ligands were flexibly aligned to the reference ligand for improving the

3D-overlay of their Bemis-Murcko sca↵olds.

Generation of Force Field Parameters. The receptor was parameterized using the

AMBER ↵99sb*ILDN force field parameters38–40 using the GROMACS gmx tool pdb2gmx

and the AMBER ↵99sb*ILDN parameter files available in the pmx distribution.41

The ligands were parameterized and prepared using a workflow42 based on the Open Force

Field toolkit,43 the pmx toolkit41,44 and GROMACS gmx program suite. The parameter set

employed was the Open Force Field version 1.0.0 (codenamed “Parsley”).45 Hybrid structures

and topologies for the ligand pairs were generated using pmx41,44 following a single topology

approach. The workflow establishes a mapping between atoms of the two ligands based on

the maximum common substructure and conformational alignment. Polar hydrogens are

not mapped to each other to decrease the influence of the perturbation on the hydrogen

bond network. The mass of atoms in the non-interacting state (”dummies”) was set to 12u.

Covalent force field parameters between atoms in the dummy state are not changed during

the perturbation. The mappings are illustrated in the Supplementary Information Figure

S1.

Simulation Boxes. The following system preparation steps were performed with GRO-

MACS gmx tools editconf, solvate, and genion. The ligand (L) or the ligand-bound

receptor (RL) were placed into rhombic dodecahedral boxes which fits the solute plus 1.5

nm bu↵er distance to the box walls. They were filled with TIP3P explicit water solvent
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model. Sodium and chloride ions were added to neutralize the charge of the bare receptor

(�3e) and to account for physiological ionic strength (150 mM NaCl). Solvated ligand sys-

tems (L) contained approximately 6000 (between 5630 to 6521) total comprising one (hybrid)

ligand molecule, approximately 2000 (between 1861 and 2155) TIP3P solvent molecules, and

approximately 5 sodium and 5 chloride ions. The diameter of the boxes (shortest distance

between opposite box walls) was 4.4 nm. Solvated ligand-bound receptor systems (RL) com-

prised approximately 62k (62272–62295) total atoms of the receptor, one (hybrid) ligand

molecule, approximately 19k TIP3P solvent molecules, 59 sodium ions and 56 chloride ions.

The RL boxes had a diameter of 9.6 nm.

Molecular simulation protocol

Simulations were performed on the Owlsnest and CB2RR High-Performance Computing

clusters at Temple University, and TACC Stampede (XSEDE). Molecular dynamics produc-

tion runs were performed using the expanded ensemble functionality of GROMACS 5.1.446

(GROMACS/EE). Solvated systems (L and RL) were energy minimized using GROMACS

with 50,000 steepest descent steps. Equilibration was performed Verlet integration was per-

formed in the NPT ensemble at 300K using a 1 fs timestep. For each system, L or RL, 2.5

ns NPT equilbirium simulation was generated. The pressure was kept at 1 bar using the

Parrinello-Rahman barostat. Long-range electrostatic interactions were handled by Particle

Mesh Ewald (PME).

EE perturbation calculations were performed at 300 K in the NVT ensemble using Verlet

integration with a 1 fs timestep and a velocity-rescaling thermostat. Long-range electrostat-

ics were modeled using PME, and long-range dispersion correction was used.

GROMACS/EE parameters. The Metropolized Gibbs algorithm32 implemented in GRO-

MACS/EE was used to perform Monte Carlo sampling, with moves proposed every 500 time

steps. This method proposes moves from the current state i to all states j 6= i with Gibbs
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probability exp(�uj)/
P

k exp(�uk), and with a rejection step to satisfy detailed balance.

Metropolized Gibbs sampling has been proven to enhance the mixing rate.32 The initial WL

increment was set to 10.0 kBT . The WL free energy estimates f̃i were updated every Monte

Carlo move. Two values were explored for the WL scaling factor ↵: 0.8 (default) and 0.5.

Modification of weights was set to be discontinued when the WL increment reached a value

of of 10�5kBT , with the assumption that they weights are su�ciently close to equilibrium at

that point, however, none of the simulations in this study reach this limit.

Data for free energy estimation was collected after the WL increment fell below 0.01

kBT . We chose this threshold based on the empirical observation that free energy estimates

begin to converge beyond this value (see Results). Final free energy estimates were made

by the averaging the values of �f̃1N = f̃N � f̃1 collected after the WL increment fell below

0.01 kBT .47 Our default protocol was to collect an aggregate simulation time of 400 ns for

each solvated ligand transformation (L ! L⇤), and 100 ns for each receptor-bound complex

(RL! RL⇤). We chose these trajectory length to achieve ⇠80% of the sampling with a WL

increment below 0.01 kBT .

The modified potential used for each alchemical intermediate i = 1, ...N is U�i(x) =

U0(x) + (1 � �i)UL(x|�i) + �iUL⇤(x|�i), where �i ranges from �1 = 0 to �N = 1. The

U0(x) term represents potential energy terms not coupled to the ligand, while UL(x|�i) and

UL⇤(x|�i) are potentials energy terms coupled to ligands L and L⇤, respectively, which depend

on �i through the use of soft-core potentials (sc-alpha = 0.5, sc-power = 1, sc-sigma =

0.3).

Several numbers of alchemical intermediates were chosen for comparison: 21, 54 and 109.

Although using smaller numbers of intermediates is more e�cient if the overlap between

states is moderate (see Results), our default protocol used 109 intermediates, chosen to

avoid possible convergence problems due to poor thermodynamic overlap, which are di�cult

to predict a priori. We elaborate on this issue in the Results and Discussion sections. Simu-

lations with 21 intermediates had �i values spaced linearly in the interval [0, 1] in increments
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of 0.05. Simulations with 54 intermediates had 14, 4, 15, 6 and 15 �i values linearly spaced

in the intervals [0, 0.1], [0.1, 0.3], [0.3, 0.6], [0.6, 0.9], and [0.9, 1.0], respectively. Simulations

with 109 intermediates had 5, 98, and 6 �i values linearly spaced in the intervals [0, 0.01],

[0.01, 0.99], and [0.99, 1.0], respectively (Figure S2). These schedules were arrived at by trial

and error, i.e. in previous tests they were found to result in reasonable acceptance. For all

schedules used in this study, we find traversal to all intermediates for RL and L. Examples

of �-trajectories for L and RL simulations are shown in Figures S3 and S4, respectively.

Empirical transition matrices for ligand-only (L) simulations are shown in Figure S5. While

we did not attempt to further optimize the schedule of �i values, we note that several good

algorithms exist for this purpose.48

�G2

�GRL�GL

�G1

��G = �G2 - �G1  

                  = �GRL  - �GL

L*

(43) R・L*

R・LL 
(31)

Figure 2: Thermodynamic cycle for relative binding free energy (RBFE) calculation. The
RBFE di↵erence between two similar ligands L ! L⇤ (ejm 31 and ejm 43 in Table 1,
respectively) is ��G = �G2 ��G1, which can be computed as �GRL ��GL.
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Table 1: Twenty-four pairs of Tyk2 inhibitors. The numbering of the inhibitors corresponds
to the numbering in References.29,30 The naming convention “ejm” denotes they are from
Reference29 and “jmc” denoted they are from Reference.30

Cl

O

NH NH O

R

NCl

# R # R
⇤

ejm 31 CH3 ejm 43 CH(CH3)2
ejm 45 CH2�cyclopropyl
ejm 46 Cyclopropyl
ejm 48 Cyclopentyl
jmc 28 methylcyclopropyl

ejm 42 CH2CH3 ejm 48 Cyclopentyl
ejm 54 NHCH2CH3

ejm 55 OCH3

ejm 43 CH(CH3)2 ejm 55 OCH3

ejm 44 C(CH3)3 ejm 42 CH2CH3

ejm 55 OCH3

ejm 45 CH2�cyclopropyl ejm 42 CH2CH3

ejm 47 Cyclobutyl ejm 31 CH3

ejm 55 OCH3

ejm 49 Phenyl ejm 31 CH3

ejm 50 CH2OH
ejm 50 CH2OH ejm 42 CH2CH3

ejm 55 OCH3 ejm 54 NHCH2CH3

jmc 23 fluorocyclopropyl ejm 46 Cyclopropyl
ejm 55 OCH3

jmc 27 chlorocyclopropyl
jmc 30 cyanocyclopropyl

jmc 28 methylcyclopropyl jmc 27 chlorocyclopropyl
jmc 30 cyanocyclopropyl

Results

EE convergence times vary with WL increment scaling and num-

bers of alchemical intermediates.

As an illustrative example, we show how the EE algorithm converges for L and RL calcula-

tions of the ejm 31 ! ejm 45 alchemical transformation (Figure 3).
10



Inspection of the instantaneous estimates of free energy estimates for�GL and�GRL over

time show occasional sudden deviations and corrections that occur as the ligand undergoes

slow conformational changes. In the example (Figure 3), we can trace this behavior to

slow interconversion between torsional states, which temporarily “switches” the system to a

new e↵ective free energy landscape (Figure S6). This behavior is observed in all simulations,

regardless of the number of alchemical intermediates. Although enhanced sampling over these

slow sampling barriers is not specifically addressed by the EE algorithm, we nevertheless

observe adequate convergence of RBFE calculations for all of the systems considered in this

study. Using fewer alchemical intermediates can generally converge EE estimates faster,

because the flat-histogram criteria can be achieved in a smaller amount of simulation time.

Another parameter that a↵ects convergence is the WL scaling factor. We performed

tests on seven di↵erent alchemical transformations (the first seven pairs of inhibitors in

Table 1), using two di↵erent values for the scaling factor: 0.5 (more aggressive), versus 0.8

(the GROMACS default). These tests used 400 ns simulation data used for each L ! L⇤

transformation, and 150 ns for each RL ! RL⇤ transformation. The only exception was

ejm 31 (RL) ! jmc 28 (RL⇤), which required ⇠190 ns to converge.

The results show that while the accuracy of the predicted ��G values using a scaling

factor of 0.5 is statistically indistinguishable from results using 0.8 (Figure 4), using a scaling

factor of 0.5 decreases the convergence time (the time it takes for the WL increment to reach

0.01 kT ) by about a factor of 2, with ligand-only simulations converging within an average

time of 52 ns. Interestingly, despite the more complex protein environment, receptor-ligand

simulations converged within an shorter average time of 36 ns (Figure 4B and 4D). These

results suggest —at least for these RBFE calculations and with many intermediates —that

more aggressive WL scaling may be more e�cient.
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Figure 3: Convergence of EE free energy estimates vary with di↵erent numbers of alchemical
intermediates. Estimates of �GL (top left) and �GRL (bottom left) over time for the ejm 31
! ejm 45 transformation converge on the ⇠100 ns timescale, with occasional deviations
that occur due to slow conformational transitions of the ligand. The WL increment in EE
simulations for L (top right) and RL (bottom right) scales more quickly with fewer numbers
of intermediates (shown here for a scaling factor of 0.8) .

Accurate predictions of RBFEs for Tyk2 inhibitors

To test the convergence and performance of our EE protocol, we calculated RBFE estimates

from 400 ns of ligand-only trajectories, and 100 ns of receptor-ligand trajectories, for all 24

alchemical transformations of Tyk2 ligands. Informed by the above results, we used a WL

scaling factor of 0.5 in all simulations. The predictions agree well with the experimental

values, achieving an RMSE of 0.95 ± 0.17 kcal mol�1 and MUE of 0.72 ± 0.13 kcal mol�1

(RMSE and MUE uncertainties from 1000 bootstrapped samples of the set of ligands),
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A B C

D E

Figure 4: Comparisons of EE estimates made using a WL scaling factor of 0.5 vs. 0.8.
Relative binding free estimates ��G = �GRL ��GL were performed for seven alchemical
transformations (the first seven in Table 1), using 400 ns of ligand-only trajectory data, and
150 ns of receptor ligand trajectory data. (A) Comparison of experiment and predicted��G
values for WL scaling factors of 0.5 vs. 0.8. (B) Convergence times and (C) comparison of
�GL estimates for WL scaling factors of 0.5 vs. 0.8. (D) Convergence times and (E)
comparison of �GRL estimates for WL scaling factors of 0.5 vs. 0.8.

respectively.

The convergence profiles of the simulations, however, suggest that shorter trajectories

might su�ce for making accurate predictions. We calculated “normalized” convergence

profiles of �GL and �GRL estimates as a function of simulation time T , as

1

�f̃1N(T )

⇣ 1

T

Z T

0

�f̃1N(t)dt
⌘

(3)

The normalized profiles all converge to unity, enabling objective comparison. The profiles

appear to equilibrate by around 150 ns (Figure 5). On average, ligand-only systems reach

WL increments of 0.01 kT in about 100 ns (Figure 5B), while receptor-ligand systems reach

this value on average in about 40 ns (Figure 5D).

To assess how the length of EE trajectory a↵ects the accuracy of the predictions, we

calculated RBFE estimates for ligand-only trajectory lengths of 100, 150, 200, 250, 300, 350
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DC

A

Figure 5: Traces of normalized free energy estimates show similar convergence profiles for all
alchemical transformations. Free energy estimates over time, normalized by their trajectory-
averaged values after convergence (when the WL increment decreases below 0.01 kT ) result
in a series of profiles that all converge to unity, for the purposes of comparison. Normalized
�GL (A) and �GRL (C) estimates over time, shown similar convergence behavior. The
log10 of the WL increment is shown over time for �GL (B) and �GRL (D). Di↵erent colors
represent di↵erent systems.

and 400 ns, while using 100 ns of receptor-ligand trajectory data. We find that using 100

ns of trajectory data increases the RMSE to 0.98 kcal mol�1 and MUE to about 0.77 kcal

mol�1, but beyond this, estimates approach those using all 400 ns of the trajectory data

(Figure 6, blue lines).

When making free energy estimates from simulation trajectory data, it is imperative

to properly consider the extent of time correlation in the trajectory to make accurate esti-

mates of uncertainty.49,50 Since EE methods make inherently history-dependent estimates,

subsampling trajectory data to remove time correlation may be an important consideration.

To determine a statistically optimal subsampling interval, we computed the autocorrela-

tion time ⌧c of the estimate �f̃1N(t) as ⌧c =
R T

T0
g(⌧)d⌧ where

g(⌧) =
1

T�T0�⌧

R T�⌧

T0
(�f̃1N(t+ ⌧)� h�f̃1Ni)(�f̃1N(t)� h�f̃1Ni)dt

1
T�T0

R T

T0
(�f̃1N(t)� h�f̃1Ni)2dt

. (4)
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Figure 6: Accuracy of predicted RBFEs for Tyk2 inhibitors versus ligand-only (L) simulation
time. Shown are the RMSE (left) and MUE (right) using all trajectory data after convergence
(blue line) and trajectory data subsampled to remove time correlation (orange line). In all
calculations, 100 ns of receptor-ligand tractory data is used.

In this formula, T is the trajectory length, T0 is the time at which data is first recorded,

and hf̃Ni is the time-averaged value of all recorded f̃N values. The trajectory data is then

subsampled in intervals of 2n(⌧c)+1 steps, where n(⌧c) is the number of samples in a trajec-

tory of length ⌧c. For our protocol, n(⌧c) = ⌧c/(1 ps), which results in typical subsampling

intervals of 10-20k steps (Table S1).

As expected, we find that while subsampling increases the values of computed uncertain-

ties, making these uncertainties more accurate because time-correlated data is removed, it

does not statistically impact the overall accuracy of estimated RBFEs (Figure 7). Using

150 ns of ligand-only trajectory data and 100 ns of receptor-ligand trajectory data, we find

that across all 24 alchemical transformations of Tyk2 inhibitors, using unsubsampled data

results in an RMSE of 0.93 ± 0.14 kcal mol�1 and MUE of 0.72 ± 0.12 kcal mol�1, while

subsampled data results in an RMSE of 0.94 ± 0.13 kcal mol�1 and MUE of 0.75 ± 0.12

kcal mol�1.

We also checked to see whether there was any significant conformational change in the

receptor during RL simulations. To assess this, we computed the RMSD of the protein

backbone coordinates with those of the first frame, over time. We find that all RMSD values

are less than 0.3 nm, suggesting the protein receptor is relatively stable throughout the

simulation (Figure S8).
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Figure 7: Comparison of predicted and experimental RBFEs for Tyk2 ligands, using all
trajectory data taken after convergence (left), and trajectory data subsampled to remove
time-correlation (right). In all calculations, 150 ns of ligand-only trajectory data and 100
ns of receptor-ligand data are used. The uncertainties of RMSE and MUE were calculated
from a bootstrap analysis of 1000 trials over the set of 24 transformations.

We also assessed whether backbone restraints had any e↵ect on the convergence time or

the accuracy of the RBFE predictions. Therefore, we repeated all 24 RL! RL⇤ transforma-

tions using 100 ns trajectories, in the presence of backbone restraints with a force constant

of 1000 kJ mol�1nm�2 (Figure S7). While the calculated free energies for restrained vs.

unrestrained simulations are statistically indistinguishable, we find that backbone restraints

decrease the convergence time, from an average convergence time of 32.8 ns (unrestrained),

to an average convergence time of 20.2 ns (restrained).

Averaging multiple independent EE estimates is more accurate

than a single estimate

There are several reasons why independent EE simulations will give varying estimates of

free energies. The first is uncertainty due to finite sampling as occurs for all sampling

algorithms. The second is that the Wang-Landau flat-histogram algorithm, as implemented

in GROMACS with geometric scaling of the WL increment, can result in saturation of the

error, where the WL increment may become vanishingly small but the biases nevertheless
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converged to the incorrect value in the limit of infinite sampling.51,52 While there are ways

to avoid saturation of the error, such as using “1/t”-scaling of the WL increment,51 this

algorithm is not implemented in GROMACS, and we do not pursue the issue here.

To examine the reproducibility of RBFE estimates from EE, we performed five indepen-

dent EE simulations for each of the 24 alchemical transformations of Tyk2 inhibitors. We

found that the standard deviation of the estimates varies between 0.14 and 0.83 kcal mol�1,

suggesting that EE estimates for at least these systems are reproducible (Figure 8).

An interesting question is whether the uncertainty estimates �i from each single EE sim-

ulation (estimated from the variation in �f̃1N) are able to capture the run-to-run variation

in ��G estimates observed for multiple calculations. If so, such uncertainties could be

trusted to provide estimates of the overall uncertainty in EE predictions. To see if this was

the case, we compared the uncertainties in ��G estimated using error propagation from

single replicas (�PE =
q

1
N

P
i �

2
i ) to the uncertainties estimated from the standard error

of the mean across the five replicas, computed as the corrected sample standard deviation,

�SEM =
q

1
N�1

PN
i=1(��Gi ���G)2, where N = 5, and ��G is the mean of ��G es-

timates across all replicas (Figure S10). We find that, across the 24 transformations, the

computed uncertainties �PE tend to be slightly larger than those estimated from the stan-

dard error of the mean, �SEM , by about 0.22 kcal/mol (Figure S11). This suggests that the

uncertainty estimates from single EE replicas do a reasonable if not perfect job of estimating

the overall uncertainty in ��G estimates, and can be prudently used for this purpose.

If we make the assumption that the force field is su�ciently accurate, then improved

sampling will improve accuracy. We find in this case that prediction accuracy is improved

when RBFE estimates are made by averaging the results of multiple replicates. Averaging

five replicas achieves an RMSE of 0.83 ± 0.14 kcal mol�1 and a MUE of 0.66 ± 0.11 kcal

mol�1; these values are smaller than any of the single-replicate EE estimates. (Figure 9)

To assess the statistical significance of this change in accuracy, we computed a non-

parametric null distribution for the RMSE and MUE statistics in each of the above cases,
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Figure 8: Comparisons of RBFEs calculated from five independent replicates, for all 24
alchemical transformations of Tyk2 inhibitors. Shown are five independent estimates and
their uncertainties (blue, orange, green, red, purple circles), and the average of five replicas
(brown circles). The magneta horizontal lines represent the experimental values.

using 1000 permutations of the experimental labels. In all cases, we find p-values less or equal

to 0.006 (Figure S9), which suggests that these improved accuracy results are statistically

significant.

To further explore the apparent accuracy gains from averaging multiple replicas, we

computed predicted RBFEs for a test set of 16 Tyk2 inhibitor alchemical transformations

(those with ligand-only simulations that converged within 100 ns), using n replicas of length

(400 ns)/n for L simulations and (160 ns)/n for RL simulation, for n = 1, 2, 3 and 4 (Figure

10) . The results of these calculations suggests that, given a fixed amount of available

simulation time, lower RMSE and MUE can be achieved by averaging the results of n

replicas, versus performing one simulation n times as long, in the case when trajectories

are long enough to reach convergence.
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Figure 9: Comparison of predicted versus experimental RBFEs for all twenty-four transfor-
mations, using five independent single-replica EE estimates (blue, orange, green, red, purple
colored markers in left panel), and the mean of five replicas (brown stars in right panel).
Averaging multiple replicas yields RBFEs estimates within 1.0 kcal mol�1 of the experimen-
tal value for most transformations. The uncertainties of calculated RMSE and MUE were
estimated from a bootstrap analysis of 1000 trials over the set of 24 transformations.

Figure 10: Accuracy of predicted RBFEs for 16 Tyk2 inhibitors versus simulation length.
Shown are the RMSE (left) and MUE (right) calculated using single long L and RL trajec-
tories (blue) versus multiple replicas (orange). In each case, the total simulation time of the
single long trajectories is equal to the sum of the lengths of multiple replicas: 400 ns of L
trajectory data, and 160 ns of RL trajectory data. The uncertainties of RMSE and MUE
were calculated from an analysis of 1000 bootstrap trials over the set of 24 transformations.

Discussion

In this work, we have shown that expanded ensemble methods, coupled with the latest

Open Force Field Initiative force field, can accurately predict relative binding free energy
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predictions for Tyk2 inhibitors. The main computational expense of these calculations is

the simulation time required for convergence of the relative binding free energies, which

depends on the number of alchemical intermediates used. Compared to a typical FEP+

protocol5 using 20 alchemical intermediates and 5 ns of sampling per intermediate (100 ns

of total simulation time each for L and RL), the EE approach used here is only slightly

more expensive, but can be run in fully independent runs. In many situations, we expect

the advantages of performing such simulations without parallelizations across replicas may

outweigh the disadvantages of computational cost.

Most of the results we have presented in this work use a large number of alchemical

intermediate (109), despite the fact that we have demonstrated that fewer alchemical inter-

mediates (e.g. 21) leads to faster convergence. Why use so many intermediates? One reason

is that it is very hard to predict the optimal schedule of �i values without performing prelim-

inary simulations. In practice, using more � values is simple and e↵ective. A disadvantage

to this strategy is the longer simulation time it takes to achieve flat histograms. As we show

above, however, more aggressive WL increment scaling (using a scaling factor of 0.5 rather

than 0.8) can help accelerate convergence in this case.

Another reason to use a large number of alchemical intermediates is to avoid the risk

of sampling bottlenecks. When the MC acceptance probability between two intermediates

becomes low enough, we have observed that a kind of hysteresis can develop, where the more

time spent in a given intermediate, the less probable it is to make outgoing transitions. The

net e↵ect is that EE sampling appears to “get stuck” intermittently at particular values of �i,

for increasingly longer periods of time. In future work we are studying this phenomenon and

its relation to the saturation of the error that is known to occur with the current geometric

scaling of the WL increment.51,52 It should be possible to determine conditions under which

such hysteresis will occur, so steps can be taken to avoid it.

There are several future directions to explore that might help improve sampling and

convergence beyond the EE approach we have pursued here. Algorithms such as the accel-
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erated weight histogram (AWH) method17 and self-adjusted mixture sampling (SAMS),15

which modify biases for multiple intermediates simultaneously using more sophisticated es-

timators, may lead to better convergence. Versions of these algorithms have recently been

implemented in GROMACS and can be readily applied. More frequent swapping attempts

(every 50 steps, perhaps) might also lead to faster convergence. Moreover, it is clear that

“hidden barriers”, which arise due to rare conformational transitions (see Figures 3 and S6),

are responsible for slow convergence. Future work should focus on automatically identifying

the conformational degrees of freedom corresponding to these slow motions, and employing

novel alchemical intermediates to help overcome these barriers.

A key lesson from this study is that averaging EE free energy estimates over multiple short

simulations gives more accurate predictions than a single long simulations, presumably due

to better sampling. This finding suggests strong benefits for using EE to perform massively

parallel virtual screening e↵orts on cloud computing and other distributed platforms on which

tight-coupling algorithms like Hamiltonian replica exchange are unfeasible. EE approaches

are feasible on such platforms, with the additional benefit that better accuracy may be

achieved by performing more simulations with shorter trajectory lengths.

Conclusion

In this work we use an expanded ensemble (EE) method, implemented in GROMACS,46

along with the current Open Force Field potential,45 to accurately predict the relative binding

free energies (RBFEs) of twenty-four Tyk2 inhibitors (RMSE of 0.94 ± 0.13 kcal mol�1 and

MUE of 0.75 ± 0.12 kcal mol�1). We found that EE convergence times can be accelerated

by decreasing the number of alchemical intermediates (provided su�cient MC acceptance

can be maintained) and by using a more aggressive Wang-Landau scaling factor of 0.5. We

also find a statistically significant benefit in estimating RBFEs as the average over multiple

independent EE replicates. These results suggest that while EE methods may be currently
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underutilized for RBFE estimation, they are poised to play a bigger role in virtual screening

especially on large-scale cloud computing platforms.

Code and data availability

Input files, mdp files and examples of ligand and receptor-ligand EE simulations can be

found on GitHub at https://github.com/Sizhang92190/RBFE_EE_TYK2
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(26) Athènes, M.; Terrier, P. Estimating thermodynamic expectations and free energies in

expanded ensemble simulations: Systematic variance reduction through conditioning.

The Journal of chemical physics 2017, 146, 194101.

(27) Monroe, J. I.; Shirts, M. R. Converging free energies of binding in cucurbit [7] uril

and octa-acid host–guest systems from SAMPL4 using expanded ensemble simulations.

Journal of computer-aided molecular design 2014, 28, 401–415.

(28) Rizzi, A.; Jensen, T.; Slochower, D. R.; Aldeghi, M.; Gapsys, V.; Ntekoumes, D.;

Bosisio, S.; Papadourakis, M.; Henriksen, N. M.; De Groot, B. L., et al. The SAMPL6

25



SAMPLing challenge: assessing the reliability and e�ciency of binding free energy

calculations. Journal of computer-aided molecular design 2020, 34, 601–633.

(29) Liang, J.; Tsui, V.; Van Abbema, A.; Bao, L.; Barrett, K.; Beresini, M.;

Berezhkovskiy, L.; Blair, W. S.; Chang, C.; Driscoll, J., et al. Lead identification of

novel and selective TYK2 inhibitors. European journal of medicinal chemistry 2013,

67, 175–187.

(30) Liang, J.; van Abbema, A.; Balazs, M.; Barrett, K.; Berezhkovsky, L.; Blair, W.;

Chang, C.; Delarosa, D.; DeVoss, J.; Driscoll, J., et al. Lead optimization of a 4-

aminopyridine benzamide sca↵old to identify potent, selective, and orally bioavailable

TYK2 inhibitors. Journal of medicinal chemistry 2013, 56, 4521–4536.

(31) Wang, F.; Landau, D. P. E�cient, multiple-range random walk algorithm to calculate

the density of states. Physical review letters 2001, 86, 2050.

(32) Chodera, J. D.; Shirts, M. R. Replica exchange and expanded ensemble simulations as

Gibbs sampling: Simple improvements for enhanced mixing. The Journal of chemical

physics 2011, 135, 194110.

(33) Zwanzig, R. W. Erratum: High-Temperature Equation of State by a Perturbation

Method. I. Nonpolar Gases. The Journal of Chemical Physics 1954, 22, 2099–2099.

(34) Li, H.; Fajer, M.; Yang, W. Simulated scaling method for localized enhanced sampling

and simultaneous “alchemical” free energy simulations: A general method for molecu-

lar mechanical, quantum mechanical, and quantum mechanical/molecular mechanical

simulations. The Journal of chemical physics 2007, 126, 01B606.

(35) Kuhn, M.; Firth-Clark, S.; Tosco, P.; Mey, A. S.; Mackey, M.; Michel, J. Assessment of

binding a�nity via alchemical free-energy calculations. Journal of Chemical Informa-

tion and Modeling 2020, 60, 3120–3130.

26



(36) Song, L. F.; Lee, T.-S.; Zhu, C.; York, D. M.; Merz Jr, K. M. Using AMBER18 for

relative free energy calculations. Journal of chemical information and modeling 2019,

59, 3128–3135.

(37) Sastry, G. M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and lig-

and preparation: parameters, protocols, and influence on virtual screening enrichments.

Journal of computer-aided molecular design 2013, 27, 221–234.

(38) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Com-

parison of multiple Amber force fields and development of improved protein backbone

parameters. Proteins: Structure, Function, and Bioinformatics 2006, 65, 712–725.

(39) Best, R. B.; Hummer, G. Optimized molecular dynamics force fields applied to the

helix- coil transition of polypeptides. The journal of physical chemistry B 2009, 113,

9004–9015.

(40) Lindor↵-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.;

Shaw, D. E. Improved side-chain torsion potentials for the Amber ↵99SB protein force

field. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950–1958.

(41) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L. pmx: Automated protein

structure and topology generation for alchemical perturbations. 2015.

(42) Hahn, D. F. Pmx Workflow. 2020.

(43) Wagner, J. et al. openforcefield/open↵-toolkit: 0.9.1 Minor feature and bugfix release.

2021; https://doi.org/10.5281/zenodo.4592294.

(44) Seeliger, D.; De Groot, B. L. Protein thermostability calculations using alchemical free

energy simulations. Biophysical journal 2010, 98, 2309–2316.

(45) Qiu, Y.; Smith, D.; Boothroyd, S.; Jang, H.; Wagner, J.; Bannan, C. C.; Gokey, T.;

27



Lim, V. T.; Stern, C.; Rizzi, A., et al. Development and Benchmarking of Open Force

Field v1. 0.0, the Parsley Small Molecule Force Field. 2020,

(46) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.
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