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Abstract

Recently, Machine Learning (ML) has proven to yield fast and accurate predictions of

chemical properties to accelerate the discovery of novel molecules and materials. The

majority of the work is on organic molecules, and much more work needs to be done

for inorganic molecules, especially clusters. In the present work, we introduce a sim-

ple Topological Atomic Descriptor called TAD, which encodes chemical environment

information of each atom in the cluster. TAD is a simple and interpretable descrip-

tor where each value represents the atom count in three shells. We also introduce the

DART, Deep Learning Enabled Topological Interaction model, which uses TAD as a

feature vector to predict energies of metal clusters, in our case Gallium clusters with

size ranging from 31 to 70 atoms. DART model is designed based on the principle

that energy is a function of atomic interactions and allows us to model these complex

atomic interactions to predict the energy. We further introduce a new dataset called

GNC_31-70, which comprises structures and DFT optimized energies of Gallium clus-

ters with sizes ranging from 31 to 70 atoms. We show how DART can be used to

accelerate the identification of ground-state structures without geometry optimization.

Albeit using topological descriptor, DART achieves MAE of 3.59 kcal/mol (0.15 eV)

on testset. We also show that our model can distinguish core and surface atoms in the
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Ga-70 cluster, which the model has never encountered earlier. Finally, we demonstrate

the transferability of DART model by predicting energies for about 6k unseen config-

urations picked up from Molecular Dynamics (MD) data for three cluster sizes (46,

57, and 60) within seconds. The DART model was able to reduce the load on DFT

optimizations while identifying unique low energy structures from MD data.

Keywords: Machine Learning, topological descriptors, Gallium

clusters,

1. Introduction

Clusters are a bridge between two very well-understood extremes, i.e., the atoms

and bulk. [1, 2] Clusters have been researched to develop a fundamental understanding

of systems at a length scale where addition or subtraction of even one atom affects their

physicochemical properties. [3, 4, 5, 6, 7] Computationally, structure generation tech-5

niques like random sampling, [8] genetic algorithm, [9, 10] minima hopping, [11] etc.,

are combined with geometry optimization DFT algorithms to obtain low energy/stable

structures. The hunt for such stable structures is greatly limited by the computation

expense involved. And hence, combining traditional approaches of energy prediction

with machine learning is one such recent trend. [12, 13, 14, 15, 16, 17, 18]10

Machine Learning techniques are finding increasing application to problems of ma-

terials science, right from exploring suitable materials and structures for a desired prop-

erty dependent application to digging out hidden patterns in the ML datasets.[19, 20,

21, 22, 23] The power of ML to assist domain experts with insights from vast datasets

has proven to be of immense promise. [17, 24, 25, 26] An important factor that lies at15

the heart of any ML problem is accurate “representation of the data”. And hence, de-

sign of accurate “descriptors” or “features” for various class of materials/compounds is

still an active area of research. Various approaches have been developed for engineer-

ing features that give a fair representation of cluster structures.[18, 27, 28, 29, 21, 30,

31, 32] The most direct and crude form of descriptor to represent a cluster structure are20

the Cartesian coordinates. But their direct application for energy prediction is severely

restricted due to lack of rotational and translational invariance.
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Figure 1: Work flow to identify ground state Gallium clusters using molecular dynamics simulations and

Quantum Mechanics geometry optimization

Symmetry functions that depend on interatomic distances and angles are yet an-

other successful class of descriptors applied to various systems like bulk, clusters,

and molecules for prediction of formation energies.[33, 34, 35, 36, 37, 38] These ap-25

proaches mainly involve accurate mapping of local atomic environment to describe

the structure and hence predict their energies. Descriptors like the Coulomb Matrix

(CM), [36] Smooth Overlap of Atomic Positions (SOAP), [37] Atom Centered Sym-

metry Function (ACSF) [33], Partial Radial Distribution Function (PRDF) [39], and so

on have been developed and applied to problems of finding structural similarity and30

also structure energy predictions. These functions, while they describe the structure to

a very reasonable extent and are accurate for energy predictions, are also complex in

nature, require fitting of multiple parameters and need energy minimized structures for

predicting energies[40].

Recently, graph-based representations for molecules and materials is also finding35

applications in property/energy prediction. [41, 42] Interatomic bonds are represented

as edges and atoms as nodes of a graph. Jensen et. al., develop graph based features for

atomic clusters for prediction of various molecular properties.[41] They showed that
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they could predict octanol solubility of molecules with as low as 200 training examples

using appropriate molecular representation and MAE of 0.4 log10 units. Further, the40

author also acknowledges the lack of precise 3D positional information that usually

graph based descriptors encounter and hence limiting their prediction capacity. While,

graph based representation are very simple to understand, they come at the cost of

prediction accuracy as they miss out on structural details which may be of interest dur-

ing energy/property predictions. [41, 43] In another study by Wolverton et. al., they45

demonstrate representation of crystalline compounds derived from Voronoi tessella-

tions of the structure. [42] Their model outperformed CM and PRDF based methods

with an MAE of 2.03 kcal/mol (88 meV/atom), at a training set size of 30,000 entries.

They design descriptors in a way such that they are insensitive to the choice of unit

cell or even the volume of unit cell. Their descriptors are a step ahead in the direction50

of reducing independence of descriptors on atomic coordinates of a structure. Hence,

developing descriptors that are easy to design/understand yet accurate for energy pre-

dictions is a topic that is still under research.[44]

In this work, we propose a novel workflow for energy prediction of metallic clusters

as shown in Figure 1. For this purpose, we introduce, DART (Deep learning-enabled55

topologicAl inteRacTion) model, which is designed based on the principle that energy

is a function of atomic interactions. To model these interactions, we developed an

interaction block which is inspired by SchNet.[45] Contrary to other models that use

structural information, DART uses features that capture topological/connectivity infor-

mation to predict metallic clusters energies. As the descriptor consists of just the atom60

counts in each shell, it captures topological information. Other models such as High-

Dimensional Neural Network (HDNN)[46] uses Behler-Parinello Symmetry Function

(BPSF) as a feature vector that encodes structural information. DART with only topo-

logical information is able to reach Mean Absolute Error (MAE), which is very close

to HDNN, which requires structural information. Our model is able to learn physically65

meaningful atomic interactions as well as distinguish between core and surface atoms.
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2. Methods

This section is divided into four sub-sections. In the sub-section 2.1 we describe the

generation of the new dataset called as Gallium Neutral Clusters, GNC_31-70 dataset.

We introduce a novel feature vector, namely Topological Atomic Descriptor (TAD)70

in sub-section 2.2. TAD encodes the atomic environment information of a particu-

lar atom using the atom count information of its neighboring atoms. In sub-section

2.3, the building blocks of DART and its complete architecture which consists of five

Multi-layered perceptron namely MLPf , MLPJ , MLPK , MLPL, and MLPint is described.

DART uses TAD to predict the energy of gallium clusters. In sub-section 2.4 we de-75

scribe the training procedure and mention other computational details. The code for

this work, along with examples, is available at https://github.com/devalab/DART

2.1. Dataset

The dataset comprises of optimized, unique low energy isomers of gallium clus-

ters with size ranging from 31 atoms to 70 atoms and their binding energies. All the80

calculations were carried out within the Kohn-Sham formulation of DFT. Projector

Augmented Wave potential [47, 48] was used, with Perdew–Burke–Ehrzenhof (PBE)

[49] approximation for the exchange-correlation and generalized gradient [50] approx-

imation, as implemented in planewave, pseudopotential based code, VASP.[51, 52, 53]

We begin by optimizing the previously published geometries for neutral Gan clus-85

ters (size n = 31 to 70). [54, 55] The dataset has total of 6851 structures and are

shared as a Supplementary file and is also available at https://figshare.com/s/

9808d756f107e8fd6c69. See Figure 2 for distribution of number of isomers across

cluster size ranging from 31 to 69 atoms. We create train, validation and test dataset by

randomly choosing structures from the cluster size from range 31 to 69. Train:valid:test90

split of 80:10:10 was used which gives 5265 structures in train set, 656 structures each

in validation and test sets. We also created another data set called Ga-70 data set which

has 285 structures all having 70 Gallium atom. Ga-70 dataset was created to demon-

strate our models transferability in terms of predicting energy for Ga-70 clusters by

training the model on Ga clusters of size 31 to 69.95
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Figure 2: Shows distribution of number of isomer w.r.t Gallium cluster size.

2.2. Descriptor

We use TAD as the feature vector. As the name suggests, TAD encodes topological

information of the cluster. TAD is designed to capture topological information and

hence does not require exact structural information to identify low energy clusters;

we show this in the results section. As seen in Figure 3, TAD encodes the atomic100

environment information of a particular ith atom A by dividing the neighboring atoms

into three different shells viz. J-shell, K-shell, and L-shell. These shells around ith

atom A are created using distance cutoffs. Here, we have used distance cutoff less

than 3.49 Å for J-shell, 3.49 Å to 6.3 Å for K-shell, and beyond 6.3 Å is L-shell. The

rationale behind choosing the distance cutoffs is based on the Ga-Ga pairwise distance105

distribution as shown in Figure 4. We count the number of atoms in each of these shells

to create TAD. Hence, TAD is a very simple and elegant descriptor which in some

sense tries to encode structural information by dividing the connectivity information

using distance cutoffs.
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Figure 3: Shows topological descriptor of atom A in Cluster of 51 gallium atoms.

2.3. DART (Deep Learning Enabled Topological Interaction)110

The architecture of DART is shown in Figure 5, it uses TAD as the feature vector

to predict the energy of a single ith atom. It sums the energy of all the atom’s to obtain

clusters energy as shown in Eq 1, where Ei is ith atom energy and i = 1..N where N

is the total number of atoms in the cluster. Figure 5 shows TAD of i1 atom in twelve

atom representation of cluster. The remaining eleven atoms belong to either of the three115

shells based on the distance cutoff from the focal atom (i1 in this case) whose energy

is to be predicted. DART consists of five multilayered perceptrons (MLP), four for

atomwise feature refinement, and one MLP is to model/refine atomwise interactions.

As in equation 2 where W are the weights and b is the bias of MLP, the feature vector

x f of the focal atom i1 is passed through MLPf .120

ETot =
N

∑
i

Ei (1)

Yf =Wf x f +b f (2)

The feature vector of each atom in the Jth-shell is feed to MLPJ as shown in equa-

tion 3 and element-wise summation of all the atoms provides us with Jthshell features.
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Figure 4: Shows Ga-Ga pairwise distance distribution.

Similarly, we get Kth-shell and Lth-shell features as given in equation 4 and 5.

YJ = ∑
j

WJx j +bJ (3)

YK = ∑
k

WKxk +bK (4)

YL = ∑
l

WLxl +bL (5)

Further, we do an element-wise summation of features of the focal atom with the

rest of the shells to get YfTotal as in equation 6.125

YfTotal = Yf +YJ +YK +YL (6)

Which is then feed to MLPint , where int stands for interaction, which further refines

these features to model atomic interactions. The final output of the MLPint is the focal
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Figure 5: On the left is topological descriptor of 12 atom dummy cluster. On right is DART architecture,

where energy of the ith atom of interest is predicted, with their corresponding atoms in J, K, and L shells,

for i = 1..N respectively, where N is total number of atoms in the cluster. There are five different types of

Multilayered perceptron one each for focal atom, J-shell, K-shell, L-shell and interaction block are MLPf ,

MLPJ , MLPK , MLPL, and MLPint respectively. It should be noted that the number of MLPJ depends on

number of atoms in J-shell

atom’s energy, see equation 7.

E f =WYfTotal +b (7)

2.4. Training the models

DART model is implemented in Pytorch[56]. Before training the model, all the130

learnable parameters are initialized using Kaiming initialization[57]. We have 2-hidden

layers in MLPf , MLPJ , MLPK and MLPL and 4-hidden layers in the interaction block

MLPint . The network architecture plays a major role in the performance of neural

network potential. Too small of a network has reduced flexibility which causes poor

performance; on the other hand, larger networks tend to overfit the data leading to bad135

generalization, especially on small datasets. Table 1 gives the dimensions of DART

model. After initialization, we train the DART model using a batch size of 32 to predict

energy by minimizing the Mean Absolute Error (MAE) between predicted and actual

energies using ADAM optimizer with an initial learning rate of 0.001, other ADAM
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Module Dimensions

MLPf 3:128:128

MLPJ 3:128:128

MLPK 3:128:128

MLPL 3:128:128

MLPint 128:256:128:32:1

Table 1: Number of hidden layers input size, and output size of each module is given. MLPf is multi-layered

perceptron of focal atom f , similarly MLPJ is for J-shell, MLPK is for K-shell, MLPL is for L-shell, and

MLPint is for interaction block. All these values are obtained after hyperparameter optimization

parameters set to β1 = 0.9, β2 = 0.999. Learning rate is multiplied by 0.1 after reaching140

a plateau with the patience of 25 epochs and eps = 10−9. All the intermediate layers

were activated using the Continuously Differentiable Exponential Linear Units (CeLU)

activation function. We stop training by setting the early stopping learning rate to

10−8 to avoid overfitting. Training of HDNN-BPSF is similar to DART model with a

batch size of 32, L1 loss function except weights are updated using ADAMW, and bias145

is updated using SGD. All hyperparameter values are obtained after hyperparameter

optimization for both models.

3. Results

3.1. BPSF-HDNN

Behler-Parrinello Symmetry Function (BPSF) descriptor encodes the atomic en-150

vironment using 3D geometry. In contrast, we developed a topological descriptor

that encodes the atomic environments using atom counts as described in section 2.2.

The topological descriptor captures the topological information as compared to BPSF,

which captures structural information. Hence, BPSF with the HDNN model is con-

sidered a hard limit that a model using topological descriptors cannot out perform. We155

compare the DART model, which uses TAD, with the BPSF-HDNN model, which uses

3D structures. BPSF-HDNN has an architecture of 640:128:128:64:1, and we used a

radial cutoff of 15 Å and angular cutoff of 6.5 Å to generate atomic environment vector
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(AEV). The radial and angular cutoffs dictate the distance neighboring environment

should be probed. We used ηr = 16.0, ζ = 32.0 and ηa = 8.0. Sixty-four evenly160

spaced radial shifting parameters were used for the radial part, and a total of twenty-

four radial and twenty-four angular shifting parameters were used for the angular part.

The total length of AEV is 64(radial)+24∗24(angular) = 640.[46, 58]. We get MAE

of 2.4 kcal/mol, RMSE of 3.03 kcal/mol on the test set. As expected, BPSF performs

very well in predicting the binding energy of Gallium clusters.165

3.2. Accuracy and Transferability of DART

Model Testset (kcal/mol)

MAE RMSE

BPSF-HDNN (structural) 2.4 3.03

DART (topological) 3.59 4.55

DART without MLPK 4.06 5.16

DART without MLPL 3.93 5.05

DART without MLPK & MLPL 4.29 5.45

DART without MLPint 12.33 16.40

Table 2: Behler Parinello Symmetry Functions (BPSF) - HDNN uses structural information whereas DART

uses topological information. Test set includes 655 clusters

DART model has been applied on Gallium clusters dataset introduced in section

2.1 to predict binding energies by using topological information. After training DART

on 80 % of data .i.e. 5256 clusters, we achieve MAE of 3.59 kcal/mol and Root Mean

Squared Error (RMSE) of 4.55 kcal/mol on a test set that has 656 clusters with size170

ranging from 31 to 69 atom clusters. The largest Gallium clusters in the train set contain

69 atoms; hence we also test the model on the Ga-70 cluster to check its transferability

to larger clusters that the model has not seen during training. When trained on N = 31

to N = 69 atom clusters and tested on N + 1 = 70 atom clusters we get MAE of 4.71

kcal/mol and RMSE of 5.96 kcal/mol.175

In another experiment, we validate our model on three test cases each having dif-

ferent test-set to show the robustness of our model on different cluster sizes. In first test
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case we train our model on Ga-31 to Ga-70 excluding Ga-46, 57 and 60. These sizes

(46, 57 and 60) of Ga clusters will be used as test-set. In second test case our model

is trained on Ga-31 to Ga-70 excluding Ga-46, 57, 66 and excluded sizes (46, 57, 66)180

are considered as test-set. Similarly for third test case we train model on Ga-31 to 70

excluding sizes (57, 60, 66) of Ga clusters. These excluded sizes (57, 60, 66) of Ga

cluster are used as test-set. Performance of DART model on each of these test cases

is summarized in table 3, it can be seen that DART models performance is consistent

across all the test cases. TAD and DART can be extended to other metallic clusters.185

Results for all the test cases for each Gallium cluster individually is given in Sup-

plementary information table 1,2, and 3. As it is evident from the results that the model

is robust, the RMSE values for Gallium-57, 60 and 66 are consistent across three ex-

periments. There are small structural changes in the core-shell of Ga-46 cluster which

leads to large change in energy whereas these small structural changes are not fully190

captured by our descriptor (TAD) hence we observe higher values of RMSE for Ga-46

which is a magic cluster.

Model DART (values in kcal/mol)

MAE RMSE # structures

Test case 1 - Test set:

(Ga-46, 57, and 60)

4.77 6.16 427

Test case 2 - Test set:

(Ga-46, 57, and 66)

4.76 6.02 436

Test case 3 - Test set

(Ga-57, 60, and 66)

4.34 5.58 570

Table 3: Performance of DART model on three different test cases each having different test-set to show the

robustness of our model. last column gives the number of structures present in the test-set. All values are in

(kcal/mol).

3.3. Importance of each shell and interaction block

To further show the importance of each of the modules in the DART model, we

perform a few experiments (reported in table 3) . In these experiments, we train our195
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model by excluding or "switching off" each of these modules individually or in com-

bination to see how the absence of each of these modules affects the performance of

the DART model. It should be noted that all these experiments are compared with the

DART model (topological), which has all-shells and interaction block "switched on".

In the first experiment, the MLP, which provides information about the L-shell, i.e.,200

MLPf , is switched off; we get MAE of 3.93 kcal/mol, RMSE of 5.05 kcal/mol on the

test-set. For the second experiment, the MLP that provides information about the K-

shell is switched off, which gives MAE of 4.06 kcal/mol, RMSE of 5.16 kcal/mol on

the test-set. For the third experiment, the MLPK and MLPL, which provide information

about the K-shell and L-shell, respectively, are switched off, which gives MAE of 4.29205

kcal/mol and RMSE of 5.45 kcal/mol on test-set. Finally, in the fourth experiment,

the interaction module MLPint , which learns the physically meaningful interaction be-

tween the atoms, is switched off, which gives MAE of 12.33 kcal/mol, RMSE of 16.40

kcal/mol on test-set. It is evident that when compared to DART (topological), which

achieves MAE of 3.59 kcal/mol and RMSE of 4.55 kcal/mol on test-set that switching210

off MLPK gives a larger MAE value than the absence of MLPL hence Kth-shell is more

critical than Lth-shell. Switching off the interaction module has the most significant

effect on the DART model’s performance; MAE values go as high as 12.33 kcal/mol.

Hence, we conclude that the interaction module MLPint is critical in the DART model,

which helps learn the physically meaningful atomic interactions.215

3.4. Model learns to distinguish between core and surface atoms

This exercise shows our model’s ability to distinguish between the Gallium clus-

ters’ core and surface atom. The model learns this distinction from our descriptor

TAD, which encodes the chemical environment information of each atom in the clus-

ter. Which further proves that our descriptor TAD encodes the chemical environment220

information of each atom within the cluster, which is sufficient for the model to distin-

guish between core and surface atoms. It should be noted that not all atoms contribute

equally towards the binding energy of the cluster. The core atoms will have more

contribution towards binding energy as compared to the surface atoms. In Ga-70 clus-

ter, atoms within 3.49 Å from the center of mass (CoM) of the cluster are considered225
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as core atoms, and atoms beyond 6.3 Å from CoM are considered as surface atoms.

We extract the features from the third hidden layer of interaction block MLPint . The

third hidden layer of the interaction module MLPint is just before MLPint outputs the

predicted atomic energy. We perform t-Distributed Stochastic Neighbor Embedding

(t-SNE) on the extracted features. The t-SNE plot of the previously extracted feature230

in Figure 6 shows a clear distinction of core and surface atoms.

Figure 6: t-Distributed Stochastic Neighbor Embedding (t-SNE) of the feature extracted from the 3rd hidden

layer of interaction module during testing of Ga-70 dataset.

3.5. Identification of stable isomers from molecular dynamics data

This section demonstrates the model’s ability to identify/filter unique low energy

isomers from unseen structures taken from molecular dynamics simulation trajectories.

Three randomly selected sizes (46, 57, 60) of Ga clusters were taken from molecular235

dynamics simulation. They were used as a test set for the DART model trained on

geometry optimized data from size 31 to 70, excluding size (46, 57, and 60) of Ga
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cluster. Molecular dynamics test set consists of 1919, 1051, and 2596 structures of

Ga-46, Ga-57, and Ga-60, respectively. The model was able to predict energy values

for all 5566 structures within seconds. Firstly, the predicted energies were sorted and240

100 lowest energy structures were picked for DFT optimisation. Upon optimisation it

was observed that the DART model had correctly identified the ground state geometry

from the vast dataset on which it was tested. And hence, greatly reducing the load on

DFT calculations. Further, the DART model was also used to identify the different low

energy isomers for each size. Conventionally, about 25-30 % structures picked for each245

size from molecular dynamics would be chosen to perform further DFT optimizations,

which would in turn yield roughly 100-150 unique structures. This search, i.e., the

number of DFT optimizations, could be significantly reduced with the application of

the DART model. Since the model was trained on optimization data, energy predic-

tions were closer to optimized geometry values than MD. Moreover, it was possible250

to significantly reduce the number of DFT optimizations while maximizing the prob-

ability of finding unique low energy structures. There were two possible approaches

to identify unique isomers out of the existing MD data; i.e. structures could either be

segregated into bins of varying descriptors in the feature space or bins of varying ML

predicted energy values. Optimisation of one structure from each bin would in turn255

identify the unique isomers. However, given that TAD counts the coordination of each

atom in its neighborhood within three shells, classification based on descriptors would

lead to very broad bins of structures. This is turn would lead to classifying similar

structures of clusters belonging to different local minima’s into one bin and missing

out on many unique isomers. Hence, structures were segregated into bins of varying260

ML predicted energy values. About 100 structures were chosen (one from each energy

bin) and optimized using DFT to identify unique low energy geometries. It was noted

that out of 93 DFT optimizations performed for each of the three cluster sizes, nearly

97 % of the structures turned out to be unique. Hence, we note that DART not only

predicts energy but can also identify unique low energy isomers from a large number265

of structures generated from molecular dynamics simulations.
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4. Conclusion

In this study, a deep learning model, namely DART, developed using interaction

block, capable of modeling atomic interactions using topological descriptor (TAD) is

reported. DART is significantly more efficient than the conventional work-flow for270

identifying ground state isomer in terms of time and computational resources. A novel

feature vector called Topological Atomic Descriptor (TAD), which effectively encodes

the clusters topology, is used to train the DART model. A deep neural network DART

model exhibits its ability to predict energy of Gallium cluster, demonstrating the trained

network’s robustness and TAD’s adequacy as a feature vector compared to symmetry275

functions. The interaction module is crucial to mimic atomic interactions. Examin-

ing the features extracted from this module indicates that the model has learned the

underlying chemistry by its ability to differentiate between core and surface atoms.

Furthermore, DART model can be extended to any metal cluster and can be modi-

fied to be used on nanoalloys[59]. Also, DART model can identify unique low energy280

structures from a corpus of structures obtained from MD simulations, thereby reducing

the number of QM calculations manifolds. This method successfully predicts clusters

energy and can identify unique low energy isomers. Next objective is to develop a

model which can learn and generate three-dimensional structures of the clusters than

just identifying the low energy isomers. Future work in this direction is in progress.285
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